Post-quantum Key Exchanges Based on the LWE problems

Jintai Ding

Yau Center, Tsinghua & Ding Lab, BIMSA
Traditional Cryptography – Cesar’s Cipher

Encryption: mapping inwards: $A \rightarrow E$, $B \rightarrow F$
Decryption: mapping outwards: $E \rightarrow A$, $F \rightarrow B$...
Key: 4 – rotation of alphabet 4 positions
Key shared by both parties – symmetric
Cesar’s Cipher

- **Security:**
 - We can guess – 26 tries
 - Random permutations? – In English, we can use the distribution of the 26 letters. (E – the highest frequency: 12%, Next?)
Cesar’s Cipher

- **Security:**
 - We can guess – 26 tries
 - Random permutations? – In English, we can use the distribution of the 26 letters. (E – the highest frequency: 12%, Next?)

- **What to do to improve?**
 - Mathematics: Permutation on a finite set
 - Increase the size of the set – permutation on the set of 2 letters or more
 - But can not too slow!
Symmetric system

Traditional symmetric systems

- The sender and receiver have the same keys but used on a machine:
- Enigma machines, DES, AES (Advanced Encryption Standards)
Symmetric system

Traditional symmetric systems

- The sender and receiver have the same keys but used on a machine:
 Enigma machines, DES, AES (Advanced Encryption Standards)

- The two parties must have a prior secure key exchange.
 This is acceptable for small scale institutional use. (German U-boats)
Symmetric system

- The mathematics behind: Working on F_q^n a vector space over a finite field F_q.
- Create a complicated permutations via simple ones.
- Encryption:

$$E = S_1 \circ T_1 \circ S_2 \circ T_2 \cdots \circ S_m \circ T_m$$

- Decryption:

$$E^{-1} = T_m^{-1} \circ S_m^{-1} \cdots \circ T_2^{-1} \circ S_2^{-1} \circ T_1^{-1} \circ S_1^{-1}$$

S_i: efficient nonlinear maps, T_i: efficient linear maps
Symmetric system

- The mathematics behind: Create a complicated permutations via simple ones.
- S_i: rotation or flipping.
- T_i: a de Jonquiere (triangular) map:

$$T(x_1, x_2) = (x_1, x_2 + f(x_1))$$

where $f(x_i)$ is any efficient polynomial function.

$$T^{-1}(x_1, x_2) = (x_1, x_2 - f(x_1)).$$

Jacobian Conjecture, Tame and Wild Transformation, Nagata Conjecture
The Enigma machine is highly secure if used properly. But the start of a German Telegram? The Polish (Marian Rejewski 1939) started cryptanalysis and then the British (Turing 1942-43) broke the system. The story of NCR – National Cash Register
Symmetric system – security

- The Enigma machine is highly secure if used properly.
 But the start of a German Telegram?
 The Polish (Marian Rejewski 1939) started cryptanalysis and then the British (Turing 1942-43) broke the system.
 The story of NCR – National Cash Register

 Navajo code talkers
 We know this only very recently!
Symmetric system – security

- The Enigma machine is highly secure if used properly. But the start of a German Telegram? The Polish (Marian Rejewski 1939) started cryptanalysis and then the British (Turing 1942-43) broke the system. The story of NCR – National Cash Register.

- US broke Japanese Navy Code and Japan broke US Army Code. Navajo code talkers. We know this only very recently!

