Recent progress on random field Ising model

Jian Ding
Peking University

Based on joint works with
Jian Song (Shangdong University)
Rongfeng Sun (National University of Singapore)
Mateo Wirth (University of Pennsylvania)
Jiaming Xia (University of Pennsylvania)
Zijie Zhuang (University of Pennsylvania)

Mathematical Picture Language Seminar
(Lenz–)Ising model: a model for magnetization

- \mathbb{Z}^d: d-dimensional lattice (nearest neighbor graph);
- Λ_N: box with side length $2N$ centered at origin o;
- configuration $\sigma \in \Omega = \{-1, 1\}^{\Lambda_N}$.
- $E(A, B)$ for $A, B \subset \mathbb{Z}^d$: edges between A and B;

For temperature $T \geq 0$, define the Ising measure by

$$\mu^\pm T, \Lambda_N(\sigma) \propto \exp(-\frac{1}{T}H^\pm(\sigma, \Lambda_N))$$

Observation: Ising measure favors configurations with more agreeing neighboring pairs.
(Lenz–)Ising model: a model for magnetization

- \mathbb{Z}^d: d-dimensional lattice (nearest neighbor graph);
- Λ_N: box with side length $2N$ centered at origin o;
- configuration $\sigma \in \Omega = \{-1, 1\}^{\Lambda_N}$.
- $E(A, B)$ for $A, B \subset \mathbb{Z}^d$: edges between A and B;

Hamiltonian with plus (resp. minus) boundary condition:

$$H^\pm(\sigma, \Lambda_N) = -\left(\sum_{(u, v) \in E(\Lambda_N, \Lambda_N)} \sigma_u \sigma_v \pm \sum_{(u, v) \in E(\Lambda_N, \Lambda_N^c)} \sigma_u \right).$$
(Lenz–)Ising model: a model for magnetization

- \mathbb{Z}^d: d-dimensional lattice (nearest neighbor graph);
- Λ_N: box with side length $2N$ centered at origin o;
- configuration $\sigma \in \Omega = \{-1, 1\}^{\Lambda_N}$.
- $E(A, B)$ for $A, B \subset \mathbb{Z}^d$: edges between A and B;

Hamiltonian with plus (resp. minus) boundary condition:

$$H^\pm(\sigma, \Lambda_N) = - \sum_{(u, v) \in E(\Lambda_N, \Lambda_N)} \sigma_u \sigma_v \pm \sum_{(u, v) \in E(\Lambda_N, \Lambda_N^c)} \sigma_u.$$

For temperature $T \geq 0$, define the Ising measure by

$$\mu^\pm_{T, \Lambda_N}(\sigma) \propto \exp\left(- \frac{1}{T} H^\pm(\sigma, \Lambda_N)\right).$$
(Lenz–)Ising model: a model for magnetization

- \(\mathbb{Z}^d \): \(d \)-dimensional lattice (nearest neighbor graph);
- \(\Lambda_N \): box with side length 2\(N \) centered at origin \(o \);
- configuration \(\sigma \in \Omega = \{-1, 1\}^{\Lambda_N} \);
- \(E(A, B) \) for \(A, B \subset \mathbb{Z}^d \): edges between \(A \) and \(B \);

Hamiltonian with plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N) = - \sum_{(u,v) \in E(\Lambda_N, \Lambda_N)} \sigma_u \sigma_v \pm \sum_{(u,v) \in E(\Lambda_N, \Lambda_N^c)} \sigma_u.
\]

For temperature \(T \geq 0 \), define the Ising measure by

\[
\mu^\pm_{T, \Lambda_N}(\sigma) \propto \exp(\frac{-1}{T} H^\pm(\sigma, \Lambda_N)).
\]

Observation: Ising measure favors configurations with more agreeing neighboring pairs.
Long range order for Ising model

• boundary influence = \langle \sigma_o \rangle \mu + T, \Lambda N - \langle \sigma_o \rangle \mu - T, \Lambda N \\
 by symmetry.

• Ising model is monotone, so the plus (minus) boundary condition is the maximum (minimum) boundary condition.

We say long range order exists if boundary influence stays above a positive constant as \(N \to \infty \).

• Ising 1925: for \(d = 1 \), no long range order for any \(T > 0 \).

• Peierls 1936: for \(d \geq 2 \), long range order exists at low temperatures but not at high temperatures.

• Much more on Ising model has been understood, but not our focus today.
Long range order for Ising model

Question: do local spin interactions lead to long range order?
Question: do local spin interactions lead to long range order?

Boundary influence: \[
\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu_T,\Lambda N}^+ - \langle \sigma_o \rangle_{\mu_T,\Lambda N}^- \right).
\]
Long range order for Ising model

Question: do local spin interactions lead to **long range order**?

Boundary influence: \(\frac{1}{2}(\langle \sigma_o \rangle_{\mu_T,^N}^+ - \langle \sigma_o \rangle_{\mu_T,^N}^-) \).

- boundary influence = \(\langle \sigma_o \rangle_{\mu_T,^N}^+ \) by symmetry.
Question: do local spin interactions lead to long range order?

Boundary influence: \[\frac{1}{2} \left(\langle \sigma \rangle_{\mu_T, \Lambda_N}^+ - \langle \sigma \rangle_{\mu_T, \Lambda_N}^- \right) \].

- boundary influence = \[\langle \sigma \rangle_{\mu_T, \Lambda_N}^+ \] by symmetry.
- Ising model is monotone, so the plus (minus) boundary condition is the maximum (minimum) boundary condition.

We say long range order exists if boundary influence stays above a positive constant as \(N \to \infty \).

- Ising 1925: for \(d = 1 \), no long range order for any \(T > 0 \).
- Peierls 1936: for \(d \geq 2 \), long range order exists at low temperatures but not at high temperatures.

Much more on Ising model has been understood, but not our focus today.
Long range order for Ising model

Question: do local spin interactions lead to long range order?

Boundary influence: \(\frac{1}{2} (\langle \sigma_o \rangle_{\mu_T, \Lambda_N}^+ - \langle \sigma_o \rangle_{\mu_T, \Lambda_N}^-) \).

• boundary influence = \(\langle \sigma_o \rangle_{\mu_T, \Lambda_N}^+ \) by symmetry.

• Ising model is monotone, so the plus (minus) boundary condition is the maximum (minimum) boundary condition.

We say long range order exists if boundary influence stays above a positive constant as \(N \to \infty \).
Question: do local spin interactions lead to long range order?

Boundary influence: \(\frac{1}{2}(\langle \sigma_o \rangle_{\mu_T,\Lambda_N^+} - \langle \sigma_o \rangle_{\mu_T,\Lambda_N^-}) \).

- boundary influence = \(\langle \sigma_o \rangle_{\mu_T,\Lambda_N^+} \) by symmetry.
- Ising model is monotone, so the plus (minus) boundary condition is the maximum (minimum) boundary condition.

We say long range order exists if boundary influence stays above a positive constant as \(N \to \infty \).

- Ising 1925: for \(d = 1 \), no long range order for any \(T > 0 \).
- Peierls 1936: for \(d \geq 2 \), long range order exists at low temperatures but not at high temperatures.

Much more on Ising model has been understood, but not our focus today.
Long range order for Ising model

Question: do local spin interactions lead to long range order?

Boundary influence: \(\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu_T,^+,N} - \langle \sigma_o \rangle_{\mu_T,^-,N} \right) \).

- boundary influence = \(\langle \sigma_o \rangle_{\mu_T,^+,N} \) by symmetry.
- Ising model is **monotone**, so the plus (minus) boundary condition is the maximum (minimum) boundary condition.

We say **long range order** exists if boundary influence stays above a positive constant as \(N \to \infty \).

- Ising 1925: for \(d = 1 \), no long range order for any \(T > 0 \).
- Peierls 1936: for \(d \geq 2 \), long range order exists at low temperatures but not at high temperatures.

