Symmetry as a shadow topological order

Xiao-Gang Wen (MIT)

2020/12/08

Symmetry in quantum systems

- What is a **quantum system**?
 - Total Hilbert space $\mathcal{V} = \bigotimes_i \mathcal{V}_i$ (\mathcal{V}_i finite Hilbert space on vertex-i)
 - A local Hamiltonian (a hermitian operator) of form $H = \sum O_i + O_{ij}$

- What is a **symmetry** in quantum system?
 - A symmetry is a set of **linear constraints** on local operators \rightarrow **local symmetric operators**
 - Sum of local symmetric operators \rightarrow **symmetric Hamiltonian**.

Example: A lattice model on a triangulation of an n-dimensional space M_n. Local Hilbert space \mathcal{V}_i on each vertex (or site) is spanned by $|g_i\rangle$, $g_i \in G$.

- The on-site (gaugable, anomaly-free) symmetry $W_h = \bigotimes_i W_h(i)$, $W_h |\cdots g_i, g_j \cdots\rangle = |\cdots g_i h, g_j h \cdots\rangle$, $h \in G$.

- The set of local symmetric operators (which form an algebra) $A = \{ O_{ij} |\ W_h O_{ij} = O_{ij} W_h, \forall h \in G \}$.
Symmetry in quantum systems

• What is a **quantum system**?
 - Total Hilbert space \(\mathcal{V} = \bigotimes_i \mathcal{V}_i \) (**\(\mathcal{V}_i \) finite Hilbert space on vertex-\(i \)**)
 - A local Hamiltonian (a hermitian operator) of form \(H = \sum O_i + O_{ij} \)

• What is a **symmetry** in quantum system?
 - A symmetry is a set of **linear constraints** on local operators \(\rightarrow \) **local symmetric operators**
 - Sum of local symmetric operators \(\rightarrow \) **symmetric Hamiltonian**.

• **A example**: A lattice model on a triangulation of a \(n \)-dimensional space \(M^n \). Local Hilbert space \(\mathcal{V}_i \) on each vertex (or site) is spanned by \(|g_i\rangle \), \(g_i \in G \).
 - The **on-site** (gaugable, anomaly-free) symm. (right-action)
 \[
 W_h = \bigotimes_i W_h(i), \quad W_h | \cdots g_i, g_j \cdots \rangle = | \cdots g_i h, g_j h \cdots \rangle, \quad h \in G.
 \]
 - The set of **local symmetric operators** (which form an algebra)
 \[
 \mathcal{A} = \{ O_{ij} | W_h O_{ij} = O_{ij} W_h, \quad \forall h \in G \}\]
A quantum system with 0-symmetry G

- A symmetric Hamiltonian (in the basis $|\cdots g_i, g_j \cdots\rangle$)

$$H_{\text{site}} = -J \sum_i \delta(g_i g_j^{-1}) - B \sum_i \sum_{h \in G} T_h(i)$$

$$\delta(g_i g_j^{-1}), \sum_{h \in G} T_h(i) \in A = \{ O_{ij} \mid W_h O_{ij} = O_{ij} W_h \}$$

$$T_h(i)|\cdots, g_i, g_j, \cdots\rangle = |\cdots, hg_i, g_j, \cdots\rangle,$$ left-action.

- When $B = 0, J > 0$, there are $|G|$ degenerate ground states:

$$\{ |\cdots, g, g, g, \cdots\rangle = \bigotimes_i |g_i\rangle \mid g \in G \}$$

but a unique symmetric ground state $\sum_{g \in G} |\cdots, g, g, g, \cdots\rangle$

- The degenerate ground states \rightarrow spontaneous symmetry breaking.

- In the ground state subspace, the product states are not symmetric, and the symmetric state is not product states \rightarrow spontaneous symm. breaking.

- When $J = 0, B > 0$, there is a unique ground state $\bigotimes_i \sum_{g_i \in G} |g_i\rangle i$, which is a symmetric product state \rightarrow no symmetry breaking
A non-Abelian duality

- We consider duality transformation of H_{site}. The dual model has local Hilbert space \mathcal{V}_{ij} for each link ij, where \mathcal{V}_{ij} is spanned by $|g_{ij}\rangle$, $g_{ij} \in G$, with $g_{ij} = g_{ji}^{-1}$.