- The key issue is the trade-off between security and efficiency.
Symmetric system – practice

- Expensive key exchange and used by government or other institutions
- **Not scalable**
- High secrecy
 - We only heard about the breaking of Enigma in 1975.
 - We know some other stores in second world war on now!
 - The story of Falkland war.
Why PKC

- The appearance of Large computer networks in 1960s.
Why PKC

- The appearance of large computer networks in 1960s.
- The cost of key agreement makes the traditional cryptography prohibative.
 We must find new solutions!!!
PKC

- Diffie-Hellman
- The inventors of the idea of PKC – Turing Prize 2016
Traditional Cryptography – Symmetric Cryptography
Modern Cryptography – Public key Cryptography – PKC
The quantum threat – post-quantum cryptography
Summary

PKC

- Diffie-Hellman
 – Turing Prize 2016

The inventors of the idea of PKC

- RSA – 2003 Turing prize
Mathematics behind the RSA cryptosystem: the hardness of integer factorization

\[N = pq. \]

15 = 3 × 5.
Mathematics behind the RSA cryptosystem: the hardness of integer factorization

\[N = pq. \]

15 = 3 × 5.

The concept behind:

Public key Cryptography
The idea was proposed in 1970s by Diffie-Hellmann.
The idea was proposed in 1970s by Diffie-Hellmann.

Traditionally the information is symmetric. PKC is asymmetric.
The idea was proposed in 1970s by Diffie-Hellmann.

Traditionally the information is symmetric. PKC is asymmetric.

There are two sets of keys:
- one public \((N, r)\): \(gcd(r, (p - 1)(q - 1)) = 1\)
- one private \((d, p, q)\): \(d \times r = 1 \mod (p - 1)(q - 1)\)
Encryption
The public key is for encryption:

\[e = m^r \mod N \]

The private key for decryption:

\[m = e^d \mod N. \]

- RSA: N is public and p,q is private.
- One knows how to factor n, one can defeat RSA. One can calculate d from \((p - 1)(q - 1)\).
PKC – Authentication

- Traditionally people meet to make key exchange – implicit authentication.
Traditionally people meet to make key exchange – implicit authentication.

In the digital world (on the network or wireless), we need authentication!
We need to make sure the message’s authenticity.
Digital Signature
Authentications – Digital Signature

- To authenticate a message or a transaction
- The public key is to verify and anyone can verify.
- The private key is used to sign
Application: Secure Communications

- To establish a shared keys with digital signatures
- The fast communication is done using the shared keys with symmetric systems – AES
- SSL, TLS, Online shopping (sending credit card securely on the internet)
Software update: RSA signature for Microsoft update

Using Windows XP Professional with Service Pack 2 in a Managed Environment: Controlling Communication with the Internet

How Windows Update and Automatic Updates Communicate with Sites on the Internet

Encryption: Initial data is transferred using HTTPS, and updates are transferred using HTTP. The data packages downloaded to the user’s system by Microsoft are digitally signed.

data packages (...) are digitally signed.
What is this number?

2133562529 1600027351 1427593551 9420913291 4767425698 0668648182 4528580269 7571587504 8271600387 9286718814 4217660057 9559348458 0081495826 8691260056 0376434697 9087161398 8653520618 5442348052 5894942341 3033375605 8732136514 8876038644 3075342912 0129705489 0001670606 7393246389 8375697515 1734774577 2076420507 4793016726 4791679237 3351492517 3209625562 4512058040 6546060184 8036703111 8237059907 4873628794 2617311911 1255520806 0025609009 0478884806 3977173442 6254325175 1228479981 6060960213 2860929278 0435354785 7716957089 8641110787 9876456259 1930871508 8016517131 0668371684 8928958136 1754587749 9229988091 2892709869 7538006934 6521176840 9897604596 0758751
The number for Microsoft updates
- The number for Microsoft updates

- Digital signature based on RSA
The number for Microsoft updates

Digital signature based on RSA

Software update, legal document, voting

IN (the god of) MATH WE TRUST!
Bitcoin-Blockchain

- An open ledger
 Anyone can join in anytime.

- Decentralized
 No central authority
 Anyone can participate and can verify
 Good privacy and highly efficient in time

- No encryption is used!
Cryptocurrency?

- Fundamental building blocks:
 - ECDSA, Elliptic curve digital signature algorithm
 - Hash functions

- ECDSA
 - Public key (or address: the hash of public key) is to receive bitcoins
 - Private key is used to send bitcoins, while the transaction can be verified by the public key
 - Only legitimate user can spend.