Much more on Ising model has been understood, but not our focus today.
Long range order for Ising model

Question: do local spin interactions lead to long range order?

Boundary influence: \(\frac{1}{2} (\langle \sigma_o \rangle_{\mu_+^{T,\Lambda_N}} - \langle \sigma_o \rangle_{\mu_-^{T,\Lambda_N}}) \).

- boundary influence = \(\langle \sigma_o \rangle_{\mu_+^{T,\Lambda_N}} \) by symmetry.
- Ising model is monotone, so the plus (minus) boundary condition is the maximum (minimum) boundary condition.

We say **long range order** exists if boundary influence stays above a positive constant as \(N \to \infty \).

- Ising 1925: for \(d = 1 \), no long range order for any \(T > 0 \).
- Peierls 1936: for \(d \geq 2 \), long range order exists at low temperatures but not at high temperatures.
- Much more on Ising model has been understood, but not our focus today.
A sketch of Peierls argument

At low temperatures long range order exists for $d \geq 2$, i.e.,

$$\frac{1}{2}(\langle \sigma_o \rangle \mu + T, \Lambda N - \langle \sigma_o \rangle \mu - T, \Lambda N) = \langle \sigma_o \rangle \mu + T, \Lambda N \geq \text{const}.$$
A sketch of Peierls argument

At low temperatures long range order exists for \(d \geq 2 \), i.e.,
\[
\frac{1}{2}(\langle \sigma_o \rangle_{\mu^+_{T,\Lambda_N}} - \langle \sigma_o \rangle_{\mu^-_{T,\Lambda_N}}) = \langle \sigma_o \rangle_{\mu^+_{T,\Lambda_N}} \geq \text{const}.
\]
A sketch of Peierls argument

At low temperatures long range order exists for \(d \geq 2 \), i.e.,

\[
\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu^+,\Lambda_N}^+ - \langle \sigma_o \rangle_{\mu^-,\Lambda_N}^- \right) = \langle \sigma_o \rangle_{\mu^+,\Lambda_N}^+ \geq \text{const.}
\]
A sketch of Peierls argument

At low temperatures long range order exists for $d \geq 2$, i.e.,

$$\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu^+_T, \Lambda N} - \langle \sigma_o \rangle_{\mu^-_T, \Lambda N} \right) = \langle \sigma_o \rangle_{\mu^+_T, \Lambda N} \geq \text{const}. $$

- **Construction** (of flip mapping): if spin at origin disagrees with boundary condition, flip all spins enclosed by its sign component.

Out boundary (in the dual graph) for the sign component of the origin

Flip all spins enclosed by the out boundary

Conclusion (summing over ℓ): at low temperature, the origin agrees with the boundary condition with good probability.
A sketch of Peierls’ argument

At low temperatures long range order exists for $d \geq 2$, i.e.,
$$\frac{1}{2}(\langle \sigma_o \rangle_{\mu^+_{T,\wedge_N}} - \langle \sigma_o \rangle_{\mu^-_{T,\wedge_N}}) = \langle \sigma_o \rangle_{\mu^+_{T,\wedge_N}} \geq \text{const.}$$

• **Construction** (of flip mapping): if spin at origin disagrees with boundary condition, flip all spins enclosed by its sign component.

• **Analysis**: two competing effects for sign component with outmost boundary of size ℓ.

Out boundary (in the dual graph) for the sign component of the origin

Flip all spins enclosed by the out boundary
A sketch of Peierls argument

At low temperatures long range order exists for \(d \geq 2 \), i.e.,
\[
\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu^+_T,\Lambda_N} - \langle \sigma_o \rangle_{\mu^-_T,\Lambda_N} \right) = \langle \sigma_o \rangle_{\mu^+_T,\Lambda_N} \geq \text{const}.
\]

- **Construction** (of flip mapping): if spin at origin disagrees with boundary condition, flip all spins enclosed by its sign component.
- **Analysis**: two competing effects for sign component with outmost boundary of size \(\ell \).
 - diamond flipping gains a factor of \(e^{\ell/T} \) in probability;
A sketch of Peierls argument

At low temperatures long range order exists for \(d \geq 2 \), i.e.,
\[
\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu^+_T,\Lambda_N} - \langle \sigma_o \rangle_{\mu^-_T,\Lambda_N} \right) = \langle \sigma_o \rangle_{\mu^+_T,\Lambda_N} \geq \text{const.}
\]

- **Construction** (of flip mapping): if spin at origin disagrees with boundary condition, flip all spins enclosed by its sign component.
- **Analysis**: two competing effects for sign component with outmost boundary of size \(\ell \).
 - Flipping gains a factor of \(e^{{\ell}/T} \) in probability;
 - Multiplicity of the mapping is \(e^{O(\ell)} \).
A sketch of Peierls’ argument

At low temperatures long range order exists for \(d \geq 2 \), i.e.,

\[
\frac{1}{2} \left(\langle \sigma_o \rangle_{\mu^+,\Lambda_N} - \langle \sigma_o \rangle_{\mu^-,\Lambda_N} \right) = \langle \sigma_o \rangle_{\mu^+,\Lambda_N} \geq \text{const}.
\]

• **Construction** (of flip mapping): if spin at origin disagrees with boundary condition, flip all spins enclosed by its sign component.

• **Analysis**: two competing effects for sign component with outmost boundary of size \(\ell \).
 - \(e^{\ell/T} \) in probability;
 - multiplicity of the mapping is \(e^{O(\ell)} \).

• **Conclusion** (summing over \(\ell \)): at low temperature, the origin agrees with the boundary condition with good probability.
Random field Ising model

Disorder

\(h \): \(v \in \mathbb{Z}^d \)

The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H_{\pm}(\sigma, \Lambda_N, \epsilon h) = H_{\pm}(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]

For temperature \(T \geq 0 \), define the RFIM measure by

\[
\mu_{\pm T, \Lambda_N, \epsilon h}(\sigma) \propto \exp\left(-\frac{1}{T} H_{\pm}(\sigma, \Lambda_N, \epsilon h) \right).
\]

At \(T = 0 \), \(\mu_{\pm T, \Lambda_N, \epsilon h} \) is supported on the ground state \(\sigma_{\pm \Lambda_N, \epsilon h} \) (unique a.s. since Gaussian distribution is continuous).

Boundary influence on spin magnetization

\[
m_{T, \Lambda_N, \epsilon} = \frac{1}{2} E(\langle \sigma_o \rangle_{\pm T, \Lambda_N, \epsilon h} - \langle \sigma_o \rangle_{- T, \Lambda_N, \epsilon h}),
\]

where \(\langle \cdot \rangle_{\pm T, \Lambda_N, \epsilon h} \) denotes expectation with respect to \(\mu_{\pm T, \Lambda_N, \epsilon h} \).

Main question today: how does the random field affects the long range order? I.e., what is the limiting behavior of \(m_{T, \Lambda_N, \epsilon} \)?
Random field Ising model

Disorder \(\{ h_v : v \in \mathbb{Z}^d \} \): independent standard Gaussian variables. The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N, \epsilon h) = H^\pm(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]
Random field Ising model

Disorder \(\{ h_v : v \in \mathbb{Z}^d \} \): independent standard Gaussian variables.
The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N, \epsilon h) = H^\pm(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]

For temperature \(T \geq 0 \), define the RFIM measure by

\[
\mu^\pm_{T, \Lambda_N, \epsilon h}(\sigma) \propto \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)\right).
\]
Random field Ising model

Disorder \(\{ h_v : v \in \mathbb{Z}^d \} \): independent standard Gaussian variables.