- The duality map between local operators:

$$g_ig_j^{-1} \rightarrow g_{ij}, \quad T_h(i) \rightarrow \tilde{T}_h(i) : |\cdot, g_{ij}, g_{ik}, g_{jk}, \cdot\rangle \rightarrow |\cdot, hg_{ij}, hg_{ik}, g_{jk}, \cdot\rangle$$

$$H_{\text{link}} = -J \sum_{ij} \delta(g_{ij}) - B \sum_i \sum_h \sum_{h \in G} \tilde{T}_h(i) - U_\infty \sum_{ijk} \delta(g_{ij}g_{jk}g_{ki}),$$

When $J = 0$, H_{link} is a lattice gauge theory.

- $U_\infty = \infty$ makes $g_{ij}g_{jk}g_{ki} = 1 \rightarrow$ flat connection. In this case, there is a $|G|$-to-1 correspondence (* base point)

$$g_i h(g_j h)^{-1} \rightarrow g_{ij}, \quad g_i h(g^\ast h)^{-1} \leftarrow g_{ij}g_{jk} \cdots g_{l^\ast}, \quad h \in G.$$

- H_{site} within the symmetric sub Hilbert space has identical eigenvalues as H_{link} below U_∞ if the space M^n satisfies $\pi_n(M^n) = 0$.

Xiao-Gang Wen (MIT)
Algebraic higher symmetry

• \(H_{\text{link}} = -J \sum_{ij} \delta(g_{ij}) - B \sum_i \sum_{h \in G} \tilde{T}_h(i) - U_\infty \sum_{ijk} \delta(g_{ij}g_{jk}g_{ik}^{-1}) \)

has an **Algebraic \((n-1)\)-symmetry** \(\tilde{G}^{(n-1)} \), generated by Wilson loop operators (for **any loops** \(S^1 \))

\[W_q(S^1) = \text{Tr} \prod_{\langle ij \rangle \in S^1} R_q(g_{ij}). \]

\(R_q \) is an irreducible representation of \(G \) labeled by \(q \).

• The **local symmetric operators**

\[\mathcal{A} = \{ O_{ij} \mid W_q(S^1)O_{ij} = O_{ij}W_q(S^1), \ \forall q \text{ and } \forall S^1 \} \]

and \(H_{\text{link}} \) is a sum of local symmetric operators.

- The symmetry acts on all codimension-\((n-1)\) closed subspace \(S^1 \).
- The symmetry satisfies \(W_{q_1}(S^1)W_{q_2}(S^1) = \sum_{q_3} N_{q_1q_2}^{q_3} W_{q_3}(S^1) \),

which do not form a group for non-Abelian \(G \).

\[\rightarrow \text{ algebraic \((n-1)\)-symmetry (algebraic higher symmetry)} \]

- If \(G \) is Abelian, the \((n-1)\)-symmetry (**higher symmetry**) \(\tilde{G}^{(n-1)} \)

is described by a higher group. Gaiotto-Kapustin-Seiberg-Willett arXiv:1412.5148
Spontaneous breaking of algebraic higher symmetry

- G symmetry has a phenomenon: spontaneous symmetry breaking
 $$H_{\text{site}} = -J \sum_i \delta(g_i g_j^{-1}) - B \sum_i \sum_{h \in G} T_h(i)$$

| $G|^{\pi_0(M^n)}$ degenerate ground states | Unique ground state on any M^n
| G SSB | G Symmetric

| $\tilde{G}^{(n-1)}$ Symmetric | $\tilde{G}^{(n-1)}$ SSB B/J

Unique ground states on any M^n
$$|\text{grnd}\rangle = \bigotimes_{ij} |g_{ij} = 1\rangle$$

Degenerate ground states on some M^n
$$|\text{grnd}_\alpha\rangle = \sum_{g_{ij} g_{jk} g_{ki} = 1} \bigotimes_{ij} |g_{ij}\rangle$$

- The algebraic $(n-1)$-symm. also has spontaneous symm. breaking
 $$H_{\text{link}} = -J \sum_{ij} \delta(g_{ij}) - B \sum_i \sum_{h \in G} \tilde{T}_h(i) - U_{\infty} \sum_{ijk} \delta(g_{ij} g_{jk} g_{ki})$$

- Detect (define) spontaneous symmetry breaking (SSB):
 1) Degenerate ground states on some M^n. 2) Some symmetry transformations are not identity in the groundstate subspace

- The critical point has both the symm G and the dual algebraic $(n-1)$-symm $\tilde{G}^{(n-1)}$, ie has the categorical symm $G \vee \tilde{G}^{(n-1)}$
SSB of (algebraic) higher symm. and topo. order

- The ground state degeneracy from SSB of a 0-symmetry is robust against any local symmetry preserving perturbations.
 - *The ground state degeneracy is a property of the symmetry.*

- The ground state degeneracy from SSB of a finite (algebraic) higher symmetry is robust against any local perturbations that can break the symmetry.
 - *The ground state degeneracy is actually not a property of the (algebraic) higher symmetry.*

- SSB of $U(1)$ 1-symmetry gives rise to gapless $U(1)$-gauge bosons, which is robust against any local perturbations.

