LEARNING POLYNOMIAL TRANSFORMATIONS

SITAN CHEN
UC BERKELEY

JOINT W/ JERRY LI (MSR), YUANZHI LI (CMU), ANRU ZHANG (DUKE)
DEEP GENERATIVE MODELS

Powerful framework for modeling **real-world, high-dimensional distributions**

Idea: pushforwards of simple distributions, e.g. Gaussian, under **neural networks** are
1. highly expressive
2. (heuristically) **easy to optimize** over
DEEP GENERATIVE MODELS

\(F: \mathbb{R}^r \rightarrow \mathbb{R}^d \): parametric function (e.g. a neural network)

Goal: given samples from some real-world distribution \(D \), produce \(F \) for which the pushforward \(F(N(0, \text{Id})) \approx D \)

To sample from \(F(N(0, \text{Id})) \):
1. Nature samples \(g \sim N(0, \text{Id}) \)
2. We observe \(x = F(g) \)
DEEP GENERATIVE MODELS

\(F : \mathbb{R}^r \rightarrow \mathbb{R}^d \): parametric function (e.g. a neural network)

Goal: given samples from some real-world distribution \(D \), produce \(F \) for which the pushforward \(F(N(0, \text{Id})) \approx D \)

E.g., GANs try to do this by solving

\[
\min_{F} \max_{A} |\mathbb{E}_{x \sim D}[A(x)] - \mathbb{E}_{x \sim F(N(0, \text{Id}))}[A(x)]| \\
\text{“Discriminator”}
\]
Let’s even say that D is exactly representable by a pushforward, i.e. $D = F^*(N(0, \text{Id}))$ for some unknown neural net F^*.

$$\min_F \max_A \left| \mathbb{E}_{x \sim D}[A(x)] - \mathbb{E}_{x \sim F(N(0, \text{Id}))}[A(x)] \right|$$

Do heuristics for training GANs/VAEs successfully minimize these objectives?

In practice, expectations \to sample averages, objective optimized by stochastic gradient descent-ascent (alternate between optimizing F and optimizing A)

Non-convex-concave objective, vanishing gradients, oscillations, mode collapse

[Arora-Ge-Liang-Ma-Zhang ‘17], [Arora-Zhang ‘17]: if A has bounded capacity, then even if training succeeds, $F(N(0, \text{Id}))$ may have small support size
MYSTERIES

Let’s even say that D is exactly representable by a pushforward, i.e. $D = F^*(N(0, \text{Id}))$ for some unknown neural net F^*

$$\min_F \max_A |\mathbb{E}_{x \sim D}[A(x)] - \mathbb{E}_{x \sim F(N(0,\text{Id}))}[A(x)]|$$

Why do these objectives align with distribution learning?

[C-Li-Li-Meka ‘22]: For a large family of F^*’s, there exist F optimizing this objective, but for which D and $F(N(0, \text{Id}))$ are far in Wasserstein distance (under a standard cryptographic assumption)

Idea: Consider $D = \text{Unif}(\{\pm 1\}^d)$. Pseudorandom generators transform $r \ll d$ uniform bits into distributions that are statistically far from D but “computationally” close to D.
Let’s even say that D is exactly representable by a pushforward, i.e. $D = F^* (N(0, \text{Id}))$ for some unknown neural net F^*.

Is there any efficient algorithm that can provably learn such distributions?

In practice, no clear-cut way to evaluate how well a trained model has learned the distribution (unlike in supervised learning, e.g. test accuracy)

Various heuristics:

- **manually inspect** generated samples
 - compare them to nearest training images
 - take g, g' and evaluate F on the line between g, g'
- **heuristics for estimating log-likelihood** of held-out test data
- **Inception** score, Frechet **Inception** distance (based on pre-trained classifier)
Let’s even say that D is exactly representable by a pushforward, i.e. $D = F^*(N(0, \text{Id}))$ for some unknown neural net F^*.

Is there any efficient algorithm that can provably learn such distributions?

Long line of work in statistics and theoretical CS on provable algorithms for learning high-dimensional distributions from samples.
DEEP GENERATIVE MODELS

\[F^*: \mathbb{R}^r \to \mathbb{R}^d : \text{unknown parametric function (e.g. a neural network)} \]

Goal: given samples from \(D = F^*(N(0,\text{Id})) \), output \(F \) s.t. \(F(N(0,\text{Id})) \approx D \)

[Diagram showing the process with \(g \), \(x \), \(F^* \).]