The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N, \epsilon h) = H^\pm(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]

For temperature \(T \geq 0 \), define the RFIM measure by

\[
\mu^\pm_{T, \Lambda_N, \epsilon h}(\sigma) \propto \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h) \right).
\]

At \(T = 0 \), \(\mu^\pm_{T, \Lambda_N, \epsilon h} \) is supported on the ground state \(\sigma^\pm_{\Lambda_N, \epsilon h} \) (unique a.s. since Gaussian distribution is continuous).
Random field Ising model

Disorder \(\{ h_v : v \in \mathbb{Z}^d \} \): independent standard Gaussian variables. The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N, \epsilon h) = H^\pm(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]

For temperature \(T \geq 0 \), define the RFIM measure by

\[
\mu_T^{\pm, \Lambda_N, \epsilon h}(\sigma) \propto \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)\right).
\]

At \(T = 0 \), \(\mu_T^{\pm, \Lambda_N, \epsilon h} \) is supported on the ground state \(\sigma_{\Lambda_N, \epsilon h}^\pm \) (unique a.s. since Gaussian distribution is continuous).

Boundary influence on spin magnetization

\[
m_{T, \Lambda_N, \epsilon} = \frac{1}{2} \mathbb{E}\left(\langle \sigma_o \rangle_{T, \Lambda_N, \epsilon h}^+ - \langle \sigma_o \rangle_{T, \Lambda_N, \epsilon h}^- \right),
\]

where
Random field Ising model

Disorder \(\{ h_v : v \in \mathbb{Z}^d \} \): independent standard Gaussian variables.

The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N, \epsilon h) = H^\pm(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]

For temperature \(T \geq 0 \), define the RFIM measure by

\[
\mu^\pm_{T, \Lambda_N, \epsilon h}(\sigma) \propto \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h) \right).
\]

At \(T = 0 \), \(\mu^\pm_{T, \Lambda_N, \epsilon h} \) is supported on the ground state \(\sigma^\pm_{\Lambda_N, \epsilon h} \) (unique a.s. since Gaussian distribution is continuous).

Boundary influence on spin magnetization

\[
m_{T, \Lambda_N, \epsilon} = \frac{1}{2} \mathbb{E}\left(\langle \sigma_o \rangle^+_{T, \Lambda_N, \epsilon h} - \langle \sigma_o \rangle^-_{T, \Lambda_N, \epsilon h} \right),
\]

where \(\langle \cdot \rangle^\pm_{T, \Lambda_N, \epsilon h} \) denotes expectation with respect to \(\mu^\pm_{T, \Lambda_N, \epsilon h} \).
Random field Ising model

Disorder \(\{ h_v : v \in \mathbb{Z}^d \} \): independent standard Gaussian variables.

The RFIM Hamiltonian on \(\Lambda_N \) with external field \(\epsilon h \) and plus (resp. minus) boundary condition:

\[
H^\pm(\sigma, \Lambda_N, \epsilon h) = H^\pm(\sigma, \Lambda_N) - \sum_{u \in \Lambda_N} \epsilon h_u \sigma_u.
\]

For temperature \(T \geq 0 \), define the RFIM measure by

\[
\mu^\pm_{T, \Lambda_N, \epsilon h}(\sigma) \propto \exp\left(- \frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h) \right).
\]

At \(T = 0 \), \(\mu^\pm_{T, \Lambda_N, \epsilon h} \) is supported on the ground state \(\sigma^\pm_{\Lambda_N, \epsilon h} \) (unique a.s. since Gaussian distribution is continuous).

Boundary influence on spin magnetization

\[
m_{T, \Lambda_N, \epsilon} = \frac{1}{2} \mathbb{E}\left(\langle \sigma_o \rangle^+_{T, \Lambda_N, \epsilon h} - \langle \sigma_o \rangle^-_{T, \Lambda_N, \epsilon h} \right),
\]

where \(\langle \cdot \rangle^\pm_{T, \Lambda_N, \epsilon h} \) denotes expectation with respect to \(\mu^\pm_{T, \Lambda_N, \epsilon h} \).

Main question today: how does the random field affects the long range order? I.e., what is the limiting behavior of \(m_{T, \Lambda_N, \epsilon} \)?
Can we still apply Peierls argument?

- No, since the random field has influence on the probability change for the flip mapping.
- Such influence depends on σ and thus a uniform bound is not possible.

For large ϵ, exponential decay for boundary influence in any dimension was proved in Berretti 85, Fröhlich–Imbrie 84, von Dreifus–Klein–Perez 95 and Camia–Jiang–Newman 18, Aizenman–Peled 18.

For small ϵ, it is much more delicate and challenging (the focus for the rest of the talk).
Can we still apply Peierls argument?
Can we still apply Peierls argument?
• No, since the random field has influence on the probability change for the flip mapping.
Can we still apply Peierls argument?

• No, since the random field has influence on the probability change for the flip mapping.
• Such influence depends on σ and thus a uniform bound is not possible.
Can we still apply Peierls argument?
• No, since the random field has influence on the probability change for the flip mapping.
• Such influence depends on σ and thus a uniform bound is not possible.

For large ϵ, exponential decay for boundary influence in any dimension was proved in Berretti 85, Fröhlich–Imbrie 84, von Dreifus–Klein–Perez 95 and Camia–Jiang–Newman 18, Aizenman–Peled 18.
Can we still apply Peierls argument?
- No, since the random field has influence on the probability change for the flip mapping.
- Such influence depends on σ and thus a uniform bound is not possible.

For large ϵ, exponential decay for boundary influence in any dimension was proved in Berretti 85, Fröhlich–Imbrie 84, von Dreifus–Klein–Perez 95 and Camia–Jiang–Newman 18, Aizenman–Peled 18.

For small ϵ, it is much more delicate and challenging (the focus for the rest of the talk).
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma prediction:
- For small ϵ, long range order exists for $d \geq 3$ at low temperatures;
- No long range order for $d = 2$.

Underlying intuition of Imry–Ma:
- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_n is $\approx n^{d/2}$;
- Boundary effect from $\partial \Lambda_n$ is $\approx n^{d-1}$.

Difficulties for proving Imry–Ma prediction:
- For $d = 3$ there exists a random connected set S such that $P_{v \in S} \epsilon_h v \gg |\partial S|$.
 For instance, let S be Λ_n with n^2 vertices of least field values removed.
 This prevents a straightforward application of Peierls argument.
- For $d = 2$ with small ϵ, we need the collective influence from disorder on a large set to fight against the boundary effect.
 But why should they collaborate?
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ

- For $d = 3$ there exists a random connected set S such that $P_{v \in S} \epsilon h v \gg |\partial S|$.
- For $d = 2$ with small ϵ, we need the collective influence from disorder on a large set to fight against the boundary effect. But why should they collaborate?
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ
- long range order exists for $d \geq 3$ at low temperatures;
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ

- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ

- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:

For $d = 3$ there exists a random connected set S such that $P_v \in S \epsilon_h v \gg |\partial S|$. For instance, let S be Λ_N with N^2 vertices of least field values removed. This prevents a straightforward application of Peierls argument.

For $d = 2$ with small ϵ, we need the collective influence from disorder on a large set to fight against the boundary effect. But why should they collaborate?
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ
- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:
- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ
- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:
- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
- Boundary effect from $\partial \Lambda_N$ is $\approx N^{d-1}$.
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ
- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:
- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
- Boundary effect from $\partial \Lambda_N$ is $\approx N^{d-1}$.

Difficulties for proving Imry–Ma prediction:
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ

- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:

- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
- Boundary effect from $\partial \Lambda_N$ is $\approx N^{d-1}$.

Difficulties for proving Imry–Ma prediction:

- For $d = 3$ there exists a random connected set S such that $\sum_{v \in S} \epsilon h_v \gg |\partial S|$.
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ
• long range order exists for $d \geq 3$ at low temperatures;
• no long range order for $d = 2$.

Underlying intuition of Imry–Ma:
• Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
• Boundary effect from $\partial \Lambda_N$ is $\approx N^{d-1}$.