- SSB of finite (algebraic) higher symmetries \rightarrow topological orders

- Some topological orders \rightarrow (1) emergence of an (algebraic) higher symmetry, (2) which is spontaneously broken.

- Emergent (algebraic) higher symmetry is present in such topological orders and their continuous transition to the neighboring phases.
The dual-equivalence of two symm. $G \xrightarrow{\text{dual}} \tilde{G}(n-1)$

The following two Hamiltonians are dual-equivalent:

\[H_{\text{site}} = -J \sum_i \delta(g_i g_j^{-1}) - B \sum_i \sum_{h \in G} T_h(i) \]

- $|G|^{\pi_0(M^n)}$ degenerate ground states
- G SSB
- $\tilde{G}^{(n-1)}$ Symmetric

- Unique ground state on any M^n
- G Symmetric
- $\tilde{G}^{(n-1)}$ SSB
- B/J

- Unique ground states on any M^n
- Degenerate ground states on some M^n

\[H_{\text{link}} = -J \sum_{ij} \delta(g_{ij}) - B \sum_i \sum_{h \in G} \tilde{T}_h(i) - U_\infty \sum_{ijk} \delta(g_{ij} g_{jk} g_{ik}^{-1}) \]

- More generally, an arbitrary H_{site} with 0-symmetry $G \overset{\text{dual}}{\leftrightarrow}$ a $H'_{\text{link}} - U_\infty \sum_{ijk} \delta(g_{ij} g_{jk} g_{ik}^{-1})$ with the algebraic $(n-1)$-symmetry, i.e. the two Hamiltonians are equivalent, same spectrum etc.

- The 0-symmetry G and the algebraic $(n-1)$-symmetry $\tilde{G}^{(n-1)}$ represent the equivalent constraints that select the “same” class of Hamiltonians. We call them dual-equivalent symmetries.
G or $\tilde{G}^{(n-1)} \rightarrow$ full categorical symm $G \lor \tilde{G}^{(n-1)}$

| $G|_{\pi_0(M^n)}$ degenerate ground states | Unique ground state on any M^n |
|---|----------------------------------|
| G SSB | G Symmetric |
| $\tilde{G}^{(n-1)}$ Symmetric | $\tilde{G}^{(n-1)}$ SSB B/J |

Unique ground states on any M^n Degenerate ground states on some M^n

- A **Hamiltonian** with symmetry G also has the dual symmetry $\tilde{G}^{(n-1)}$, and also has the categorical symmetry $G \lor \tilde{G}^{(n-1)}$
- A **Hamiltonian** with algebraic higher symmetry $\tilde{G}^{(n-1)}$ also has the dual symmetry G, and also has the categorical symm $G \lor \tilde{G}^{(n-1)}$
- The **gapped ground state** must spontaneous break part of the categorical symmetry $G \lor \tilde{G}^{(n-1)}$, such as G, $\tilde{G}^{(n-1)}$, or some of their combination.
- The ground state with the full categorical symmetry $G \lor \tilde{G}^{(n-1)}$ must be gapless.

Algebraic higher symm $\tilde{G}^{(n-1)}$ & its charge object

- $H_{\text{link}} = -J \sum_{ij} \delta(g_{ij}) - B \sum_i \sum_{h \in G} \tilde{T}_h(i) - U_\infty \sum_{ijk} \delta(g_{ij}g_{jk}g_{ik}^{-1})$

- $H_{\text{link}}|_{B=0}$ has an **unique symmetric ground state** $|\text{grnd}\rangle = \bigotimes_{ij} |g_{ij} = 1\rangle$ on close space M^n of any topology.

- A $(n-1)$-dimensional excitation h on top of the ground state: change $g_{ij} = 1$ to $g_{ij} = h$ on a $(n-1)$-dimensional closed subspace = a **charge object** of the algebraic $(n-1)$-symmetry

- **Charge object for 0-symmetry** = **charge-anti-charge pair** on S^0.

- A **charged object** = changing $g_{ij} = 1$ to $g_{ij} = h$ on a $(n-1)$-dimensional subspace with boundary. **The boundary = the gauge flux**

- Measure the $(n-1)$-charge of a charged object:
 $W_q(S^1)|h\rangle = \text{Tr} R_q(h)|h\rangle$.

