Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.

A. Vdovina
Newcastle University

Harvard Picture Language Project Seminar
May 2020
Outline

Introduction

C*-algebras

Buildings

Higher dimensional words

Graph C*-algebras

nD polyhedral C*-algebras

Further directions of research
The subject requires several fields:

- Operator Algebras;
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;

Difficulties: higher dimensions require counter-intuitive geometry of buildings.

Another application of buildings I recently developed is new Drinfeld-Manin solutions of Yang-Baxter equations.
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;
- Dynamical Systems;

Difficulties: higher dimensions require counter-intuitive geometry of buildings.

Another application of buildings I recently developed is new Drinfeld-Manin solutions of Yang-Baxter equations.
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;
- Dynamical Systems;
- Representation Theory;
- Geometric Group Theory: Buildings and Thompson's groups.

"On Jones' connections between subfactors, conformal field theory, Thompson's groups and knots" by Brothier.

We discuss higher-dimensional generalizations of Thompson groups and relevant C*-algebras.

Difficulties: higher dimensions require counter-intuitive geometry of buildings.

Another application of buildings I recently developed is new Drinfeld-Manin solutions of Yang-Baxter equations.
Introduction

The subject requires several fields:

▶ Operator Algebras;
▶ Semigroup Theory;
▶ Dynamical Systems;
▶ Representation Theory;
▶ Geometric Group Theory: Buildings and Thompson’s groups.

A. Vdovina
Newcastle University

Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;
- Dynamical Systems;
- Representation Theory;
- Geometric Group Theory: Buildings and Thompson’s groups.
- "On Jones’ connections between subfactors, conformal field theory, Thompson’s groups and knots" by Brothier.
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;
- Dynamical Systems;
- Representation Theory;
- Geometric Group Theory: Buildings and Thompson’s groups.

"On Jones’ connections between subfactors, conformal field theory, Thompson’s groups and knots" by Brothier.

- We discuss higher-dimensional generalizations of Thompson groups and relevant C*-algebras.
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;
- Dynamical Systems;
- Representation Theory;
- Geometric Group Theory: Buildings and Thompson’s groups.
- ”On Jones’ connections between subfactors, conformal field theory, Thompson’s groups and knots” by Brothier.
- We discuss higher-dimensional generalizations of Thompson groups and relevant C*-algebras.
- Difficulties: higher dimensions require counter-intuitive geometry of buildings.
Introduction

The subject requires several fields:

- Operator Algebras;
- Semigroup Theory;
- Dynamical Systems;
- Representation Theory;
- Geometric Group Theory: Buildings and Thompson’s groups.
- "On Jones’ connections between subfactors, conformal field theory, Thompson’s groups and knots” by Brothier.
- We discuss higher-dimensional generalizations of Thompson groups and relevant C*-algebras.
- Difficulties: higher dimensions require counter-intuitive geometry of buildings.
- Another application of buildings I recently developed is new Drinfeld-Manin solutions of Yang-Baxter equations.
Introduction

Thompson’s groups can be realised in many ways:

▶ in terms of operations on rooted binary trees;

Many generalizations, for example, Brin-Thompson groups, many approaches, but very hard to distinguish:
work of C. Bleak, B. Nucinkis, and their collaborators.

In this talk:
Introduction

Thompson’s groups can be realised in many ways:

- in terms of operations on rooted binary trees;
- as subgroups of the piecewise linear homeomorphisms of the unit interval;

Many generalizations, for example, Brin-Thompson groups, many approaches, but very hard to distinguish: work of C. Bleak, B. Nucinkis, and their collaborators.

In this talk:
Introduction

Thompson’s groups can be realised in many ways:

▶ in terms of operations on rooted binary trees;
▶ as subgroups of the piecewise linear homeomorphisms of the unit interval;
▶ in terms of prefix codes, which are sets of words with certain properties.

Many generalizations, for example, Brin-Thompson groups, many approaches, but very hard to distinguish: work of C.Bleak, B.Nucinkis, and their collaborators.

In this talk:
Introduction

Thompson’s groups can be realised in many ways:

- in terms of operations on rooted binary trees;
- as subgroups of the piecewise linear homeomorphisms of the unit interval;
- in terms of prefix codes, which are sets of words with certain properties.