Difficulties for proving Imry–Ma prediction:
• For $d = 3$ there exists a random connected set S such that $\sum_{v \in S} \epsilon h_v \gg |\partial S|$. For instance, let S be Λ_N with N^2 vertices of least field values removed.
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ

• long range order exists for $d \geq 3$ at low temperatures;
• no long range order for $d = 2$.

Underlying intuition of Imry–Ma:

• Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
• Boundary effect from $\partial \Lambda_N$ is $\approx N^{d-1}$.

Difficulties for proving Imry–Ma prediction:

• For $d = 3$ there exists a random connected set S such that $\sum_{v \in S} \epsilon h_v \gg |\partial S|$. For instance, let S be Λ_N with N^2 vertices of least field values removed. This prevents a straightforward application of Peierls argument.
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ

- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:

- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
- Boundary effect from $\partial \Lambda_N$ is $\approx N^{d-1}$.

Difficulties for proving Imry–Ma prediction:

- For $d = 3$ there exists a random connected set S such that $\sum_{v \in S} \epsilon h_v \gg |\partial S|$. For instance, let S be Λ_N with N^2 vertices of least field values removed. This prevents a straightforward application of Peierls argument.
- For $d = 2$ with small ϵ, we need the collective influence from disorder on a large set to fight against the boundary effect.
RFIM with weak disorder: Imry–Ma prediction

Imry–Ma 75: predicted that for small ϵ
- long range order exists for $d \geq 3$ at low temperatures;
- no long range order for $d = 2$.

Underlying intuition of Imry–Ma:
- Gaussian volume (i.e., the sum of the Gaussian disorder) of Λ_N is $\approx N^{d/2}$;
- Boundary effect from $\partial\Lambda_N$ is $\approx N^{d-1}$.

Difficulties for proving Imry–Ma prediction:
- For $d = 3$ there exists a random connected set S such that
 $\sum_{v \in S} \epsilon h_v \gg |\partial S|$. For instance, let S be Λ_N with N^2 vertices of least field values removed. This prevents a straightforward application of Peierls argument.
- For $d = 2$ with small ϵ, we need the collective influence from disorder on a large set to fight against the boundary effect. But why should they collaborate?
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence

\[T, \Lambda N, \epsilon \rightarrow \Lambda N \rightarrow \infty \]

Work with free energy difference \(\Delta F = F(\Lambda N, \epsilon h) - F(\Lambda N, \epsilon h) \) where \(F_{\pm}(\Lambda N, \epsilon h) = -T \log X_{\sigma} \in \{-1, 1\} \Lambda N \exp(-T H_{\pm}(\sigma, \Lambda N, \epsilon h)) \).

• Deterministically \(|\Delta F| \leq 2|\partial \Lambda N| = 16 N\) (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).

• Suffices to show that if \(m T, \Lambda N, \epsilon \geq \text{const} \), then \(\Delta F > 16 N \) with positive probability.

\(\Delta F \) has variance \(\approx \epsilon^2 N^2 \) (by Cacoullos 82).

† Partial derivatives of \(\Delta F \) are given by boundary influences.

⋄ the key is to show a central limit theorem for \(\Delta F \).

Debate among physicists on decay rate: polynomial decay in some regime (Berezinskii–Kosterlitz–Thouless transition) vs. exponential decay for all \(\epsilon \)?
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: **boundary influence** \(m_{T, \Lambda_N, \epsilon} \rightarrow N \rightarrow \infty 0 \).
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence $m_{T, \Lambda_N, \epsilon} \rightarrow N \rightarrow \infty 0$. Work with free energy difference $\Delta F = F^+(\Lambda_N, \epsilon h) - F^-(\Lambda_N, \epsilon h)$ where

$$F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1, 1\}^{\Lambda_N}} \exp(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)).$$
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence $m_T, \Lambda_N, \epsilon \rightarrow N \rightarrow \infty 0$. Work with free energy difference $\Delta F = F^+ (\Lambda_N, \epsilon h) - F^- (\Lambda_N, \epsilon h)$ where

$$F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1, 1\}^\Lambda_N} \exp(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)).$$

- Deterministically $|\Delta F| \leq 2|\partial \Lambda_N| = 16N$ (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).

\diamond ΔF has variance $\approx \epsilon^2 N^2$ (by Cacoullos 82).

\dagger Partial derivatives of ΔF are given by boundary influences.

\diamond the key is to show a central limit theorem for ΔF.

Debate among physicists on decay rate: polynomial decay in some regime (Berezinskii–Kosterlitz–Thouless transition) v.s. exponential decay for all ϵ?
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence $m_{T, \Lambda_N, \epsilon} \to N \to \infty 0$. Work with free energy difference $\Delta F = F^+(\Lambda_N, \epsilon h) - F^-(\Lambda_N, \epsilon h)$ where

$$F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1,1\}^\Lambda_N} \exp(-\frac{1}{T}H^\pm(\sigma, \Lambda_N, \epsilon h)).$$

- Deterministically $|\Delta F| \leq 2|\partial \Lambda_N| = 16N$ (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).
- Suffices to show that if $m_{T, \Lambda_N, \epsilon} \geq \text{const}$, then $\Delta F > 16N$ with positive probability.
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence $m_{T,N,\epsilon} \to N \to \infty 0$. Work with free energy difference $\Delta F = F^+(\Lambda_N, \epsilon h) - F^-(\Lambda_N, \epsilon h)$ where

$$F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1,1\}^\Lambda_N} \exp(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)).$$

- Deterministically $|\Delta F| \leq 2|\partial \Lambda_N| = 16N$ (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).
- Suffices to show that if $m_{T,N,\epsilon} \geq \text{const}$, then $\Delta F > 16N$ with positive probability.
 - \diamond ΔF has variance $\approx \epsilon^2 N^2$ (by Cacoullos 82).
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence \(m_T, \Lambda_N, \epsilon \to N \to \infty \to 0 \). Work with free energy difference \(\Delta F = F^+(\Lambda_N, \epsilon h) - F^-(\Lambda_N, \epsilon h) \) where

\[
F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1,1\}^\Lambda_N} \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)\right).
\]

- Deterministically \(|\Delta F| \leq 2|\partial \Lambda_N| = 16N \) (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).
- Suffices to show that if \(m_T, \Lambda_N, \epsilon \geq \text{const} \), then \(\Delta F > 16N \) with positive probability.
 - \(\diamond \) \(\Delta F \) has variance \(\approx \epsilon^2 N^2 \) (by Cacoullos 82).
 - \(\dagger \) Partial derivatives of \(\Delta F \) are given by boundary influences.
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence $m_{T,N,\epsilon} \to N \to \infty 0$. Work with free energy difference $\Delta F = F^+(\Lambda_N, \epsilon h) - F^-(\Lambda_N, \epsilon h)$ where

$$F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1,1\}^{\Lambda_N}} \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)\right).$$

- Deterministically $|\Delta F| \leq 2|\partial \Lambda_N| = 16N$ (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).
- Suffices to show that if $m_{T,N,\epsilon} \geq \text{const}$, then $\Delta F > 16N$ with positive probability.
 - ΔF has variance $\approx \epsilon^2 N^2$ (by Cacoullos 82).
 - Partial derivatives of ΔF are given by boundary influences.
 - The key is to show a central limit theorem for ΔF.
RFIM with weak disorder: two dimensions

Aizenman–Wehr 90: boundary influence $m_{T,\Lambda_N,\epsilon} \to N \to \infty 0$. Work with free energy difference $\Delta F = F^+(\Lambda_N, \epsilon h) - F^-(\Lambda_N, \epsilon h)$ where

$$F^\pm(\Lambda_N, \epsilon h) = -T \log \sum_{\sigma \in \{-1,1\}^{\Lambda_N}} \exp\left(-\frac{1}{T} H^\pm(\sigma, \Lambda_N, \epsilon h)\right).$$

- Deterministically $|\Delta F| \leq 2|\partial \Lambda_N| = 16N$ (via direct comparison of Hamiltonians with plus and minus boundary conditions for the same configuration).
- Suffices to show that if $m_{T,\Lambda_N,\epsilon} \geq \text{const}$, then $\Delta F > 16N$ with positive probability.
 - $\Diamond \Delta F$ has variance $\approx \epsilon^2 N^2$ (by Cacoullos 82).
 - \dagger Partial derivatives of ΔF are given by boundary influences.
 - \Diamond the key is to show a central limit theorem for ΔF.