E.g. Wasserstein
DEEP GENERATIVE MODELS

<table>
<thead>
<tr>
<th>\mathbb{R}^r</th>
<th>\mathbb{R}^d</th>
</tr>
</thead>
</table>

Goal: given samples from $D = F^*(N(0, \text{Id}))$, recover the parameters of F^* up to some error, modulo the natural symmetries

We will focus on case where each coordinate of F^* is (homogeneous) low-deg. polynomial

$$F^*(g) = (p_1(g), \ldots, p_d(g))$$

“Depth-2 neural net with poly. activations”
PARAMETER RECOVERY

$F^* : \mathbb{R}^r \to \mathbb{R}^d$ given by degree-ω polynomials $p_1, \ldots, p_d : \mathbb{R}^r \to \mathbb{R}$

For now let’s focus on $\omega = 2$

Then can identify each p_a with symmetric matrix $Q_a \in \mathbb{R}^{r \times r}$

Gauge symmetry: for any $U \in O(r)$, $\{Q_a\}$ and $\{UQ_aU^T\}$ give rise to the same pushforward distribution (b/c $N(0, \text{Id})$ rotation-invariant)

For $\omega = 2$, this is the only symmetry!

Goal: recover the parameters of F^* to within sufficient accuracy
PARAMETER RECOVERY

$F^*: \mathbb{R}^r \rightarrow \mathbb{R}^d$ given by degree-ω polynomials $p_1, \ldots, p_d: \mathbb{R}^r \rightarrow \mathbb{R}$

For now let’s focus on $\omega = 2$

Then can identify each p_a with symmetric matrix $Q_a \in \mathbb{R}^{r \times r}$

Gauge symmetry: for any $U \in O(r)$, $\{Q_a\}$ and $\{UQ_aU^T\}$ give rise to the same pushforward distribution (b/c $N(0, \text{Id})$ rotation-invariant)

For $\omega = 2$, this is the only symmetry!

Goal: output $\{\hat{Q}_a\}$ for which

$$\min_{U \in O(r)} \max_{1 \leq a \leq d} \|UQ_aU^T - \hat{Q}_a\|_F \leq \varepsilon$$
PARAMETER RECOVERY

$F^*: \mathbb{R}^r \rightarrow \mathbb{R}^d$ given by degree-ω polynomials $p_1, ..., p_d: \mathbb{R}^r \rightarrow \mathbb{R}$

For now let’s focus on $\omega = 2$

Then can identify each p_a with symmetric matrix $Q_a \in \mathbb{R}^{r\times r}$

Gauge symmetry: for any $U \in O(r)$, $\{Q_a\}$ and $\{UQ_aU^T\}$ give rise to the same pushforward distribution (b/c $N(0, \text{Id})$ rotation-invariant)

For $\omega = 2$, this is the only symmetry!

Goal: output $\{\hat{Q}_a\}$ for which $\min_{U \in O(r)} \max_{1\leq a \leq d} \|UQ_aU^T - \hat{Q}_a\|_F \leq \varepsilon$
PARAMETER RECOVERY

$F^*: \mathbb{R}^r \rightarrow \mathbb{R}^d$ given by degree-ω polynomials $p_1, \ldots, p_d: \mathbb{R}^r \rightarrow \mathbb{R}$

For now let’s focus on $\omega = 2$

Then can identify each p_a with symmetric tensor $T_a \in (\mathbb{R}^r)^{\otimes \omega}$

Gauge symmetry: for any $U \in O(r)$, $\{Q_a\}$ and $\{UQ_aU^T\}$ give rise to the same pushforward distribution (b/c $N(0, \text{Id})$ rotation-invariant)

For $\omega = 2$, this is the only symmetry!

Goal: output $\{\hat{Q}_a\}$ for which

$$\min_{U \in O(r)} \max_{1 \leq a \leq d} \|UQ_aU^T - \hat{Q}_a\|_F \leq \epsilon$$
PARAMETER RECOVERY

\(F^*: \mathbb{R}^r \to \mathbb{R}^d \) given by degree-\(\omega \) polynomials \(p_1, \ldots, p_d: \mathbb{R}^r \to \mathbb{R} \)

For now let’s focus on \(\omega = 2 \)

Then can identify each \(p_a \) with symmetric tensor \(T_a \in (\mathbb{R}^r)^{\otimes \omega} \)

Gauge symmetry: for any \(U \in O(r) \), \(\{T_a\} \) and \(\{F_U(T_a)\} \) give rise to the same pushforward distribution (b/c \(N(0, \text{Id}) \) rotation-invariant)

For \(\omega = 2 \), this is the only symmetry!

\[
F_U(T)_{i_1 \cdots i_\omega} = \sum_{j_1, \ldots, j_\omega} U_{i_1 j_1} \cdots U_{i_\omega j_\omega} T_{j_1 \cdots j_\omega}
\]