Many generalizations, for example, Brin-Thompson groups, many approaches, but very hard to distinguish: work of C.Bleak, B.Nucinkis, and their collaborators.

In this talk:

- Very general approach to further generalizations, such that all existing ones appear as a particular case (joint work with M.Lawson, just published in Adv. in Math.).
Introduction

Thompson’s groups can be realised in many ways:

- in terms of operations on rooted binary trees;
- as subgroups of the piecewise linear homeomorphisms of the unit interval;
- in terms of prefix codes, which are sets of words with certain properties.

Many generalizations, for example, Brin-Thompson groups, many approaches, but very hard to distinguish: work of C.Bleak, B.Nucinkis, and their collaborators.

In this talk:

- Very general approach to further generalizations, such that all existing ones appear as a particular case (joint work with M.Lawson, just published in Adv. in Math.);
- C*-algebraic invariants (K-theory) to distinguish the groups.
We begin with the abstract characterization of C*-algebras given in the 1943 paper by Gelfand and Naimark.

Definition

A C*-algebra, B, is a Banach algebra over the field of complex numbers, together with a map $x \mapsto x^*$ for $x \in B$ with the following properties:

1. It is an involution, for every $x \in B$:

 $x^{**} = (x^*)^* = x$

2. For all $x, y \in B$:

 $(x + y)^* = x^* + y^*$

3. For every complex number λ and every $x \in B$:

 $(\lambda x)^* = \lambda^* x^*$

4. For all $x \in B$:

 $\|x^* x\| = \|x\| \|x^*\|$
We begin with the abstract characterization of C*-algebras given in the 1943 paper by Gelfand and Naimark.

Definition

A C*-algebra, B, is a Banach algebra over the field of complex numbers, together with a map $x \mapsto x^*$ for $x \in B$ with the following properties:

- It is an involution, for every $x \in B$: $x^{**} = (x^*)^* = x$

A. Vdovina
Newcastle University

Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.
We begin with the abstract characterization of C^*-algebras given in the 1943 paper by Gelfand and Naimark.

Definition

A C^*-algebra, B, is a Banach algebra over the field of complex numbers, together with a map $x \mapsto x^*$ for $x \in B$ with the following properties:

- It is an involution, for every $x \in B$: $x^{**} = (x^*)^* = x$
- For all $x, y \in B$: $(x + y)^* = x^* + y^*$

 $(xy)^* = y^* x^*$
C*-algebras

We begin with the abstract characterization of C*-algebras given in the 1943 paper by Gelfand and Naimark.

Definition

A C*-algebra, B, is a Banach algebra over the field of complex numbers, together with a map $x \mapsto x^*$ for $x \in B$ with the following properties:

- It is an involution, for every $x \in B$: $x^{**} = (x^*)^* = x$
- For all $x, y \in B$: $(x + y)^* = x^* + y^*$
 $(xy)^* = y^* x^*$
- For every complex number λ and every $x \in B$: $(\lambda x)^* = \overline{\lambda} x^*$.
We begin with the abstract characterization of C*-algebras given in the 1943 paper by Gelfand and Naimark.

Definition

A C*-algebra, B, is a Banach algebra over the field of complex numbers, together with a map $x \mapsto x^*$ for $x \in B$ with the following properties:

- It is an involution, for every $x \in B$: $x^{**} = (x^*)^* = x$
- For all $x, y \in B$: $(x + y)^* = x^* + y^*$
 $(xy)^* = y^*x^*$
- For every complex number λ and every $x \in B$: $(\lambda x)^* = \overline{\lambda}x^*$.
- For all $x \in B$: $\|x^*x\| = \|x\|\|x^*\|$.

Prefix codes

The most common definition of the Thompson group by the piecewise linear homeomorphisms of the unit interval does not extend well to higher dimensions.
Prefix Codes

- Let $A = \{a_1, ..., a_k\}$ and $u, v \in A^*$; u is a prefix of v if $v = uw$ for some $w \in A^*$.