- Hash functions for POW
 - For synchronization on a decentralized network to prevent double spending
 - High cost of mining to prevent cheating (51 percent attack).
PKC and Quantum computer

- Quantum computer: quantum mechanics for computations

R. Feynman
PKC and Quantum computer

- Quantum computer: quantum mechanics for computations

 ![R. Feynman](image)

- In 1995, Quantum algorithm for **factoring, discrete logarithm**.

 ![P. Shor](image)
PKC and Quantum computer

- Can quantum computer really work?

 - Isaac Chuang

 15 million dollars to show that

 \[15 = 3 \times 5. \]

- The problem of scaling

- My Gamble
The context of our work - PQC

- Shor’s quantum algorithm
- **Post-quantum cryptography**

Develop public key cryptosystems that could resist future quantum computer attacks
A commercial for PQC from NSA

Recall the story of Enigma machine!

Jintai Ding, Math Picture Language Seminar, Harvard, 2022
NIST standardization

NIST standardization of PQC.
What is NIST?
NIST Special Publication 800-131A
Revision 2

Transitioning the Use of Cryptographic Algorithms and Key Lengths

Elaine Barker
Allen Roginsky
Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-131Ar2

March 2019
Table 2: Approval Status of Algorithms Used for Digital Signature Generation and Verification

<table>
<thead>
<tr>
<th>Digital Signature Process</th>
<th>Domain Parameters</th>
<th>Status</th>
</tr>
</thead>
</table>
| Digital Signature Generation | < 112 bits of security strength: DSA: \((L, N) \neq (2048, 224), (2048, 256)\) or \((3072, 256)\)
ECDSA: \(\text{len}(n) < 224\)
RSA: \(\text{len}(n) < 2048\) | Disallowed |
| | ≥ 112 bits of security strength:
DSA: \((L, N) = (2048, 224), (2048, 256)\) or \((3072, 256)\)
ECDSA or EdDSA: \(\text{len}(n) \geq 224\)
RSA: \(\text{len}(n) \geq 2048\) | Acceptable |
Post Quantum Needs – Functionality

- Key Exchange – for secure communications
- Signatures – for Authentication
NIST Call for PQC Standardization

- Three criteria: Security, Cost, Algorithm and Implementation Characteristics
- 4 + 3 in Round 3

Round 3, two are multivariate signatures, Rainbow is one of three signature finalists.

Short signatures (Rainbow: 50 bytes), fastest signing and verifying, relatively large public key size (tens of Kbs).
Post Quantum Needs – Families

- Code-based cryptosystems – Theory of error correcting code
- Hash-based signatures
- Isogeny-based cryptosystems – Isogeny of Elliptic curves
- Lattice-based cryptosystems – Modular Forms and Geometry of numbers
- Multivariate cryptosystems – Algebraic Geometry
Key Exchange Applications — SSL/TLS

- RSA
- Diffie–Hellman
- Our goal – replacements for post quantum world
Forward Security

- RSA does not offer forward security since compromise of static private key allows decrypting the session keys.
- Possible to achieve forward security with RSA with ephemeral keys but expensive.
- Diffie Hellman offers forward security.

Forward security: If static keys compromised, previous session keys remain secure.
Diffie-Hellman Key Exchange

$\downarrow (g^b)^a$

$\rightarrow g^a$

$\leftarrow g^b$

$\downarrow (g^a)^b$
Generalizing DH

- DH works because maps $f(x) = x^a$ and $h(x) = x^b$ commute

 $$f \circ h = h \circ f,$$

- \circ – composition

 Nonlinearity

- Many attempts – Braid group etc
Generalizing DH

- When do we have commuting *nonlinear* maps?
 - Powers of x (normal DH)
 - Iterates of a polynomial
 - J. Ritt (1923) – Power polynomials, Chebychev polynomials. Elliptic curve
Who is J. Ritt: 1893-1951
Who is J. Ritt: 1923: PERMUTABLE RATIONAL FUNCTIONS

PERMUTABLE RATIONAL FUNCTIONS
BY
J. P. RITT

INTRODUCTION

We investigate in this paper the circumstances under which two rational functions, \(\Phi(x) \) and \(\Psi(x) \), each of degree greater than unity, are such that

\[\Phi[\Psi(x)] = \Psi[\Phi(x)]. \]

A pair of functions of this type will be called permutable.