Goal: output \(\{\hat{Q}_a\} \) for which

\[
\min_{U \in O(r)} \max_{1 \leq a \leq d} \| U Q_a U^T - \hat{Q}_a \|_F \leq \varepsilon
\]
PARAMETER RECOVERY

\(F^*: \mathbb{R}^r \rightarrow \mathbb{R}^d \) given by degree-\(\omega \) polynomials \(p_1, \ldots, p_d: \mathbb{R}^r \rightarrow \mathbb{R} \)

For now let’s focus on \(\omega = 2 \)

Then can identify each \(p_a \) with symmetric tensor \(T_a \in (\mathbb{R}^r)^{\otimes \omega} \)

Gauge symmetry: for any \(U \in O(r) \), \(\{T_a\} \) and \(\{F_U(T_a)\} \) give rise to the same pushforward distribution (b/c \(N(0, \text{Id}) \) rotation-invariant)

For \(\omega = 2 \), this is the only symmetry!

Goal: output \(\{\hat{T}_a\} \) for which \(\min_{U \in O(r)} \max_{1 \leq a \leq d} \| F_U(T_a) - \hat{T}_a \|_F \leq \varepsilon \)
PARAMETER RECOVERY

\(F^* : \mathbb{R}^r \rightarrow \mathbb{R}^d \) given by degree-\(\omega \) polynomials \(p_1, \ldots, p_d : \mathbb{R}^r \rightarrow \mathbb{R} \)

For now let’s focus on \(\omega = 2 \)

Then can identify each \(p_a \) with symmetric tensor \(T_a \in (\mathbb{R}^r)^{\otimes \omega} \)

Gauge symmetry: for any \(U \in O(r) \), \{\(T_a \}\) and \{\(F_U(T_a) \)\} give rise to the same pushforward distribution (b/c \(\mathcal{N}(0, \text{Id}) \) rotation-invariant)

For \(\omega > 2 \), this is not the only symmetry!

[Grumbaum ’75]: \(p(x_1, x_2) = x_1^3 + x_1 x_2^2 \), \(q(x_1, x_2) = x_1^3 - 3x_1 x_2^2 \)

Goal: output \{\(\hat{T}_a \)\} for which \(\min_{U \in O(r)} \max_{1 \leq a \leq d} \| F_U(T_a) - \hat{T}_a \|_F \leq \varepsilon \)
WORST-CASE NETWORKS ARE HARD

Thm [C-Li-Li-Zhang]: Even for $d = 1, \omega = 2$, parameter recovery to $O(1)$ accuracy requires $\exp(\Omega(r))$ samples in the worst case.

There exist pushforwards with very different parameters but which are exponentially close in statistical distance.

Lower bound instance is delicate...real-world distributions will not look like this.

Is learning / parameter recovery tractable for "non-worst-case" pushforwards?
SMOOTHED ANALYSIS

Hard examples are pathological and, upon random perturbation, become tractable.
SMOOTHED ANALYSIS

Hard examples are pathological and, upon random perturbation, become tractable.

expected time complexity
SMOOTHED ANALYSIS

Hard examples are pathological and, upon random perturbation, become tractable

We consider “smoothed” $Q_1, ..., Q_d$ given by starting with any worst-case $\tilde{Q}_1, ..., \tilde{Q}_d$ and randomly perturbing each entry by $\sim 1/poly(r)$

Note: more challenging than just considering “random” $\{Q_a\}$
PRELIMINARIES

Motivation
Setup
Results

QUADRATIC CASE

Moments and tensor ring
Proof of identifiability
Algorithm

HIGHER-DEGREE CASE

TAKEAWAYS
OUR RESULTS

Thm [CLLZ]: For $\omega = 2$, there is an algorithm for recovering the parameters of any smoothed pushforward in time/samples $\text{poly}(r, d, 1/\varepsilon)$ when $d \geq \Omega(r^2)$.

$d \geq \Omega(r^2)$ means distribution is supported on a low-dim. manifold

First end-to-end algorithmic result for learning a family of pushforwards computed by a neural network with > 1 layer
OUR RESULTS

Thm [CLLZ]: For odd $\omega > 2$, there is an algorithm for recovering the parameters of any smoothed* push-forward in time/samples $\text{poly}(r, d, 1/\varepsilon)$ when associated tensors T_1, \ldots, T_d are rank-$\ell = O(1)$ and $d \geq \Omega(r^{c\omega \ell})$.

*Because we focus on low-rank tensors, the smoothing here perturbs every rank-1 component individually, rather than the full tensors.