- h and $h' = ghg^{-1}$ carry the same $(n-1)$-charge.
0-symmetry is described by group G. Higher symmetry is described by higher group. Gaiotto-Kapustin-Seiberg-Willett arXiv:1412.5148

What mathematics describes algebraic higher symmetry?

- We plan to use charged excitations to describe symmetry, higher symmetry, and algebraic higher symmetry in a unified way.

- 0-symmetry:
 - charge object = charge-anti-charge pair S^0.
 - charged object = single point (part of S^0).

- 1-symmetry:
 - charge object = loop excitations S^1.
 - charged object = open-string excitations (part of S^1).

- Algebraic higher symmetry: charged objects = point-like, string-like, membrane like excitations \rightarrow higher fusion category.
• A symmetric quantum system: Hamiltonian $H = - \sum_i Z_i$
(X_i, Y_i, Z_i Pauli operator) plus local symmetric operators $\{\delta H\}$.

• An excitation = something can be trapped H has a gap by $\delta H_{\text{trap}} = 2Z_{i_0}$ or $\delta H_{\text{trap}} = 2(\cos \theta Z_{i_0} + \sin \theta X_{i_0})$. $H + \delta H_{\text{trap}}$ also has a gap \rightarrow trapped states: $|\downarrow\rangle, |\downarrow\downarrow\rangle$,

• Type: (determined by H & local symmetric operators $\{\delta H\}$)
 - Without symmetry ($\{\delta H\}$ are formed by any local operators)
 $|\downarrow\rangle, |\downarrow\downarrow\rangle$ can be deformed into $|0\rangle$ without closing the gap. $|\downarrow\rangle \sim |\downarrow\downarrow\rangle \sim |0\rangle$ the same trivial type 1.
 - With \mathbb{Z}_2-symm. $U = \prod_i Z_i$ (symm. operator $\{\delta H \ | \ \delta H U = U \delta H\}$)
 $|\downarrow\downarrow\rangle$ and $|0\rangle$ are of the same trivial type 1 (\mathbb{Z}_2-charge-0).
 $|\downarrow\rangle$ has a different type e (\mathbb{Z}_2-charge-1).
2+1D charged excitations form a fusion 2-category

- In 2+1D model with the \mathbb{Z}_2-symmetry, the excitation fusion rule:
 \[1 \otimes 1 = 1, \quad 1 \otimes e = e \otimes 1 = e, \quad 1 = \text{the fusion unit} \]
 \[e \otimes e = 1, \quad e = \mathbb{Z}_2\text{-charge (-representation)} \text{ with mod-2 conservation} \]

- $\{1, e\}$ generate a fusion 2-category $2\text{Rep}_{\mathbb{Z}_2}$ in 2+1D:
 - string-like excitations ($\{1_s, e_s\}$ trivial, descendant) \rightarrow objects.
 - $e_s = e$-condensed & spontaneous \mathbb{Z}_2-symm. breaking string.
 - e_s is called descendant excitation

- Kong-Wen arXiv:1405.5858
- Gaiotto & Johnson-Freyd arXiv:1905.09566

- point-like excitations $\{1, e\}$ elementray \rightarrow 1-morphisms $1_s \rightarrow 1_s$
 - domain-wall excitations $1_s \rightarrow e_s \rightarrow 1$-morphisms $1_s \rightarrow e_s$.

- instantons in spacetime connecting point-like excitations \rightarrow
 - 2-morphisms $=$ top morphisms $=$ local symmetric operators $\{\delta H\}$.

- 2 layers of morphisms \rightarrow a fusion 2-category $2\text{Rep}_{\mathbb{Z}_2}$.
1+1D charged excitations form a fusion 1-category

- 1+1D \mathbb{Z}_2-symmetric model: the point-like excitations $\{1, e\}$ have the same fusion rule $e \otimes e = 1$. $e = \mathbb{Z}_2$ charge (representation).
- $\{1, e\}$ generate a fusion 1-category $\text{Rep}_{\mathbb{Z}_2}$ in 1+1D.
 - bosonic point-like excitations $\{1, e\} \rightarrow$ objects.
 - instantons in spacetime connecting point-like excitations \rightarrow 1-morphisms $=$ top morphisms $=$ local symmetric operators $\{\delta H\}$.
1+1D charged excitations form a fusion 1-category