A memoir devoted to this problem has recently been published by Julia. When \(\Phi(x) \) and \(\Psi(x) \) are polynomials, and are such that no iterate of one is identical with any iterate of the other, Julia shows how \(\Phi(x) \) and \(\Psi(x) \) can be obtained from the formulas for the multiplication of the argument in the functions \(\Phi \) and \(\Psi \). His other results are mainly of a qualitative nature, and deal with the manner in which \(\Phi(x) \) and \(\Psi(x) \) behave when iterated.

Certain of Julia’s results have been announced independently by Fatou; Fatou’s method is identical with that of Julia.

The method used in the present paper differs radically from that of Julia and Fatou, and leads to results of much greater precision. Its chief yield is the

THEOREM. If the rational functions \(\Phi(x) \) and \(\Psi(x) \), each of degree greater than unity, are permutable, and if no iterate of \(\Phi(x) \) is identical with any iterate of \(\Psi(x) \), there exist a periodic meromorphic function \(f(x) \), and four numbers \(a, b, c \) and \(d \) such that

\[f(ax + b) = \Phi[f(x)], \quad f(cx + d) = \Psi[f(x)]. \]

The possibilities for \(f(x) \) are any linear function of \(\phi, \cos \phi, \rho \phi, \psi \phi \); in the lemniscatic case (\(\rho_0 = 0 \)), \(\rho \phi \); in the equiangular case (\(\rho_1 = 0 \)), \(\psi \phi \).

J. Ritt (1923) – Power polynomials, Chebychev polynomials. Elliptic curve
Generalizing DH

Our basic idea — adding "small" **noise or perturbation**:

- (Ring) LWE approximately commutes—use to build DH generalization

From

\[(s_1 \times a) \times s_2 = s_1 \times (a \times s_2)\]

to

\[(as_1 + e_1)s_2 \approx s_1 as_2 \approx (as_2 + e_2)s_1.\]
A historical Note

Our basic idea — adding "small" noise or perturbation is not new!!!

- Clifford Cocks – RSA, Malcolm Williamson – DH, 1973

- The forgotten inspiration of J. Ellis – "Ellis said that the idea first occurred to him after reading a paper from World War II by someone at Bell Labs describing a way to protect voice communications by the receiver adding (and then later subtracting) random noise (possibly this 1944 paper[4] or the 1945 paper co-authored by Claude Shannon)" – Wikipedia
Traditional Cryptography – Symmetric Cryptography
Modern Cryptography – Public key Cryptography – PKC
The quantum threat – post-quantum cryptography
Summary

Why KE is hard?
LWE
Post-quantum Key Exchange
Post-quantum Key Exchange

James Ellias

James Ellias GCHQ
Learning with Errors [2006, Regev]

\[
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix}
=
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 s_1 \\
 s_2 \\
 \vdots \\
 s_n
\end{pmatrix}
+
\begin{pmatrix}
 e_1 \\
 e_2 \\
 \vdots \\
 e_m
\end{pmatrix}
\]

- Approximate system over \(\mathbb{Z}_q \)
- Hard to find \(\vec{s} \) from \(A, \vec{b} \).
- Hard to tell if \(\vec{s} \) even exists
- Reduction to lattice approximation problems
Discrete Gaussian
Definition