When the polynomials are low-rank and non-worst-case, **gauge symmetry is the only symmetry, even for $\omega > 2$!**
PRELIMINARIES
Motivation
Setup
Results

QUADRATIC CASE
Moments and tensor ring
Proof of identifiability
Algorithm

HIGHER-DEGREE CASE

TAKEAWAYS
MOMENTS

If D is a degree-2 pushforward given by $Q_1, \ldots, Q_d \in \mathbb{R}^{r \times r}$, then

$$
\frac{1}{2} \mathbb{E}_{z \sim D} [(z_a - \mathbb{E}[z_a])(z_b - \mathbb{E}[z_b])] = \text{Tr}(Q_a Q_b)
$$

Second-order moments tell us the angles between the Q’s regarded as r^2-dimensional vectors.

This lets us recover them up to a rotation in $O(r^2)$

To recover up to a rotation in $O(r)$, must use higher-order moments
MOMENTS

If D is a degree-2 pushforward given by $Q_1, \ldots, Q_d \in \mathbb{R}^{r \times r}$, then

$$
\frac{1}{2} \mathbb{E}_{z \sim D} [(z_a - \mathbb{E}[z_a])(z_b - \mathbb{E}[z_b])] = \text{Tr}(Q_a Q_b)
$$

$$
\frac{1}{8} \mathbb{E}_{z \sim D} [(z_a - \mathbb{E}[z_a])(z_b - \mathbb{E}[z_b])(z_c - \mathbb{E}[z_c])] = \text{Tr}(Q_a Q_b Q_c)
$$

Recovering $\{Q_a\}$ up to gauge symmetry from $\text{Tr}(Q_a Q_b Q_c)$ is precisely the problem of (symmetric) tensor ring decomposition

...equivalently, decomposing a translationally symmetric matrix product state of three particles with periodic boundary condition
MOMENTS

Recovering \(\{Q_a\} \) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c) \) is precisely the problem of \textbf{(symmetric) tensor ring decomposition}

...equivalently, decomposing a translationally symmetric \textbf{matrix product state} of three particles with periodic boundary condition

\textbf{Note:} When \(Q_a \)'s all diagonal, equivalent to \textbf{tensor decomposition}
Note: When Q_{a}’s all diagonal, equivalent to tensor decomposition
Recovering \(\{ Q_a \} \) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c) \) is precisely the problem of \textit{(symmetric) tensor ring decomposition}.

...equivalently, decomposing a translationally symmetric matrix \textbf{product state} of three particles with periodic boundary condition.

Note: When \(Q_a \)'s all diagonal, equivalent to tensor decomposition.
MOMENTS

Recovering \(\{Q_a\} \) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c) \) is precisely the problem of \textbf{(symmetric) tensor ring decomposition}

...equivalently, decomposing a translationally symmetric \textbf{matrix product state} of three particles with periodic boundary condition

\textbf{Note:} When \(Q_a \) 's all diagonal, equivalent to \textbf{tensor decomposition}
MOMENTS

Recovering \(\{ Q_a \} \) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c) \) is precisely the problem of \textbf{(symmetric) tensor ring decomposition} …equivalently, decomposing a translationally symmetric \textbf{matrix product state} of three particles with periodic boundary condition

\textit{Note:} When \(Q_a \)'s all diagonal, equivalent to \textbf{tensor decomposition}
MOMENTS

Recovering \(\{Q_a\} \) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c) \) is precisely the problem of (symmetric) tensor ring decomposition

...equivalently, decomposing a translationally symmetric matrix product state of three particles with periodic boundary condition

Note: When \(Q_a \)'s all diagonal, equivalent to tensor decomposition
MOMENTS

Recovering \(\{ Q_a \} \) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c) \) is precisely the problem of \textbf{(symmetric) tensor ring decomposition} ...equivalently, decomposing a translationally symmetric \textbf{matrix product state} of three particles with periodic boundary condition

\textbf{Note:} When \(Q_a \)'s all diagonal, equivalent to \textbf{tensor decomposition}
MOMENTS

Recovering \(\{Q_a\}\) up to gauge symmetry from \(\text{Tr}(Q_a Q_b Q_c)\) is precisely the problem of \textbf{(symmetric) tensor ring decomposition}...
equivalently, decomposing a translationally symmetric \textbf{matrix product state} of three particles with periodic boundary condition

\textbf{Note:} When \(Q_a\)’s all diagonal, equivalent to \textbf{tensor decomposition}

Widely studied, many provable algorithms known (Jennrich’s algorithm, tensor power method, sum-of-squares, etc.)

\textbf{When} \(Q_a\)’s are non-diagonal, \textbf{no provable algorithms known}!
IDENTIFIABILITY

A priori, not even clear that \(\{\text{Tr}(Q_a Q_b)\}_{a,b} \) and \(\{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c} \) uniquely determine \(\{Q_a\} \) up to gauge symmetry!