- 1+1D \mathbb{Z}_2-symmetric model: the point-like excitations $\{1, e\}$ have the same fusion rule $e \otimes e = 1$. $e = \mathbb{Z}_2$ charge (representation).
- $\{1, e\}$ generate a **fusion 1-category** $\text{Rep}_{\mathbb{Z}_2}$ in 1+1D.
 - bosonic point-like excitations $\{1, e\} \rightarrow$ objects.
 - instantons in spacetime connecting point-like excitations \rightarrow 1-morphisms = top morphisms = local symmetric operators $\{\delta H\}$.
- **Tannaka duality**: The above fusion 1-category is a **symmetric fusion category** $\mathcal{E} \leftrightarrow$ finite group G.
 - Objects = R_q representations of G. We denote $\mathcal{E} = \text{Rep}(G)$.
- In $(n + 1)$D, charged excitations described by fusion n-category $n\text{Rep}(G) \leftrightarrow (n + 1)$D 0-symmetry G.
1+1D charged excitations form a fusion 1-category

- 1+1D \mathbb{Z}_2-symmetric model: the point-like excitations $\{1, e\}$ have the same fusion rule $e \otimes e = 1$. $e = \mathbb{Z}_2$ charge (representation).
- $\{1, e\}$ generate a **fusion 1-category** $\text{Rep}_{\mathbb{Z}_2}$ in 1+1D.
 - bosonic point-like excitations $\{1, e\}$ → objects.
 - instantons in spacetime connecting point-like excitations → 1-morphisms = top morphisms = local symmetric operators $\{\delta H\}$.
- **Tannaka duality**: The above fusion 1-category is a symmetric fusion category $\mathcal{E} \leftrightarrow$ finite group G.
 Objects = R_q representations of G. We denote $\mathcal{E} = \text{Rep}(G)$.
- In $(n+1)$D, charged excitations described by fusion n-category $n\text{Rep}(G) \leftrightarrow (n+1)$D 0-symmetry G

Categorical description of symmetry: an $n+1$D (algebraic higher) symmetry is describe by a fusion n-category

 Fusion rule \leftrightarrow **conservation law** \leftrightarrow **symmetry**

- **Examples**: (1) $n+1$D 0-symmetry $G \leftrightarrow n\text{Rep}_G$.
 (2) $n+1$D algebraic $(n-1)$-symmetry $\tilde{G}^{(n-1)} \leftrightarrow n\text{Vec}_G$.

Xiao-Gang Wen (MIT) Symmetry as a shadow topological order 14 / 26
The point-like, string-like, etc excitations in a topological order are also described by a fusion higher category \mathcal{C}.

- **Excitations in 2+1D \mathbb{Z}_2 topological order** (\mathbb{Z}_2 gauge theory with charges, or toric code) \rightarrow a fusion 2-category denoted as $G^2_{\mathbb{Z}_2}$:
 - **2-morphisms** $= \text{top morphisms} = \text{local operators} \{\delta H\}$.
 - **1-morphisms** $= \text{point-like excitations, domain walls}$.

3 bosons: 1, e, m; 1 fermion: f (elementary excitations).

- $e \otimes e = 1 \rightarrow \text{mod-2 conservation of } e\text{-particles} \rightarrow \mathbb{Z}_2^e \text{ symmetry}$.
- $m \otimes m = 1 \rightarrow \text{mod-2 conservation of } m\text{-particles} \rightarrow \mathbb{Z}_2^m \text{ symmetry}$.
- $f \otimes f = 1 \rightarrow \text{mod-2 conservation of } f\text{-particles} \rightarrow \mathbb{Z}_2^f \text{ symmetry}$.

- **Objects** $= \text{string-like excitations} \subseteq \{1_s, e_s, m_s, f_s\}$ (descendent)

 - e_s-string: e-condensation, \mathbb{Z}_2^e SSB.
 - m_s-string: m-condensation, \mathbb{Z}_2^m SSB.
 - f_s-string: f-condensation, \mathbb{Z}_2^f SSB.

 In 1+1D, fermion can condensed \rightarrow p-wave topo. superconductor
Which fusion higher categories describe symmetry

- Fusion 2-category $G^2_{\mathbb{Z}_2}$ describes a 2+1D topological order with no symmetry.
- Fusion 2-category $2\text{Rep}_{\mathbb{Z}_2}$ describes a 2+1D product state (trivial topological order) with \mathbb{Z}_2 symmetry.
Which fusion higher categories describe symmetry