Debate among physicists on decay rate: polynomial decay in some regime (Berezinskii–Kosterlitz–Thouless transition) v.s. exponential decay for all ϵ?
Quantitative bounds for 2D RFIM
Quantitative bounds for 2D RFIM

- Chatterjee 17: $m_{T, \Lambda_N, \epsilon} = O(1/\sqrt{\log \log N})$ (a different method).

- Aizenman–Peled 18: $m_{T, \Lambda_N, \epsilon} = O(N^{-\gamma})$.
 ⋄ A streamlined and enhanced argument of Aizenman–Wehr 90.
 ⋄ $\gamma = e^{-\Omega(\epsilon - 2)}$.
 ⋄ $\gamma > 1 \Rightarrow$ exponential decay by a standard argument for percolation with finite-range dependence.

- D.–Xia 19 and Aizenman–Harel–Peled 19: $m_{T, \Lambda_N, \epsilon} = O(e^{-cN})$.
 ⋄ First proved by D.–Xia for $T = 0$. A key novelty is an application of Aizenman–Burchard 99 on the dimension of geodesics in "tortuous percolation system".
 ⋄ Concurrent works by D.–Xia and Aizenman–Harel–Peled for $T > 0$, both employing Aizenman–Burchard 99 as for $T = 0$.

Quantitative bounds for 2D RFIM

- Chatterjee 17: $m_{T, \Lambda_N, \epsilon} = O(1/\sqrt{\log \log N})$ (a different method).
- Aizenman–Peled 18: $m_{T, \Lambda_N, \epsilon} = O(N^{-\gamma})$.

\diamond A streamlined and enhanced argument of Aizenman–Wehr 90.
\diamond $\gamma = e^{-\Omega(\epsilon - 2)}$.
\diamond $\gamma > 1 \Rightarrow$ exponential decay by a standard argument for percolation with finite-range dependence.

- D.–Xia 19 and Aizenman–Harel–Peled 19: $m_{T, \Lambda_N, \epsilon} = O(e^{-cN})$.
\diamond first proved by D.–Xia for $T = 0$. A key novelty is an application of Aizenman–Burchard 99 on the dimension of geodesics in “tortuous percolation system”.
\diamond concurrent works by D.–Xia and Aizenman–Harel–Peled for $T > 0$, both employing Aizenman–Burchard 99 as for $T = 0$.
Quantitative bounds for 2D RFIM

- Chatterjee 17: $m_{T, \Lambda_N, \epsilon} = O(1/\sqrt{\log \log N})$ (a different method).
- Aizenman–Peled 18: $m_{T, \Lambda_N, \epsilon} = O(N^{-\gamma})$.
 - a streamlined and enhanced argument of Aizenman–Wehr 90.

- D.–Xia 19 and Aizenman–Harel–Peled 19: $m_{T, \Lambda_N, \epsilon} = O(e^{-cN})$.
 - first proved by D.–Xia for $T = 0$. A key novelty is an application of Aizenman–Burchard 99 on the dimension of geodesics in “tortuous percolation system”.
 - concurrent works by D.–Xia and Aizenman–Harel–Peled for $T > 0$, both employing Aizenman–Burchard 99 as for $T = 0$.

⋄ $\gamma > 1 \Rightarrow$ exponential decay by a standard argument for percolation with finite-range dependence.
Quantitative bounds for 2D RFIM

• Chatterjee 17: $m_{T, \Lambda N, \epsilon} = O(1/\sqrt{\log \log N})$ (a different method).
• Aizenman–Peled 18: $m_{T, \Lambda N, \epsilon} = O(N^{-\gamma})$.
 ◊ a streamlined and enhanced argument of Aizenman–Wehr 90.
 ◊ $\gamma = e^{-\Omega(\epsilon^{-2})}$.
Quantitative bounds for 2D RFIM

- Chatterjee 17: $m_{T,\Lambda_N,\epsilon} = O(1/\sqrt{\log \log N})$ (a different method).
- Aizenman–Peled 18: $m_{T,\Lambda_N,\epsilon} = O(N^{-\gamma})$.
 - a streamlined and enhanced argument of Aizenman–Wehr 90.
 - $\gamma = e^{-\Omega(\epsilon^{-2})}$.
 - $\gamma > 1 \Rightarrow$ exponential decay by a standard argument for percolation with finite-range dependence.
Quantitative bounds for 2D RFIM

• Chatterjee 17: \(m_{T,\Lambda_N,\epsilon} = O\left(\frac{1}{\sqrt{\log \log N}}\right) \) (a different method).

• Aizenman–Peled 18: \(m_{T,\Lambda_N,\epsilon} = O\left(N^{-\gamma}\right) \).
 ◊ a streamlined and enhanced argument of Aizenman–Wehr 90.
 ◊ \(\gamma = e^{-\Omega(\epsilon^{-2})} \).
 ◊ \(\gamma > 1 \Rightarrow \) exponential decay by a standard argument for percolation with finite-range dependence.

• D.–Xia 19 and Aizenman–Harel–Peled 19: \(m_{T,\Lambda_N,\epsilon} = O\left(e^{-cN}\right) \).
Quantitative bounds for 2D RFIM

- Chatterjee 17: $m_{T,\Lambda_N,\epsilon} = O(1/\sqrt{\log \log N})$ (a different method).
- Aizenman–Peled 18: $m_{T,\Lambda_N,\epsilon} = O(N^{-\gamma})$.
 - a streamlined and enhanced argument of Aizenman–Wehr 90.
 - $\gamma = e^{-\Omega(\epsilon^{-2})}$.
 - $\gamma > 1 \Rightarrow$ exponential decay by a standard argument for percolation with finite-range dependence.
- D.–Xia 19 and Aizenman–Harel–Peled 19: $m_{T,\Lambda_N,\epsilon} = O(e^{-cN})$.
 - first proved by D.–Xia for $T = 0$. A key novelty is an application of Aizenman–Burchard 99 on the dimension of geodesics in “tortuous percolation system”.
Quantitative bounds for 2D RFIM

• Chatterjee 17: \(m_{T,N},\epsilon = O(1/\sqrt{\log \log N}) \) (a different method).

• Aizenman–Peled 18: \(m_{T,N},\epsilon = O(N^{-\gamma}) \).
 ◦ a streamlined and enhanced argument of Aizenman–Wehr 90.
 ◦ \(\gamma = e^{-\Omega(\epsilon^{-2})} \).
 ◦ \(\gamma > 1 \Rightarrow \) exponential decay by a standard argument for percolation with finite-range dependence.

• D.–Xia 19 and Aizenman–Harel–Peled 19: \(m_{T,N},\epsilon = O(e^{-cN}) \).
 ◦ first proved by D.–Xia for \(T = 0 \). A key novelty is an application of Aizenman–Burchard 99 on the dimension of geodesics in “tortuous percolation system”.
 ◦ concurrent works by D.–Xia and Aizenman–Harel–Peled for \(T > 0 \), both employing Aizenman–Burchard 99 as for \(T = 0 \).
Correlation length for 2D RFIM

Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N: mT, \Lambda N, \epsilon \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?

Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon - 2}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon - 1}$.

Mathematical work: $\psi(T, \epsilon, m) = e^{O(\epsilon - 2)}$ from Chatterjee 17 and Aizenman–Peled 18.

D.–Wirth 20: $\psi(T, \epsilon, m) = e^{\epsilon - 4/3 + o(1)}$ for $T = 0$ (and upper bound applies for all $T > 0$).