Thm [CLLZ]: \{\text{Tr}(Q_a Q_b)\}_{a,b} \) and \(\{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c} \) uniquely and robustly determine \(\{Q_a\} \) up to gauge symmetry when \(d \geq \Omega(r^2) \) and \(\{Q_a\} \) are smoothed.

i.e. if \(\text{Tr}(Q_a Q_b) \approx \text{Tr}(\hat{Q}_a \hat{Q}_b) \) and \(\text{Tr}(Q_a Q_b Q_c) \approx \text{Tr}(\hat{Q}_a \hat{Q}_b \hat{Q}_c) \) for all \(a, b, c \), then there exists \(U \in O(r) \) s.t. \(U Q_a U^\top \approx \hat{Q}_a \) for all \(a \)
A priori, not even clear that \(\{\text{Tr}(Q_a Q_b)\}_{a,b}\) and \(\{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c}\) uniquely determine \(\{Q_a\}\) up to gauge symmetry!

Thm [CLLZ]: \(\{\text{Tr}(Q_a Q_b)\}_{a,b}\) and \(\{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c}\) uniquely and robustly determine \(\{Q_a\}\) up to gauge symmetry when \(d \geq \Omega(r^2)\) and \(\{Q_a\}\) are smoothed.

i.e., the degree-\(\leq 3\) moments of a quadratic pushforward “robustly identify” the parameters
PRELIMINARIES

Motivation
Setup
Results

QUADRATIC CASE
Moments and tensor ring
Proof of identifiability
Algorithm

HIGHER-DEGREE CASE

TAKEAWAYS
PROOF OF IDENTIFIABILITY

Suppose \(\{Q_a\} \) and \(\{\hat{Q}_a\} \) satisfy

\[
\text{Tr}(Q_a Q_b) = \text{Tr}(\hat{Q}_a \hat{Q}_b) \quad \text{for all } a, b
\]
\[
\text{Tr}(Q_a Q_b Q_c) = \text{Tr}(\hat{Q}_a \hat{Q}_b \hat{Q}_c) \quad \text{for all } a, b, c
\]

Want to show there exists \(U \in O(r) \) for which

\[
U Q_a U^\top = \hat{Q}_a \quad \text{for all } a = 1, \ldots, d
\]
PROOF OF IDENTIFIABILITY

Recall: \(\{\text{Tr}(Q_a Q_b)\}_{a,b} \) specifies \(\{Q_a\} \) up to an \(r^2 \times r^2 \) rotation.

i.e. exists \(W \in O(r^2) \) for which \(W \vec{\text{vec}}(Q_a) = \vec{\text{vec}}(\hat{Q}_a) \)

Note: if we had \(U Q_a U^\top = \hat{Q}_a \) for all \(a \), then \(W = U \otimes U \)

In this case, any column \(W_{ij} \) of \(W \), regarded as an \(r \times r \) matrix, would be rank-1, specifically \(W_{ij} = U^i (U^j)^\top \)

We will use \(\{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c} \) to prove \(W \) has this rank-1 structure.
PROOF OF IDENTIFIABILITY

\[\{ \text{Tr}(Q_a Q_b Q_c) \}_{a,b,c} \] tells us angles between every \(Q_a \) and every \(Q_b Q_c \).

\[\{ \text{Tr}(\hat{Q}_a \hat{Q}_b \hat{Q}_c) \}_{a,b,c} \] tells us angles between every \(\hat{Q}_a \) and every \(\hat{Q}_b \hat{Q}_c \).
PROOF OF IDENTIFIABILITY

\{ \text{Tr}(Q_a Q_b Q_c) \}_{a,b,c} \text{ tells us angles between every } Q_a \text{ and every } Q_b Q_c \\
\{ \text{Tr}(\hat{Q}_a \hat{Q}_b \hat{Q}_c) \}_{a,b,c} \text{ tells us angles between every } \hat{Q}_a \text{ and every } \hat{Q}_b \hat{Q}_c \\

So \(W \) maps \(Q_b Q_c \)'s to \(\hat{Q}_b \hat{Q}_c \)'s (in addition to mapping \(Q_a \)'s to \(\hat{Q}_a \)'s)

\[
W \text{ vec}(Q_a) = \hat{Q}_a \quad (1) \\
W \text{ vec}(Q_b Q_c) = \hat{Q}_b \hat{Q}_c \quad (2)
\]
PROOF OF IDENTIFIABILITY

\[
\begin{align*}
W \text{ vec}(Q_a) &= \hat{Q}_a \quad (1) \\
W \text{ vec}(Q_b Q_c) &= \hat{Q}_b \hat{Q}_c \quad (2)
\end{align*}
\]