A. Vdovina
Newcastle University

Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.
Prefix Codes

- Let $A = \{a_1, ..., a_k\}$ and $u, v \in A^*$; u is a prefix of v if $v = uw$ for some $w \in A^*$.
- Prefix code P over A: $P \subseteq A$ and no element of P is a prefix of any other.
Prefix Codes

- Let $A = \{a_1, ..., a_k\}$ and $u, v \in A^*$; u is a prefix of v if $v = uw$ for some $w \in A^*$.
- Prefix code P over A: $P \subseteq A$ and no element of P is a prefix of any other.
- P is a maximal prefix code over A if it is not a proper subset of any other prefix code over A.

A. Vdovina
Newcastle University
Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.
Prefix Codes

- Let $A = \{a_1, ..., a_k\}$ and $u, v \in A^*$; u is a prefix of v if $v = uw$ for some $w \in A^*$.
- Prefix code P over A: $P \subseteq A$ and no element of P is a prefix of any other.
- P is a maximal prefix code over A if it is not a proper subset of any other prefix code over A.
- If R a right ideal of A^*, then $R = PA^*$ for a uniquely determined prefix code P; P is the unique minimal set of generators for R.
Prefix Codes

- Let \(A = \{a_1, \ldots, a_k\} \) and \(u, v \in A^* \); \(u \) is a prefix of \(v \) if \(v = uw \) for some \(w \in A^* \).
- Prefix code \(P \) over \(A \): \(P \subseteq A \) and no element of \(P \) is a prefix of any other.
- \(P \) is a maximal prefix code over \(A \) if it is not a proper subset of any other prefix code over \(A \).
- If \(R \) a right ideal of \(A^* \), then \(R = PA^* \) for a uniquely determined prefix code \(P \); \(P \) is the unique minimal set of generators for \(R \).
- \(R \) is essential if \(R \cap I \neq \emptyset \) for every right ideal \(I \) of \(A^* \).
Prefix Codes

- Let $A = \{a_1, ..., a_k\}$ and $u, v \in A^*$; u is a prefix of v if $v = uw$ for some $w \in A^*$.
- Prefix code P over A: $P \subseteq A$ and no element of P is a prefix of any other.
- P is a maximal prefix code over A if it is not a proper subset of any other prefix code over A.
- If R a right ideal of A^*, then $R = PA^*$ for a uniquely determined prefix code P; P is the unique minimal set of generators for R.
- R is essential if $R \cap I \neq \emptyset$ for every right ideal I of A^*
- $R = PA^*$ is essential if and only if P is a maximal prefix code.
Prefix Codes

- Let R_1, R_2 be right ideals of A^*. A bijection $\phi : R_1 \to R_2$ is an A^*-isomorphism if $\phi(uv) = \phi(u)v$ for all $u \in R_1, v \in A^*$.
Prefix Codes

- Let R_1, R_2 be right ideals of A^*. A bijection $\phi : R_1 \to R_2$ is an A^*-isomorphism if $\phi(uv) = \phi(u)v$ for all $u \in R_1, v \in A^*$.
- An A^*-isomorphism $\phi : P_1A^* \to P_2A^*$ (P_1, P_2 prefix codes) restricts to a bijection from P_1 to P_2.
Prefix Codes

- Let R_1, R_2 be right ideals of A^*. A bijection $\phi : R_1 \to R_2$ is an A^*-isomorphism if $\phi(uv) = \phi(u)v$ for all $u \in R_1, v \in A^*$.
- An A^*-isomorphism $\phi : P_1A^* \to P_2A^*$ (P_1, P_2 prefix codes) restricts to a bijection from P_1 to P_2.
- An extension of an A^*-isomorphism $\phi : R_1 \to R_2$ is an A^*-isomorphism $\psi : I_1 \to I_2$ of right ideals I_1, I_2 where $R_i \subseteq I_i (i = 1, 2)$ and $\psi(u) = \phi(u)$ for all $u \in R_1$. ϕ is maximal if it has no proper extension.
Prefix Codes

- Let R_1, R_2 be right ideals of A^*. A bijection $\phi : R_1 \rightarrow R_2$ is an A^*-isomorphism if $\phi(uv) = \phi(u)v$ for all $u \in R_1, v \in A^*$.
- An A^*-isomorphism $\phi : P_1A^* \rightarrow P_2A^*$ (P_1, P_2 prefix codes) restricts to a bijection from P_1 to P_2.
- An extension of an A^*-isomorphism $\phi : R_1 \rightarrow R_2$ is an A^*-isomorphism $\psi : I_1 \rightarrow I_2$ of right ideals I_1, I_2 where $R_i \subseteq I_i (i = 1, 2)$ and $\psi(u) = \phi(u)$ for all $u \in R_1$. ϕ is maximal if it has no proper extension.
- An isomorphism ϕ between essential right ideals of A^* has a unique maximal extension, $\text{max}(\phi)$.
Prefix Codes