The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.

Lower bound at low temperatures is proved by D.–Zhuang 21.

Lower bound does not hold at high temperature by D.–Song–Sun 21 (more discussions later).
Correlation length for 2D RFIM

Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N : m_{T,\Lambda_{N,\epsilon}} \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?
Correlation length for 2D RFIM

Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N : m_{T, \Lambda_N, \epsilon} \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?

- Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon^{-2}}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon^{-1}}$.

- Mathematical work: $\psi(T, \epsilon, m) = e^{O(\epsilon^{-2})}$ from Chatterjee 17 and Aizenman–Peled 18.

- D.–Wirth 20: $\psi(T, \epsilon, m) = e^{\epsilon^{-4/3} + o(1)}$ for $T = 0$ (and upper bound applies for all $T > 0$).

- The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.

- Lower bound at low temperatures is proved by D.–Zhuang 21.

- Lower bound does not hold at high temperature by D.–Song–Sun 21 (more discussions later).
Correlation length for 2D RFIM

Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N : m_{T, \Lambda_N, \epsilon} \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?

- Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon^{-2}}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon^{-1}}$.
- Mathematical work: $\psi(T, \epsilon, m) = e^{eO(\epsilon^{-2})}$ from Chatterjee 17 and Aizenman–Peled 18.

• The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.
• Lower bound at low temperatures is proved by D.–Zhuang 21.
• Lower bound does not hold at high temperature by D.–Song–Sun 21 (more discussions later).
Correlation length for 2D RFIM

Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{ N : m_T, \Lambda_N, \epsilon \leq m \}$ for $0 < m < 1$ (say, $m = 1/2$)?

- Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon^{-2}}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon^{-1}}$.

- Mathematical work: $\psi(T, \epsilon, m) = e^{O(\epsilon^{-2})}$ from Chatterjee 17 and Aizenman–Peled 18.

D.–Wirth 20: $\psi(T, \epsilon, m) = e^{\epsilon^{-4/3} + o(1)}$ for $T = 0$ (and upper bound applies for all $T > 0$).

The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.

- Lower bound at low temperatures is proved by D.–Zhuang 21.
- Lower bound does not hold at high temperature by D.–Song–Sun 21 (more discussions later).
Correlation length for 2D RFIM

Question: as $\epsilon \rightarrow 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N : m_{T,\Lambda_N,\epsilon} \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?

- Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon^{-2}}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon^{-1}}$.
- Mathematical work: $\psi(T, \epsilon, m) = e^{e^{O(\epsilon^{-2})}}$ from Chatterjee 17 and Aizenman–Peled 18.

D.–Wirth 20: $\psi(T, \epsilon, m) = e^{\epsilon^{-4/3+o(1)}}$ for $T = 0$ (and upper bound applies for all $T > 0$).
- The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.
Correlation length for 2D RFIM

Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N : m_T, \Lambda_N, \epsilon \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?

• Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon^{-2}}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon^{-1}}$.

• Mathematical work: $\psi(T, \epsilon, m) = e^{e^{O(\epsilon^{-2})}}$ from Chatterjee 17 and Aizenman–Peled 18.

D.–Wirth 20: $\psi(T, \epsilon, m) = e^{\epsilon^{-4/3} + o(1)}$ for $T = 0$ (and upper bound applies for all $T > 0$).

• The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.

• Lower bound at low temperatures is proved by D.–Zhuang 21.
Question: as $\epsilon \to 0$, what is the minimal size of a box to see influence from the random field? I.e., what is the scaling of the correlation length $\psi(T, \epsilon, m) = \min\{N : m_{T, A_N, \epsilon} \leq m\}$ for $0 < m < 1$ (say, $m = 1/2$)?

- Physics predictions: many studies but no consensus even at $T = 0$. A common belief was $\psi(T, \epsilon, m) = e^{\epsilon^{-2}}$, and some recent work supported $\psi(T, \epsilon, m) = e^{\epsilon^{-1}}$.

- Mathematical work: $\psi(T, \epsilon, m) = e^{e^{O(\epsilon^{-2})}}$ from Chatterjee 17 and Aizenman–Peled 18.

- D.–Wirth 20: $\psi(T, \epsilon, m) = e^{\epsilon^{-4/3+o(1)}}$ for $T = 0$ (and upper bound applies for all $T > 0$).

- The emergence of $4/3$ exponent was unexpected; in retrospect, this is closely related to Leighton-Shor Grid Matching Theorem.

- Lower bound at low temperatures is proved by D.–Zhuang 21.

- Lower bound does not hold at high temperature by D.–Song–Sun 21 (more discussions later).
RFIM with weak disorder: three dimensions and above

Chalker 83, Fisher–Fröhlich–Spencer 84: with positive probability

$|\sum_{v \in S} \epsilon_h v| < |\partial S|$ (i.e., Gaussian volume is smaller than the boundary size) for all simply connected set $S \ni o$.

Assume that for any simply connected set $S \ni o$,

$\sum_{v \in S} \epsilon_h v \leq |\partial S|$.

Not possible as a ground state

Still possible as a ground state

Imbrie 85 (T = 0) and Bricmont–Kupiainen 88 (small $T > 0$): long range order exists.

• Control sign clusters within sign clusters (i.e., holes) by an involved renormalization group theoretic argument.

D.–Zhuang 21: a simple proof without renormalization group theory (also gives a new result for random field Potts model).
RFIM with weak disorder: three dimensions and above

Chalker 83, Fisher–Fröhlich–Spencer 84: with positive probability
$| \sum_{v \in S} \epsilon h_v | < | \partial S |$ (i.e., Gaussian volume is smaller than the boundary size) for all simply connected set $S \ni o$.

Assume that for any simply connected set $S \ni o$

$| \sum_{v \notin S} \epsilon h_v | \leq | \partial S |$.

Not possible as a ground state

Assume that for any simply connected set $S \ni o$

Still possible as a ground state
RFIM with weak disorder: three dimensions and above

Chalker 83, Fisher–Fröhlich–Spencer 84: with positive probability $|\sum_{v \in S} \epsilon h_v| < |\partial S|$ (i.e., Gaussian volume is smaller than the boundary size) for all simply connected set $S \ni o$.

Assume that for any simply connected set $S \ni o$:

$|\sum_{v \in S} \epsilon h_v| \leq |\partial S|$.

Not possible as a ground state

Still possible as a ground state

Imbrie 85 ($T = 0$) and Bricmont–Kupiainen 88 (small $T > 0$): long range order exists.
RFIM with weak disorder: three dimensions and above

Chalker 83, Fisher–Fröhlich–Spencer 84: with positive probability $\left| \sum_{v \in S} \epsilon h_v \right| < |\partial S|$ (i.e., Gaussian volume is smaller than the boundary size) for all simply connected set $S \ni o$.

Assume that for any simply connected set $S \ni o$
$\left| \sum_{\{v \in S\}} \epsilon h_v \right| \leq |\partial S|$.

Not possible as a ground state

Still possible as a ground state

Imbrie 85 ($T = 0$) and Bricmont–Kupiainen 88 (small $T > 0$): long range order exists.

• Control sign clusters within sign clusters (i.e., holes) by an involved renormalization group theoretic argument.
RFIM with weak disorder: three dimensions and above

Chalker 83, Fisher–Fröhlich–Spencer 84: with positive probability $|\sum_{v \in S} \epsilon h_v| < |\partial S|$ (i.e., Gaussian volume is smaller than the boundary size) for all simply connected set $S \ni o$.

Assume that for any simply connected set $S \ni o$ $\sum_{\{v \in S\}} \epsilon h_v \leq |\partial S|$.

Imbrie 85 ($T = 0$) and Bricmont–Kupiainen 88 (small $T > 0$): long range order exists.

- Control sign clusters within sign clusters (i.e., holes) by an involved renormalization group theoretic argument.