Suppose \(Q_a\)'s consisted of \(e_i e_j^T\) for all \(1 \leq i, j \leq r\)

Then (1) → \(\hat{Q}_a\)'s consist of \(W \text{ vec}(e_i e_j^T) = \text{columns } W^{ij}\)

(2) → \(W \text{ vec}(e_i e_j^T \cdot e_k e_\ell^T) = W^{ij} W^{k\ell}_{r \times r}\)

\[
W \text{ vec}(e_i e_\ell^T) \cdot 1[j = k]
\]
PROOF OF IDENTIFIABILITY

\[
\begin{align*}
W \, \text{vec}(Q_a) &= \hat{Q}_a \quad (1) \\
W \, \text{vec}(Q_bQ_c) &= \hat{Q}_b \hat{Q}_c \quad (2)
\end{align*}
\]

Suppose \(Q_a \)'s consisted of \(e_i e_j^T \) for all \(1 \leq i, j \leq r \)

Then \((1) \) → \(\hat{Q}_a \)'s consist of \(W \, \text{vec}(e_i e_j^T) = \text{columns of } W^{ij} \)

\((2) \) → \(W \, \text{vec}(e_i e_j^T \cdot e_k e_\ell^T) = W^{ij} W^{k\ell}_{r \times r} \)

\[W^{i\ell} \cdot 1[j = k] \]
PROOF OF IDENTIFIABILITY

\[
W \text{ vec}(Q_a) = \hat{Q}_a \quad (1)
\]
\[
W \text{ vec}(Q_b Q_c) = \hat{Q}_b \hat{Q}_c \quad (2)
\]

Suppose \(Q_a \)'s consisted of \(e_i e_j^T \) for all \(1 \leq i, j \leq r \)

\[
W_{ij} W_{k\ell} = W_{i\ell} \cdot 1[j = k] \quad (*)
\]

For general \(\{Q_a\} \), each identity of the form \((2)\) yields some linear combination of identities of the form \((*)\)

With enough linearly independent \(Q'_a \)'s, these linear combinations span / imply the identities \((*)\)
Claim: The columns of W (regarded as $r \times r$ matrices) are rank-1.

Proof:

$$\text{Tr} \left(W^{ij} (W^{ij})^T \right) = \text{Tr} \left(W^{ii} W^{ij} (W^{ij})^T \right)$$

by (*)

$$\leq \|W^{ii}\|_F \cdot \|W^{ij} (W^{ij})^T\|_F$$

$$\geq \|W^{ij} (W^{ij})^T\|_F$$

(W $\in O(r^2)$)

If trace of psd matrix = Frobenius norm, it is rank-1.
PROOF OF IDENTIFIABILITY

\[
W^{ij} W^{k\ell} = W^{i\ell} \cdot 1[j = k] \tag{\ast}
\]

Claim: \(W = U \otimes U \) for \(U \in O(r) \).

Proof: Say \(W^{ij} = v_{ij} w_{ij}^T \).

- \((W^{ii})^2 = W^{ii} \) implies \(v_{ii} = w_{ii} \)
- \(W^{ii} W^{jj} = 1[i = j] \) implies \(\{v_{11}, \ldots, v_{rr}\} \text{ orthonormal} \)
- \(W^{ii} W^{ij} = W^{ij} \) implies \(v_{ij} = v_{ii} \)
- \(W^{ij} W^{jj} = W^{ij} \) implies \(w_{ij} = v_{jj} \)

So \(W = U \otimes U \) where \(U \)'s columns consist of \(\{v_{11}, \ldots, v_{rr}\} \)
BREAKING SYMMETRY

Thm [CLLZ]: \{\text{Tr}(Q_a Q_b)\}_{a,b} \text{ and } \{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c} \text{ uniquely and robustly determine } \{Q_a\} \text{ up to gauge symmetry when } d \geq \Omega(r^2) \text{ and } \{Q_a\} \text{ are smoothed.}

Corollary: when \(d \geq \Omega(r^2) \) and \{Q_a\} are smoothed, if \{\hat{Q}_a\} satisfy

\[
\text{Tr}(Q_a Q_b) = \text{Tr}(\hat{Q}_a \hat{Q}_b) \text{ for all } a, b
\]

\[
\text{Tr}(Q_a Q_b Q_c) = \text{Tr}(\hat{Q}_a \hat{Q}_b \hat{Q}_c) \text{ for all } a, b, c
\]

and \(Q_1, \hat{Q}_1 \) are diagonal with sorted entries...