- Let R_1, R_2 be right ideals of A^*. A bijection $\phi : R_1 \rightarrow R_2$ is an A^*-isomorphism if $\phi(uv) = \phi(u)v$ for all $u \in R_1, v \in A^*$.
- An A^*-isomorphism $\phi : P_1A^* \rightarrow P_2A^*$ (P_1, P_2 prefix codes) restricts to a bijection from P_1 to P_2.
- An extension of an A^*-isomorphism $\phi : R_1 \rightarrow R_2$ is an A^*-isomorphism $\psi : I_1 \rightarrow I_2$ of right ideals I_1, I_2 where $R_i \subseteq I_i (i = 1, 2)$ and $\psi(u) = \phi(u)$ for all $u \in R_1$. ϕ is maximal if it has no proper extension.
- An isomorphism ϕ between essential right ideals of A^* has a unique maximal extension, $\text{max}(\phi)$.

Definition

The Thompson group $V_{k,1}$ is the group consisting of maximal isomorphisms between finitely generated essential right ideals of A^* with multiplication: $\phi \psi = \text{max}(\phi \circ \psi)$, where ψ is composition of partial functions.
Connections of Thompson’s groups and C*-algebras

- Birget (2004) Representations of Thompson’s groups in C*-algebras using words, aware of trees, but 1D situation does not require geometric methods.
Connections of Thompson’s groups and C*-algebras

- Birget (2004) Representations of Thompson’s groups in C*-algebras using words, aware of trees, but 1D situation does not require geometric methods.

- V.Jones and his school: representations of Thompson’s groups in C*-algebras are used in theoretical physics.
Connections of Thompson’s groups and C*-algebras

- Birget (2004) Representations of Thompson’s groups in C*-algebras using words, aware of trees, but 1D situation does not require geometric methods.
- V. Jones and his school: representations of Thompson’s groups in C*-algebras are used in theoretical physics.
- My goal: higher D generalizations and their applications to distinguish groups.
Buildings and polyhedra

Buildings consist of **chambers** and **apartments**.

Definition
A n-dimensional euclidean (hyperbolic) building is a n-dimensional complex X such that:

- X is a union of tessellated nD-spaces (apartments)
- For any two chambers there is an apartment containing both of them
- If two apartments F_1 and F_2 have non-trivial intersection, then there is an isomorphism from F_1 to F_2, fixing $F_1 \cap F_2$ pointwise.
Buildings and polyhedra

Buildings consist of **chambers** and **apartments**.

Definition
A n-dimensional euclidean (hyperbolic) building is a n-dimensional complex X such that:

- X is a union of tessellated nD-spaces (apartments)
Buildings and polyhedra

Buildings consist of chambers and apartments.

Definition
A n-dimensional euclidean (hyperbolic) building is a n-dimensional complex X such that:

- X is a union of tessellated nD-spaces (apartments)
- for any two chambers there is an apartment containing both of them
Buildings and polyhedra

Buildings consist of **chambers** and **apartments**.

Definition

A n-dimensional euclidean (hyperbolic) building is a n-dimensional complex X such that:

- X is a union of tessellated nD-spaces (apartments)
- for any two chambers there is an apartment containing both of them
- if two apartments F_1 and F_2 have non-trivial intersection, then there is an isomorphism from F_1 to F_2, fixing $F_1 \cap F_2$ pointwise.
One-dimensional buildings: Cayley graphs of free groups

The four-valent tree is the universal cover of the wedge of two circles. Geometric interpretation of prefix codes: finite sub-trees partitioning the boundary of the infinite tree.
Example of an apartment: M.C. Escher - Circle Limit III
Polyhedra and links

Definition
A polyhedron is a two-dimensional complex which is obtained from several decorated p-gons by identification of corresponding sides.
Polyhedra and links

Definition
Take a sphere of a small radius at a point of the polyhedron. The intersection of the sphere with the polyhedron is a graph, which is called the *link* at this point.

\[AB = BC = CA = \frac{\pi}{3} \]
We consider \textit{thick} polyhedra, which means that each edge is contained in at least three polygons.
Example of a link

This graph has *diameter* (the maximal distance between two vertices) three and *girth* (the length of the shortest cycle) six.
Polyhedra and links

Theorem (Ballmann, Brin 1994)

Let X be a compact two-dimensional thick polyhedron. If all links are graphs of diameter m and girth $2m$, then the universal cover of the polyhedron is a two-dimensional building.