- Fusion 2-category $G^2_{\mathbb{Z}_2}$ describes a 2+1D topological order with no symmetry → cannot be mapped to 2Vec
- Fusion 2-category $\text{2Rep}_{\mathbb{Z}_2}$ describes a 2+1D product state (trivial topological order) with \mathbb{Z}_2 symmetry → can be mapped to 2Vec
- For S_3 symmetry, 2Rep_{S_3} has 3 types of particles:
 (3 types of S_3-charge, or 3 S_3 irreducible representations)
 (1) $\mathbf{1}$ trivial rep. (2) a 1-dim. rep. (3) b 2-dim. rep.
- 2Vec has 1 type of particles: (1) $\mathbf{1}$ trivial
- A map β for 2Rep_{S_3} to 2Vec (particles to particles at 1-morphism level): $\mathbf{1} \rightarrow \mathbf{1}, \quad a \rightarrow \mathbf{1}, \quad b \rightarrow \mathbf{1} \oplus \mathbf{1}$ (accidental degeneracy)
- A map β for 2Rep_{S_3} to 2Vec (operators to operators at 2-morphism level): local symmetric operators → local operators
- The \mathbb{Z}_2 topological order $G^2_{\mathbb{Z}_2}$ contains fermions and cannot be mapped to trivial topological order 2Vec with only bosons.
A theory for the most general symmetry

0-symmetry is classified by group G.
Higher symmetry is classified by higher group.

• **Algebraic higher symmetry** in $n + 1$D is classified by local fusion n-category \mathcal{R}, which is fusion n-category that has a top-faithful functor to trivial fusion n-category $n\text{Vec}$:

$$\beta : \mathcal{R} \overset{\text{top}}{\rightarrow} n\text{Vec}.$$

This includes symmetry and higher symmetry.

- **top-faithful** means the map β is injective at the top morphisms level (*ie* the map local symmetric operators \rightarrow local operators is injective).

• Physically, the functor β means “ignore the symmetry” or “explicitly break the symmetry”. The charged excitations \mathcal{R} of a symmetry map to the excitations $n\text{Vec}$ (with possible accidental degeneracy) in trivial product state, (such as spin-$1/2 \rightarrow 1 \oplus 1$)
A second theory for algebraic higher symmetry

- Fusion 2-category $G^2_{\mathbb{Z}_2}$ describes a 2+1D topological order with no symmetry
- Fusion 2-category $2\text{Rep}_{\mathbb{Z}_2}$ describes a 2+1D product state (trivial topological order) with \mathbb{Z}_2 symmetry

Xiao-Gang Wen (MIT)
Symmetry as a shadow topological order
A second theory for algebraic higher symmetry

- Fusion $\mathcal{G}^2_{\mathbb{Z}_2}$ describes a 2+1D topological order with no symmetry \rightarrow **non-degenerate**

- Fusion 2-category $\mathcal{2Rep}_{\mathbb{Z}_2}$ describes a 2+1D product state (trivial topological order) with \mathbb{Z}_2 symmetry \rightarrow **degenerate**

- **Non-degenerate = remotely detectable:**
 Every non-trivial *elementary* excitation is remotely detectable by at least one excitation via remote operations (such as braiding) \leftrightarrow the topological order is realizable by lattice model in the same dimension without symmetry \leftrightarrow the topological order is realizable by a boundary of trivial topological order (product state) in one higher dimension without symmetry $= \text{realizable w/o symm.}$

- Non-degenerate = realizable = trivial bulk \rightarrow no symmetry

- Degenerate = not realizable = bulk topo. order \rightarrow symmetry
A fusion higher category C describes excitations in a topological order with or without symmetry. *How to see the symmetry?*

Holographic principle of topological order

- **A conjecture**: A fusion n-category C can always be realized by the excitations on a certain boundary of a qubit system in one higher dimension (i.e., in $(n+1)$-dimensional space).

- **Another conjecture**: A boundary fusion n-category C uniquely determines a bulk topological order $\mathcal{M} = Z_1(C)$.
 - \mathcal{M} is the braided fusion n-category describing codimension-2 and higher excitations in the bulk topological order.
 - Z_1 is the E_1 center (Drinfeld center for $n = 1$).

- **Symmetry = topological order in one higher dimension**
 - The symmetry in fusion higher category C is given by $\mathcal{M} = Z_1(C)$.
 - $\mathcal{M} = n\text{Vec}$ means no symmetry.
2+1D \mathbb{Z}_2 symm as a shadow of 3+1D topo order

2+1D \mathbb{Z}_2-symmetry = Fusion 2-category $2\text{Rep}_{\mathbb{Z}_2}$

Under the holographic point of view:
2+1D \mathbb{Z}_2-symm \equiv 3+1D topo. order $\mathbb{Z}_1[2\text{Rep}_{\mathbb{Z}_2}] = G_3^{\mathbb{Z}_2}$
which is a 3+1D \mathbb{Z}_2 gauge theory

- The elementray excitations in 3+1D \mathbb{Z}_2-gauge theory
 point-like excitations e (the bosonic \mathbb{Z}_2 charge) and
 string-like excitations s (the bosonic \mathbb{Z}_2-flux string)

- Bulk fusion rule: $e \otimes e = 1, \quad s \otimes s = 1_s$ (trivial string)

- $2\text{Rep}_{\mathbb{Z}_2}$ is a boundary of $G_3^{\mathbb{Z}_2}$, induced by the
 \mathbb{Z}_2-flux loop condensation, i.e the boundary
 excitations are described by $\{1, e\} = 2\text{Rep}_{\mathbb{Z}_2}$.