then \(Q_a = \hat{Q}_a \) for all \(a \)!
AN INEFFICIENT ALGORITHM

Input: \{\text{Tr}(Q_a Q_b)\}_{a,b}, \{\text{Tr}(Q_a Q_b Q_c)\}_{a,b,c} \text{ (wlog } Q_1 \text{ diagonal with sorted entries)}

Consider the following system of polynomial constraints

Variables: \(\hat{Q}_1, \ldots, \hat{Q}_d\)

Constraints:

For all \(1 \leq a, b, c \leq d\):

- \(\hat{Q}_a = \hat{Q}_a^T\)
- \(\text{Tr}(\hat{Q}_a \hat{Q}_b) = \text{Tr}(Q_a Q_b)\)
- \(\text{Tr}(\hat{Q}_a \hat{Q}_b \hat{Q}_c) = \text{Tr}(Q_a Q_b Q_c)\)

\(\hat{Q}_1\) is diagonal w/ sorted entries

The solution satisfies \(\hat{Q}_a = Q_a\) for all \(a\)!

Polynomial system solving is NP-hard...

To get an efficient algorithm, we will design a suitable convex relaxation using the sum-of-squares hierarchy
SUM-OF-SQUARES: PROOFS TO ALGORITHMS

Powerful **generic** framework for algorithm design / nonconvex optimization

Yields the most powerful algorithms for many statistical problems

Robust regression, tensor decomposition, dictionary learning, matrix/tensor completion, sparse PCA, robust contextual bandits, Gaussian mixture models, differential privacy, robust mean estimation, community detection, clustering, robust Kalman filtering, robust structured distribution estimation...
SUM-OF-SQUARES: PROOFS TO ALGORITHMS

Idea 0: Instead of a single solution, find a distribution over solutions ...this is no easier than finding a single solution
SUM-OF-SQUARES: PROOFS TO ALGORITHMS

Idea 1: Find something which “behaves” like a distribution over solutions with respect to **low-degree test functions**

(Degree-t) Pseudo-expectation $\tilde{E}[\cdot]$:

Takes any degree-$\leq t$ polynomial in the variables $\hat{Q}_1, ..., \hat{Q}_d$ and outputs a number. Must satisfy:

1. **Normalization**: $\tilde{E}[1] = 1$
2. **Linearity**: $\tilde{E}[\alpha \cdot p + \beta \cdot q] = \alpha \cdot \tilde{E}[p] + \beta \cdot \tilde{E}[q]$
3. **Positivity**: $\tilde{E}[p^2] \geq 0$ for all degree-$\leq t/2$ polynomials p

The set of pseudo-expectations is convex, so we can **efficiently** find a **pseudo-distribution** over solutions to our polynomial system!
SUM-OF-SQUARES: PROOFS TO ALGORITHMS

Idea 2: If the proof of identifiability is “simple”...

i.e. every step involved a low-degree polynomial inequality like Cauchy-Schwarz

then because we proved that

\[\hat{Q}_a = Q_a \] for all \(a \)

we conclude that \(\tilde{E} [\hat{Q}_a] = Q_a \)

Our proof of identifiability can be implemented in a simple fashion!

\[(\text{Degree}-t) \text{ Pseudo-expectation } \tilde{E} [\cdot]:\]

Takes any degree-\(\leq t \) polynomial in the variables \(\hat{Q}_1, \ldots, \hat{Q}_d \) and outputs a number. Must satisfy:

1. Normalization: \(\tilde{E} [1] = 1 \)
2. Linearity: \(\tilde{E} [\alpha \cdot p + \beta \cdot q] = \alpha \cdot \tilde{E} [p] + \beta \cdot \tilde{E} [q] \)
3. Positivity: \(\tilde{E} [p^2] \geq 0 \) for all degree-\(\leq t/2 \) polynomials \(p \)

ALGORITHM

Input: \{ \text{Tr}(Q_a Q_b) \}_a,b, \{ \text{Tr}(Q_a Q_b Q_c) \}_a,b,c

1. Find pseudo-distribution \(\tilde{E} \) over solutions to the polynomial system
2. Output \(\tilde{E} [\hat{Q}_1], \ldots, \tilde{E} [\hat{Q}_d] \)
PRELIMINARIES

Motivation
Setup
Results

QUADRATIC CASE

Moments and tensor ring
Proof of identifiability
Algorithm

HIGHER-DEGREE CASE

TAKEAWAYS
MOMENTS

For higher-degree pushforwards, the moments are quite unwieldy...

We will only work with the second-order moments.