D.–Zhuang 21: a simple proof without renormalization group theory (also gives a new result for random field Potts model).
An overview of our proof (for 3D RFIM)

Our key insight is that Peierls argument can be extended.

- Recall the obstacle for Peierls argument with external field is the challenge in keeping track of spin interactions with disorder after flipping spins.
- Solution: we flip the external field as well.

A one-sentence summary: instead of fixing the disorder and applying Peierls argument on spin configurations, we consider the joint space of disorder and spin configurations and apply Peierls argument in this larger space.

Define the joint measure \(Q_{\pm}(h \in A, \sigma \in B) = R_A \mu_{\pm T, \Lambda_N, h}(B) dP(h) \).

Goal: show \(Q^+(\sigma_o = -1) \ll 1 \) for small \(\epsilon, T \) and \(d \geq 3 \).
An overview of our proof (for 3D RFIM)

Our key insight is that Peierls argument can be extended.

Define \(Q^\pm(h \in A, \sigma \in B) = R_A \mu^\pm T, \Lambda_N, h(B) dP(h) \).

Goal: show \(Q^+ (\sigma_0 = -1) \ll 1 \) for small \(\epsilon, T \) and \(d \geq 3 \).
An overview of our proof (for 3D RFIM)

Our key insight is that Peierls argument can be extended.
• Recall the obstacle for Peierls argument with external field is the challenge in keeping track of spin interactions with disorder after flipping spins.

Define joint measure $Q_{\pm}(h \in A, \sigma \in B) = \int_A \mu_{\pm T, \Lambda N, h}(B) dP(h)$. Goal: show $Q_+ (\sigma_0 = -1) \ll 1$ for small ϵ, T and $d \geq 3$.
Our key insight is that Peierls argument can be extended.
• Recall the obstacle for Peierls argument with external field is the challenge in keeping track of spin interactions with disorder after flipping spins.
• Solution: we flip the external field as well.
An overview of our proof (for 3D RFIM)

Our key insight is that Peierls argument can be extended.

• Recall the obstacle for Peierls argument with external field is the challenge in keeping track of spin interactions with disorder after flipping spins.
• Solution: we flip the external field as well.

A one-sentence summary: instead of fixing the disorder and applying Peierls argument on spin configurations, we consider the joint space of disorder and spin configurations and apply Peierls argument in this larger space.
An overview of our proof (for 3D RFIM)

Our key insight is that Peierls argument can be extended.

- Recall the obstacle for Peierls argument with external field is the challenge in keeping track of spin interactions with disorder after flipping spins.
- Solution: we flip the external field as well.

A one-sentence summary: instead of fixing the disorder and applying Peierls argument on spin configurations, we consider the joint space of disorder and spin configurations and apply Peierls argument in this larger space.

Define joint measure \(Q^\pm(h \in A, \sigma \in B) = \int_A \mu^\pm_{T, \Lambda_N, h}(B) d\mathbb{P}(h). \)
An overview of our proof (for 3D RFIM)

Our key insight is that Peierls argument can be extended.
• Recall the obstacle for Peierls argument with external field is the challenge in keeping track of spin interactions with disorder after flipping spins.
• Solution: we flip the external field as well.

A one-sentence summary: instead of fixing the disorder and applying Peierls argument on spin configurations, we consider the joint space of disorder and spin configurations and apply Peierls argument in this larger space.

Define joint measure $\mathbb{Q}^\pm(h \in A, \sigma \in B) = \int_A \mu^\pm_{T,\Lambda_N,h}(B) d\mathbb{P}(h)$.
Goal: show $\mathbb{Q}^+(\sigma_o = -1) \ll 1$ for small ϵ, T and $d \geq 3$.
A sketch of the new Peierls argument
A sketch of the new Peierls argument

Consider the simply connected component enclosed by sign component at o and flip signs of **spins and disorder** inside.

Out boundary (in the dual graph) for the sign component of the origin

Flip all **spins and disorder** enclosed by the out boundary

Analysis: two competing effects for sign component with outmost boundary of size ℓ.

- Flipping gains a factor of $e^{\ell/T}$ in probability;
- Multiplicity of the mapping is $e^{O(\ell)}$.

Conclusion: (summing over ℓ): at low temperature, the origin agrees with the boundary condition with good probability.

A caveat: the partition function for the Ising model is changed since the external field is changed!
A sketch of the new Peierls argument

Consider the simply connected component enclosed by sign component at o and flip signs of **spins and disorder** inside.

- **Analysis**: two competing effects for sign component with outmost boundary of size ℓ.

- Plus disorder
- Minus disorder
A sketch of the new Peierls argument

Consider the simply connected component enclosed by sign component at o and flip signs of **spins and disorder** inside.

- **Analysis**: two competing effects for sign component with outmost boundary of size ℓ.
 - \diamond flipping gains a factor of $e^{\ell/T}$ in probability;
A sketch of the new Peierls argument

Consider the simply connected component enclosed by sign component at o and flip signs of spins and disorder inside.

Out boundary (in the dual graph) for the sign component of the origin
Flip all spins and disorder enclosed by the out boundary

- **Analysis**: two competing effects for sign component with outmost boundary of size ℓ.
 - flipping gains a factor of $e^{\ell/T}$ in probability;
 - multiplicity of the mapping is $e^{O(\ell)}$.
A sketch of the new Peierls argument

Consider the simply connected component enclosed by sign component at o and flip signs of spins and disorder inside.

- **Analysis**: two competing effects for sign component with outmost boundary of size ℓ.
 - Flipping gains a factor of $e^{\ell/T}$ in probability;
 - Multiplicity of the mapping is $e^{O(\ell)}$.
- **Conclusion**: (summing over ℓ): at low temperature, the origin agrees with the boundary condition with good probability.
A sketch of the new Peierls argument

Consider the simply connected component enclosed by sign component at o and flip signs of spins and disorder inside.

• **Analysis**: two competing effects for sign component with outmost boundary of size ℓ.
 - flipping gains a factor of $e^{\ell/T}$ in probability;
 - multiplicity of the mapping is $e^{O(\ell)}$.

• **Conclusion**? (summing over ℓ): at low temperature, the origin agrees with the boundary condition with good probability.

A caveat: the partition function for the Ising model is changed since the external field is changed!
Subtlety in the new Peierls argument
Subtlety in the new Peierls argument

The density for Q^+ on (h, σ) is

$$
\nu^+(h, \sigma) = \prod_v \frac{1}{\sqrt{2\pi}} e^{-\frac{h_v^2}{2\epsilon^2}} \prod_v e^{-\frac{1}{T} H_{\Lambda_N, h}^+(\sigma)} \frac{Z_{T, \Lambda_N, h}^+}{Z_{T, \Lambda_N, h}}
$$

(recall $Z_{T, \Lambda_N, h}^+ = \sum_{\sigma} e^{-\frac{1}{T} H_{\Lambda_N, h}^+(\sigma)}$ is the partition function).
Subtlety in the new Peierls argument

The density for Q^+ on (h, σ) is

$$\nu^+(h, \sigma) = \prod_v \frac{1}{\sqrt{2\pi}} e^{-\frac{h_v^2}{2\epsilon^2}} \prod_v e^{-\frac{1}{T} H_{\Lambda_N, h}^+(\sigma)} \frac{Z_T^+}{Z_{T, \Lambda_N, h}}$$

(recall $Z_{T, \Lambda_N, h} = \sum_\sigma e^{-\frac{1}{T} H_{\Lambda_N, h}^+(\sigma)}$ is the partition function).

- The density for disorder is unchanged after flipping.
Subtlety in the new Peierls argument

The density for Q^+ on (h, σ) is

$$
\nu^+(h, \sigma) = \prod_v \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \epsilon^2} \prod_v \frac{e^{-\frac{1}{T} H_{\Lambda_N, h}^+(\sigma)}}{\mathcal{Z}_{T, \Lambda_N, h}^+}
$$

(recall $\mathcal{Z}_{T, \Lambda_N, h}^+ = \sum_\sigma e^{-\frac{1}{T} H_{\Lambda_N, h}^+(\sigma)}$ is the partition function).