- Meaning of 2+1D symmetry \equiv 3+1D topo order
 The class of 2 + 1D \mathbb{Z}_2-symm. Hamiltonians = The class of
 boundary Hamiltonians of 3 + 1D \mathbb{Z}_2 gauge theory (∞ bulk gap)
2+1D \(\mathbb{Z}_2^{(1)} \) symm as a shadow of 3+1D topo order

2 + 1D \(\mathbb{Z}_2^{(1)} \)-symmetry = Fusion 2-category \(2\text{Vec}_{\mathbb{Z}_2} \)

- The objects in \(2\text{Vec}_{\mathbb{Z}_2} = \) the string-like excitations, the charge-object of \(\mathbb{Z}_2^{(1)} \) 1-symm, labeled by the elements in group \(\mathbb{Z}_2 \).

- Under the holographic point of view:
 \(2+1\text{D } \mathbb{Z}_2^{(1)}\)-symm = 3+1D topo. order \(\mathbb{Z}_1[2\text{Vec}_{\mathbb{Z}_2}] = G^3_{\mathbb{Z}_2} \) which is a 3+1D \(\mathbb{Z}_2 \) gauge theory

- \(2\text{Vec}_{\mathbb{Z}_2} \) is a boundary of \(G^3_{\mathbb{Z}_2} \), induced by the \(\mathbb{Z}_2 \)-charge condensation, ie the boundary excitations are described by \(\{1, s\} = 2\text{Vec}_{\mathbb{Z}_2} \).
2+1D $\mathbb{Z}_2^{(1)}$ symm as a shadow of 3+1D topo order

2+1D $\mathbb{Z}_2^{(1)}$-symmetry = Fusion 2-category $2\mathcal{V}ec_{\mathbb{Z}_2}$

- The objects in $2\mathcal{V}ec_{\mathbb{Z}_2}$ = the string-like excitations, the charge-object of $\mathbb{Z}_2^{(1)}$ 1-symm, labeled by the elements in group \mathbb{Z}_2.

- Under the holographic point of view:
 2+1D $\mathbb{Z}_2(1)$-symm = 3+1D topo. order $\mathbb{Z}_1[2\mathcal{V}ec_{\mathbb{Z}_2}] = G^3_{\mathbb{Z}_2}$

which is a 3+1D \mathbb{Z}_2 gauge theory

- $2\mathcal{V}ec_{\mathbb{Z}_2}$ is a boundary of $G^3_{\mathbb{Z}_2}$, induced by the \mathbb{Z}_2-charge condensation, ie the boundary excitations are described by $\{1, s\} = 2\mathcal{V}ec_{\mathbb{Z}_2}$.

- In $n + 1$D, the symmetry G and its dual algebraic $(n - 1)$-symmetry $\tilde{G}^{(n-1)}$ are described by the same topological order in one higher dimension G^n_G – the $n + 2$D G-gauge theory.

- Topo order in one higher dimension = Categorical symmetry G and $\tilde{G}^{(n-1)}$ have the same categorical symm: $G^n_G = G \lor \tilde{G}^{(n-1)}$, and are dual-equivalent.
Boundary symmetry from bulk topological order

- The mod 2 conservation of the bulk particle $e \rightarrow$ The \mathbb{Z}_2 0-symmetry in the bulk.
 The mod 2 conservation of the bulk string $s \rightarrow$ The $\mathbb{Z}_2^{(1)}$ 1-symmetry in the bulk
- The \mathbb{Z}_2 and $\mathbb{Z}_2^{(1)}$ symmetry in the bulk becomes the \mathbb{Z}_2 and $\mathbb{Z}_2^{(1)}$ symmetry on the boundary.
 Such a larger symmetry $\mathbb{Z}_2 \vee \mathbb{Z}_2^{(1)} = \text{Categorical symmetry}$.

- String-s condensed boundary: \mathbb{Z}_2 0-symmetry is not broken, $\mathbb{Z}_2^{(1)}$ 1-symmetry is spontaneously broken.
 Particle-e condensed boundary: \mathbb{Z}_2 0-symmetry is spontaneously broken, $\mathbb{Z}_2^{(1)}$ 1-symmetry is not broken.