If \mathcal{D} is a degree-ω pushforward given by $T_1, \ldots, T_d \in (\mathbb{R}^r)^\otimes \omega$, then

$$E_{z \sim \mathcal{D}}[z_1 z_2] = E_{g \sim N(0, \text{Id})} [\langle T_1, g^\otimes \omega \rangle \langle T_2, g^\otimes \omega \rangle]$$

$$= \langle T_1, T_2 \rangle_\Sigma \quad \text{(in this talk, will pretend } \Sigma = \text{Id)}$$

Given inner products $\{\langle T_a, T_b \rangle\}$, can we recover $\{T_a\}$?
IDENTIFIABILITY

Given inner products \(\{ \langle T_a, T_b \rangle \} \), can we recover \(\{ T_a \} \)?

If \(\{ T_a \} \) were arbitrary, this is just matrix factorization, in which case can only recover \(\{ T_a \} \) up to a rotation in \(O(r^\omega) \), rather than \(O(r) \).

Thm [CLLZ]: \(\{ \langle T_a, T_b \rangle \}_{a,b} \) robustly determine \(\{ T_a \} \) up to gauge symmetry if \(d \geq \Omega(r^\omega \ell) \) and \(\{ T_a \} \) are rank-\(\ell \) + smoothed.

i.e., the degree-2 moments of a low-rank pushforward “robustly identify” the parameters.
Suppose \(\{T_a\} \) and \(\{\hat{T}_a\} \) are collections of rank-\(\ell \) tensors satisfying
\[
\langle T_a, T_b \rangle = \langle \hat{T}_a, \hat{T}_b \rangle \quad \text{for all } a, b
\]
Want to show there exists \(U \in O(r) \) for which
\[
F_U(T_a) = \hat{T}_a \quad \text{for all } a = 1, \ldots, d
\]
PROOF OF IDENTIFIABILITY

Recall: \(\{ \langle T_a, T_b \rangle \}_{a,b} \) specifies \(\{ T_a \} \) up to an \(r^\omega \times r^\omega \) rotation

i.e. exists \(W \in O(r^\omega) \) for which \(W \ \text{vec}(T_a) = \text{vec}(\hat{T}_a) \)

If we had \(F_U(T_a) = \hat{T}_a \) for all \(a \), then \(W = U^\otimes r^\omega \)

Any column \(W^{i_1 \cdots i_\omega} \) of \(W \), regarded as an \(r \times \cdots \times r \) tensor, would be rank-1, specifically \(W^{i_1 \cdots i_\omega} = U^{i_1} \otimes \cdots \otimes U^{i_\omega} \)

Note: \(W \) maps many rank-\(\ell \) tensors to other rank-\(\ell \) tensors
We will use this to establish rank-1 structure of \(W \)
PROOF OF IDENTIFIABILITY

1. $W \text{ vec}(T)$ has rank $\leq \ell$ whenever T is rank-ℓ
 because this is the case for many “incoherent” T

2. $W \text{ vec}(T)$ has rank $\leq (\ell - 1)$ whenever T is rank-$(\ell - 1)$
 if this were not true for some rank-$(\ell - 1)$ T, then
 $W \text{ vec}(T + v \otimes \omega)$ would be rank $> \ell$ for some v, violating 1.

3. So $W \text{ vec}(T)$ has rank-1 whenever T is rank-1!

4. Take $T = e_{i_1} \otimes \cdots \otimes e_{i_\omega} \Rightarrow W \text{ vec}(T) = W^{i_1 \cdots i_\omega}$ is rank-1

Note:
- The above only applies to symmetric tensors T...
- Need to be careful when working with tensor rank...
PRELIMINARIES

Motivation
Setup
Results

QUADRATIC CASE

Moments and tensor ring
Proof of identifiability
Algorithm

HIGHER-DEGREE CASE

TAKEAWAYS
OPEN QUESTIONS

Is bounded rank necessary for parameter recovery when $\omega > 2$?

More practical algorithms?

Beyond polynomial activations?

Thm [C-Li-Li]: For pushforwards under depth-2 networks with **ReLU activations**, there is no polynomial-time algorithm even for outputting an arbitrary density which is $O(1)$-close in Wasserstein to the true distribution.
OPEN QUESTIONS

Is bounded rank necessary for parameter recovery when $\omega > 2$?

More practical algorithms?

Beyond polynomial activations?

Hardness of density estimation for polynomial activations?

New notions of distribution learning?

- e.g. learning in “computational” distance (“outcome indistinguishability”)

TAKEAWAYS

Pushforwards are a powerful way of modeling high-dimensional distributions in practice, but very little known w.r.t. provable guarantees / principled ways of evaluating trained models.

Tools / perspectives from TCS well-suited to fill this gap:
- Pseudorandom generators, distribution learning theory, smoothed analysis,
- method of moments / tensor methods, convex programming hierarchies

By building on these ideas, we give the first efficient algorithms for provably learning a natural family of pushforward distributions.

Lots of open questions! (both technical and conceptual)