A polygonal presentation is a set of words satisfying certain combinatorial properties (AV, 2000).

Later work: many series of infinite families in arbitrary dimensions.
Polyhedra and links

Theorem (Ballmann, Brin 1994)

Let X be a compact two-dimensional thick polyhedron. If all links are graphs of diameter m and girth $2m$, then the universal cover of the polyhedron is a two-dimensional building.

A polygonal presentation is a set of words satisfying certain combinatorial properties (AV, 2000).

Theorem (AV,2002)

A polyhedron with given links can be constructed explicitly using a polygonal presentation. Any connected bipartite graph can be realized as a link of every vertex a 2-dimensional polyhedron with $2k$-gonal faces.

Later work: many series of infinite families in arbitrary dimensions.
Definition
Let \mathcal{B} be a n-dimensional Euclidean building equipped with a cocompact action of a group G, nD words are rectangular subsets of apartments in \mathcal{B}, decorated by the action of G.

![Diagram of a building](image-url)
Definition
Let \mathcal{B} be a n-dimensional Euclidean building equipped with a cocompact action of a group G, nD words are rectangular subsets of apartments in \mathcal{B}, decorated by the action of G.

Definition
The boundary Ω of \mathcal{B} is isomorphic to equivalence classes of sectors in \mathcal{B}.
Definition
Let B be a n-dimensional Euclidean building equipped with a cocompact action of a group G, nD words are rectangular subsets of apartments in B, decorated by the action of G.

Definition
The boundary Ω of B is isomorphic to equivalence classes of sectors in B.

Definition
nD (maximal) prefix code is a subcomplex of a building, which corresponds to a partition of the boundary into disjoint sets.
Cubes and Products of Trees

The four squares define a group G which belongs to a family constructed by J.Stix and AV

$$G = \langle a_1, a_2, b_1, b_2 \mid a_2b_1a_2b_2^{-1}, a_1b_2^{-1}a_2^{-1}b_2^{-1}, a_1b_1a_1b_2, a_1b_1^{-1}a_2b_1^{-1} \rangle.$$

Let $S = \{a_1, a_2, b_1, b_2\}$. Then $\text{Cay}(G, S)$ is a one-skeleton of a thick Euclidean building (product of two trees) with the following properties:

- lots of (equilateral) squares (chambers)
Cubes and Products of Trees

The four squares define a group G which belongs to a family constructed by J.Stix and AV

$$G = \langle a_1, a_2, b_1, b_2 \mid a_2 b_1 a_2 b_2^{-1}, a_1 b_2^{-1} a_2^{-1} b_2^{-1}, a_1 b_1 a_1 b_2, a_1 b_1^{-1} a_2 b_1^{-1} \rangle.$$

Let $S = \{a_1, a_2, b_1, b_2\}$. Then $\text{Cay}(G, S)$ is a one-skeleton of a thick Euclidean building (product of two trees) with the following properties:

- lots of (equilateral) squares (chambers)
- every vertex has degree 8
Cubes and Products of Trees

The four squares define a group G which belongs to a family constructed by J.Stix and AV

$$G = \langle a_1, a_2, b_1, b_2 \mid a_2 b_1 a_2 b_2^{-1}, a_1 b_2^{-1} a_2^{-1} b_2^{-1}, a_1 b_1 a_1 b_2, a_1 b_1^{-1} a_2 b_1^{-1} \rangle.$$

Let $S = \{a_1, a_2, b_1, b_2\}$. Then $\text{Cay}(G, S)$ is a one-skeleton of a thick Euclidean building (product of two trees) with the following properties:

- lots of (equilateral) squares (chambers)
- every vertex has degree 8
- 4 triangles meet at every edge
Cubes and Products of Trees