- The boundary with no String-s condensation, nor particle-e condensation is gapless and has the full categorical symmetry $\mathbb{Z}_2 \vee \mathbb{Z}_2^{(1)} = \mathcal{G}_Z^3 (= 3 + 1D \mathbb{Z}_2$-gauge theory with charges).
Boundary symmetry from bulk topological order

- A general algebraic higher symmetry is described by fusion role in a local fusion higher category \mathcal{R}. It is a shadow topological order in one higher dimension given by $\mathcal{M} = Z_1(\mathcal{R})$.

- **Physical meaning**: \mathcal{R} describes the excitations on a boundary of bulk topological order $\mathcal{M} = Z_1(\mathcal{R})$.

- Algebraic higher symmetry \mathcal{R} implies a “larger” categorical symmetry $\mathcal{M} = Z_1(\mathcal{R})$. *The fusion rule of the excitations in \mathcal{M} gives to the categorical symmetry.*

- The \mathcal{R} boundary of the bulk \mathcal{M} is obtained by condensing a set of excitations $A_{\mathcal{R}}$. The uncondensed part is the symmetry \mathcal{R}. Thus $\mathcal{R} = \mathcal{M} / A_{\mathcal{R}}$.

- If nothing condense at the boundary, we have a gapless boundary with the full categorical symmetry \mathcal{M}. *Ji-Wen arXiv:1912.13492*

Proposal: gapless states are fully described by categorical symmetry
Two algebraic higher symmetries \mathcal{R} and \mathcal{R}' are dual equivalent if they have the same categorical symmetry (i.e., bulk topological order): $Z_1(\mathcal{R}) = Z_1(\mathcal{R}')$.

Two algebraic higher symmetries \mathcal{R} and \mathcal{R}' are dual equivalent if they have the same categorical symmetry (i.e., bulk topological order): $Z_1(\mathcal{R}) = Z_1(\mathcal{R}')$.

We have seen that G and $\tilde{G}^{(n-1)}$ are dual to each other. Or $n\text{Rep}_G$ and $n\text{Vec}_G$ are dual to each other.

Two algebraic higher symmetries \mathcal{R} and $\tilde{\mathcal{R}}$ are dual to each other if $Z_1(\mathcal{R}) = Z_1(\tilde{\mathcal{R}})$ and their stacking through $\mathcal{M} = Z_1(\mathcal{R}) = Z_1(\tilde{\mathcal{R}})$ is a trivial topological order.
Properties of algebraic higher symmetries

• Two algebraic higher symmetries \mathcal{R} and \mathcal{R}' are dual equivalent if they have the same categorical symmetry (i.e., bulk topo. order): $Z_1(\mathcal{R}) = Z_1(\mathcal{R}')$.

We have seen that G and $\tilde{G}^{(n-1)}$ are dual to each other. Or $n\text{Rep}_G$ and $n\text{Vec}_G$ are dual to each other.

• Two algebraic higher symmetries \mathcal{R} and $\tilde{\mathcal{R}}$ are dual to each other if $Z_1(\mathcal{R}) = Z_1(\tilde{\mathcal{R}})$ and their stacking through $\mathcal{M} = Z_1(\mathcal{R}) = Z_1(\tilde{\mathcal{R}})$ is a trivial topological order.

We can also “gauge” an algebraic higher symmetry \mathcal{R} to obtain a topological order of the same dimension.

• The topological order from the gauging algebraic higher symmetry \mathcal{R} is given by stacking two \mathcal{R} through $\mathcal{M} = Z_1(\mathcal{R})$.
The essence of a symmetry

A symmetry is the shadow of a topological order in one higher dimension (\textit{ie} categorical symmetry)

The same topological order (in one higher dimensions) can have different shadows \rightarrow \textbf{dual-equivalent} symmetries.
• A **gapless state** is very special, and has a lot of emergent symmetries. The full (?) emergent symmetry is the **maximal categorical symmetry**

 Ji-Wen arXiv:1912.13492

• A **categorical symmetry** is a **topological order** in one higher dimension.

• **Maximal categorical symmetry** (*i.e.* topological order in one higher dimension) may completely (?) determines a **gapless state**.

• We can classify all **gapped liquid phases** in systems with a **categorical symmetry**. Such a classification includes
 - SETs with algebraic higher symmetry
 - SPTs with algebraic higher symmetry

• Gauge the algebraic higher symmetry

• Anomalous algebraic higher symmetry