Let n be a power of 2, $q \equiv 1 \pmod{2n}$ prime. Define the ring

$$R_q = \frac{\mathbb{Z}_q[x]}{(x^n + 1)}.$$

- Again, $b = as + e$ hard to find s
- Hard to distinguish from uniform b
- Approximation problems on *ideal* lattices
- More efficient than standard LWE
Diffie-Hellman from Ideal Lattices

\[p_A = as_A + 2e_A \]

\[p_B = as_B + 2e_B \]

- Public \(a \in R_q \). Acts like generator \(g \) in DH.
Diffie-Hellman from Ideal Lattices

\[p_A = as_A + 2e_A \]
\[p_B = as_B + 2e_B \]

\[k_A = s_A p_B + 2e'_A \approx aS_A S_B + 2S_A e_B + 2e'_A \]
\[k_B = p_A s_B + 2e'_B \approx aS_A S_B + 2S_B e_A + 2e'_B \]

- Public \(a \in R_q \). Acts like generator \(g \) in DH.
- Each side’s key is only \textit{approximately} equal to the other.
- Difference is even—same low bits.
- No authentication—MitM
Wrap-around Illustrated

Difference 4, both odd.
But wait! If \(q = 17 \),

\[
\mathbb{Z}_q = \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}.
\]

11 becomes \(-6\), now parities disagree!
Rounding Intuition – Outer Region problem

Error

main value

Error

Additional modular operation

Why KE is hard?
LWE
Post-quantum Key Exchange
Post-quantum Key Exchange

Jintai Ding, Math Picture Language Seminar, Harvard, 2022
Rounding Intuition

inner region

outer region

outer values moved to inner region

inner region values moved to outer region

swaps the regions

$q/4$ → $+(q-1)/2$

$-q/4$
Rounding Intuition – Region Division

Signal function $\text{Sig}(\cdot)$
Compensating for Wrap-Around

- \[g = 2S_A e_B - 2S_B e_A + 2e'_A - 2e'_B. \]
- Recall: \(|g^{(j)}| < \frac{q}{8} \)
- Define \(E = \{-\lfloor \frac{q}{4} \rfloor, \ldots, \lceil \frac{q}{4} \rceil\} \). Middle half of \(\mathbb{Z}_q \).
- If \(k^{(j)}_B \in E \), no wrap-around occurs; \(k^{(j)}_A \equiv k^{(j)}_B \).
- If \(k^{(j)}_B \notin E \), then \(k^{(j)}_B + \frac{q-1}{2} \in E \)
- If \(k^{(j)}_B \notin E \), \(k^{(j)}_A + \frac{q-1}{2} \equiv k^{(j)}_B + \frac{q-1}{2} \).
Define $\text{Sig}(v) = \begin{cases} 0 & v \in E, \\ 1 & v \notin E. \end{cases}$

And, $w^{(j)}_B = \text{Sig}(k^{(j)}_B)$

Then $k^{(j)}_B + w^{(j)}_B \frac{q-1}{2} \in E$.

Also, $k^{(j)}_B + w^{(j)}_B \frac{q-1}{2} \equiv k^{(j)}_A + w^{(j)}_B \frac{q-1}{2} \pmod{2}$.

- $k^{(j)}_B + w^{(j)}_B \frac{q-1}{2} \pmod{q} \pmod{2} = k^{(j)}_A + w^{(j)}_B \frac{q-1}{2} \pmod{q} \pmod{2}$.
- Wrap-around correction $w_B = (w^{(0)}_B, w^{(1)}_B, \ldots, w^{(n-1)}_B)$
- $\sigma_B = k_B + w_B \frac{q-1}{2} \pmod{2}$.
- $\sigma_A = k_A + w_B \frac{q-1}{2} \pmod{2}$.
Key Derivation