- The density for disorder is unchanged after flipping.
- The Hamiltonian $H_{\Lambda_N, h}^+(\sigma)$ decreased by 2ℓ after flipping a component with boundary size ℓ; but what about the partition function $\mathcal{Z}_{T, \Lambda_N, h}^+$?
Subtlety in the new Peierls argument

The density for Q^+ on (h,σ) is

$$\nu^+(h,\sigma) = \prod_v \frac{1}{\sqrt{2\pi}} e^{-\frac{h^2}{2e^2}} \prod_v \frac{e^{-\frac{1}{T} H_{\Lambda_N}^+, h(\sigma)}}{\mathcal{Z}_{T,\Lambda_N, h}^+}$$

(recall $\mathcal{Z}_{T,\Lambda_N, h}^+ = \sum_\sigma e^{-\frac{1}{T} H_{\Lambda_N}^+, h(\sigma)}$ is the partition function).

- The density for disorder is unchanged after flipping.
- The Hamiltonian $H_{\Lambda_N, h}^+(\sigma)$ decreased by 2ℓ after flipping a component with boundary size ℓ; but what about the partition function $\mathcal{Z}_{T,\Lambda_N, h}^+$?

Solution: show that the change of the free energy $-\frac{1}{T} \log \mathcal{Z}_{T,\Lambda_N, h}^+$ is bounded by ℓ after flipping any component with boundary size ℓ.
Subtlety in the new Peierls argument

The density for Q^+ on (h, σ) is

$$\nu^+(h, \sigma) = \prod_v \frac{1}{\sqrt{2\pi}} e^{-\frac{h^2_v}{2\epsilon^2}} \prod_v \frac{e^{-\frac{1}{T}H^+_{\Lambda_N}(\sigma)}}{Z^+_{T,\Lambda_N,h}}$$

(recall $Z^+_{T,\Lambda_N,h} = \sum_{\sigma} e^{-\frac{1}{T}H^+_{\Lambda_N}(\sigma)}$ is the partition function).

- The density for disorder is unchanged after flipping.
- The Hamiltonian $H^+_{\Lambda_N}(\sigma)$ decreased by 2ℓ after flipping a component with boundary size ℓ; but what about the partition function $Z^+_{T,\Lambda_N,h}$?

Solution: show that the change of the free energy $-\frac{1}{T} \log Z^+_{T,\Lambda_N,h}$ is bounded by ℓ after flipping any component with boundary size ℓ.

- Adapting the proof of Fisher–Fröhlich–Spencer 84 verbatim: with high probability, the change of free energy after flipping the sign of disorder in any simply connected component of boundary size ℓ is bounded by ℓ.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question \(\ast \): does disorder strictly decrease the critical temperature?

Question \(\ast \ast \): does disorder at least not increase the critical temperature? I.e., when \(T > T_c \) (critical temperature without disorder), always exponential decay?

- Camia–Jiang–Newman 18: yes when \(T > T_d > T_c \).
- D.–Song–Sun 21: yes when \(T > T_c \), as a corollary of \(\Box \) the boundary influence is maximized at zero external field.

† The above inequality has many other applications.

Question \(\ast \) remains open.

Question \(\ast \ast \ast \): critical behavior for 3D random field Ising model?

- This is hard since our understanding for critical 3D Ising without disorder remains limited.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when \(T > T_c \) (critical temperature without disorder), always exponential decay?

- Camia–Jiang–Newman 18: yes when \(T > T_d > T_c \).
- D.–Song–Sun 21: yes when \(T > T_c \), as a corollary of \(\bigcirc \) the boundary influence is maximized at zero external field.

† The above inequality has many other applications.

Question remains open.

Question: critical behavior for 3D random field Ising model?

- This is hard since our understanding for critical 3D Ising without disorder remains limited.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

D.–Song–Sun 21: yes when $T > T_c$, as a corollary of the boundary influence is maximized at zero external field.

The above inequality has many other applications.

Question remains open.

Question: critical behavior for 3D random field Ising model?

This is hard since our understanding for critical 3D Ising without disorder remains limited.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question*: does disorder strictly decrease the critical temperature?

Question*: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

- D.–Song–Sun 21: yes when $T > T_c$, as a corollary of
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

- D.–Song–Sun 21: yes when $T > T_c$, as a corollary of
 - the boundary influence is maximized at zero external field.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

- D.–Song–Sun 21: yes when $T > T_c$, as a corollary of
 - the boundary influence is maximized at zero external field.
 - The above inequality has many other applications.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

- D.–Song–Sun 21: yes when $T > T_c$, as a corollary of
 - the boundary influence is maximized at zero external field.
 - The above inequality has many other applications.

Question remains open.
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

- D.–Song–Sun 21: yes when $T > T_c$, as a corollary of
 - ◊ the boundary influence is maximized at zero external field.
 - † The above inequality has many other applications.

Question remains open.

Question: critical behavior for 3D random field Ising model?
A closer look at three dimensions

Recall: in 3D phase transition persists with weak disorder.

Question: does disorder strictly decrease the critical temperature?

Question: does disorder at least not increase the critical temperature? I.e., when $T > T_c$ (critical temperature without disorder), always exponential decay?

- D.–Song–Sun 21: yes when $T > T_c$, as a corollary of the boundary influence is maximized at zero external field.

† The above inequality has many other applications.

Question remains open.

Question: critical behavior for 3D random field Ising model?
- This is hard since our understanding for critical 3D Ising without disorder remains limited.
Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model. Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.

Interesting challenges next:
• Exponential decay for 2D random field Potts model?
• Correlation length for 2D random field Potts model?

Remark. D.–Zhuang 21: for 3D random field Potts model with weak disorder, long range order exists at low temperatures.
Future direction: away from monotone models

[9x252]Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc.

All aforementioned quantitative bounds with weak random field only apply to Ising model.

Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.

Interesting challenges next:

• Exponential decay for 2D random field Potts model?
• Correlation length for 2D random field Potts model?

Remark. D.–Zhuang 21: for 3D random field Potts model with weak disorder, long range order exists at low temperatures.
Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc.
Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model.
Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model.

Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.
Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model.

Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.

Interesting challenges next:
Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model.

Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.

Interesting challenges next:
• Exponential decay for 2D random field Potts model?
Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model.

Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.

Interesting challenges next:
• Exponential decay for 2D random field Potts model?
• Correlation length for 2D random field Potts model?
Future direction: away from monotone models

Aizenman–Wehr (the qualitative result) applies to a wide class of models including Potts model, XY model, spin glasses, etc. All aforementioned quantitative bounds with weak random field only apply to Ising model.

Dario–Harel–Peled 21: some quantitative bounds on non-monotone models.

Interesting challenges next:
• Exponential decay for 2D random field Potts model?
• Correlation length for 2D random field Potts model?

Remark. D.–Zhuang 21: for 3D random field Potts model with weak disorder, long range order exists at low temperatures.
Future direction: scaling limits?

Bowditch–Sun 20: scaling limit of the magnetization field for random field Ising model at critical temperature with disorder strength vanishing at a carefully chosen power law.
Future direction: scaling limits?

Bowditch–Sun 20: scaling limit of the magnetization field for random field Ising model at critical temperature with disorder strength vanishing at a carefully chosen power law.
• Singular to limit with no external field constructed by Camia–Garban–Newman 15.
Future direction: scaling limits?

Bowditch–Sun 20: scaling limit of the magnetization field for random field Ising model at critical temperature with disorder strength vanishing at a carefully chosen power law.
• **Singular** to limit with no external field constructed by Camia–Garban–Newman 15.

Question: what about scaling limits for interfaces of random field Ising model?