Obtaining shared secret from approximate shared secret:

\[k_A = (k_A^{(0)}, k_A^{(1)}, \ldots, k_A^{(n-1)}) \]
\[k_B = (k_B^{(0)}, k_B^{(1)}, \ldots, k_B^{(n-1)}) \]
\[\tilde{g} = (g^{(0)}, g^{(1)}, \ldots, g^{(n-1)}) \]
\[k_A - k_B = 2\tilde{g} \]
\[k_A \equiv k_B \pmod{2} \]
Key Derivation

Obtaining shared secret from approximate shared secret:

\[
\begin{align*}
 k_A &= (k_A^{(0)}, k_A^{(1)}, \ldots, k_A^{(n-1)}) \\
 k_B &= (k_B^{(0)}, k_B^{(1)}, \ldots, k_B^{(n-1)}) \\
 \tilde{g} &= (g^{(0)}, g^{(1)}, \ldots, g^{(n-1)}) \\
 k_A - k_B &= 2\tilde{g} \\
 k_A &\equiv k_B \pmod{2}
\end{align*}
\]

- Each \(k_A^{(j)} = k_B^{(j)} + 2g^{(j)} \).
- Each \(g^{(j)} \) is small (\(|g^{(j)}| < \frac{q}{8} \)).
- Matching coefficients differ by small multiple of 2
- Take each coefficient mod 2, get \(n \) bit secret
LWE KE

- Ding's paper:
 Cryptology ePrint Archive: Report 2012/688
 20121210:115748 (posted 10-Dec-2012 11:57:48 UTC)

- Cryptology ePrint Archive: Report 2014/070, C. Peikert
 Cryptology ePrint Archive: Report 2014/599, Joppe W. Bos
 and Craig Costello and Michael Naehrig and Douglas Stebila
 Cryptology ePrint Archive: Report 2015/1092, Erdem Alkim
 and Leo Ducas and Thomas Poppelmann and Peter Schwabe
Comparison of Signal

Signal function $\text{Sig}(.)$

Cross rounding $b = \langle ., >^2$

Jintai Ding, Math Picture Language Seminar, Harvard, 2022
Proof Games

Proof proceeds by series of games:

- Begin with simulated protocol
- Adversary cannot distinguish from previous game
- Eventually, if original protocol can be distinguished from random, rLWE can be broken
- Important step to post quantum key exchange.
New Application of Lattice-based schemes - Fully Homomorphic Encryption

- The increase importance of cloud storage and computing
- Privacy concerns
- FHE allows computation on encrypted data
- Main Issue – efficiency
The new post-quantum era

- We must update all systems – a great opportunity in research and business
- Is Bitcoin OK? No. Due to the nature of decentralized system.
- Cryptography is needed everywhere to protect not secrecy but also authenticity and integrity of data and people’s privacy
- MPC for data sharing (Medical data sharing, AI etc)
- A key concern – cost effectiveness.
Summary: the ubiquitous application of cryptography in the digital world

- Cryptography is used in all devices including cell phone and ubiquitous devices like RFID: subway and bus card, sensors, small medical device, ...
- Cryptography is not anymore an institutional solution but a public and civilian solution for everyone’s daily use.
- Privacy is an increasing concern.
- Mathematics is the foundation of all the cryptographic algorithms.

BIMSA – Beijing Institute of Mathematical Sciences and Applications
Privacy Protection and Blockchain Security at BIMSA

The mission of the Lab

- to apply the best mathematical ideas to develop fundamental algorithms, and apply them to ensure the long term privacy protection and the long term security of the blockchain technology,

- to discover new fundamental mathematical methods and theory to ensure the sustainable development of our applied research.
The lab intends to develop and apply new efficient and secure quantum-proof algorithms to ensure the long term security for our digital society.

The lab intends to work with industry for practical applications in internet, blockchain, digital payment system, ubiquitous computer systems and other digital systems.

The lab intends to provide technical supports and solutions for the industry to comply with privacy laws and blockchain regulations.

The lab intends to be an open lab with a research team consisting of mathematicians, computer scientists and industry experts to work with colleagues around the world.
Thank You

Questions to jintai.ding@gmail.com