The four squares define a group G which belongs to a family constructed by J.Stix and AV

$$G = \langle a_1, a_2, b_1, b_2 \mid a_2 b_1 a_2 b_2^{-1}, a_1 b_2^{-1} a_2^{-1} b_2^{-1}, a_1 b_1 a_1 b_2, a_1 b_1^{-1} a_2 b_1^{-1} \rangle.$$

Let $S = \{a_1, a_2, b_1, b_2\}$. Then $\text{Cay}(G, S)$ is a one-skeleton of a thick Euclidean building (product of two trees) with the following properties:

- lots of (equilateral) squares (chambers)
- every vertex has degree 8
- 4 triangles meet at every edge
- any two squares Δ_1, Δ_2 lie in a common plane (apartment) tessellated by equilateral squares
Cubes and Products of Trees

The four squares define a group G which belongs to a family constructed by J.Stix and AV

$$G = \langle a_1, a_2, b_1, b_2 \mid a_2 b_1 a_2 b_2^{-1}, a_1 b_2^{-1} a_2^{-1} b_2^{-1}, a_1 b_1 a_1 b_2, a_1 b_1^{-1} a_2 b_1^{-1} \rangle.$$

Let $S = \{a_1, a_2, b_1, b_2\}$. Then $\text{Cay}(G, S)$ is a one-skeleton of a thick Euclidean building (product of two trees) with the following properties:

- lots of (equilateral) squares (chambers)
- every vertex has degree 8
- 4 triangles meet at every edge
- any two squares Δ_1, Δ_2 lie in a common plane (apartment) tessellated by equilateral squares
- link of every vertex is the complete bipartite graph on eight vertices
Cubes and Products of Trees

The four squares define a group G which belongs to a family constructed by J.Stix and AV

$$G = \langle a_1, a_2, b_1, b_2 \mid a_2 b_1 a_2 b_2^{-1}, a_1 b_2^{-1} a_2^{-1} b_2^{-1}, a_1 b_1 a_1 b_2, a_1 b_1^{-1} a_2 b_1^{-1} \rangle.$$

Let $S = \{a_1, a_2, b_1, b_2\}$. Then $Cay(G, S)$ is a one-skeleton of a thick Euclidean building (product of two trees) with the following properties:

- lots of (equilateral) squares (chambers)
- every vertex has degree 8
- 4 triangles meet at every edge
- any two squares Δ_1, Δ_2 lie in a common plane (apartment) tessellated by equilateral squares
- link of every vertex is the complete bipartite graph on eight vertices
- G is an arithmetic lattice in $PGL(2, \mathbb{F}_3(t)) \times PGL(2, \mathbb{F}_3(t))$
Cubes and Products of Trees

1 \ a_1 b_1 a_1 b_2
2 \ a_1 b_1^1 a_2 b_1^1
3 \ a_1 b_2^1 a_2^1 b_2^1
4 \ a_2 b_1 a_2 b_2^1

A. Vdovina
Newcastle University
Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.
3D example

Quaternions can be used to get a cube complex of any dimension, for any set of odd primes (RSV 2018).

\[a_1 = 1 + j + k, \quad a_2 = 1 + j - k, \quad a_3 = 1 - j - k, \quad a_4 = 1 - j + k, \]
\[b_1 = 1 + 2i, \quad b_2 = 1 + 2j, \quad b_3 = 1 + 2k, \quad b_4 = 1 - 2i, \quad b_5 = 1 - 2j, \quad b_6 = 1 - 2k, \]
\[c_1 = 1 + 2i + j + k, \quad c_2 = 1 - 2i + j + k, \quad c_3 = 1 + 2i - j + k, \quad c_4 = 1 + 2i + j - k, \]
\[c_5 = 1 - 2i - j - k, \quad c_6 = 1 + 2i - j - k, \quad c_7 = 1 - 2i + j - k, \quad c_8 = 1 - 2i - j + k. \]

With this notation we have \(a_i^{-1} = a_{i+2}, \) \(b_i^{-1} = b_{i+3}, \) and \(c_i^{-1} = c_{i+4}, \) and using these abbreviations we find the explicit presentation.
3D example

\[\Gamma_{\{3,5,7\}} = \left< \begin{array}{c} a_1, a_2 \\ b_1, b_2, b_3 \\ c_1, c_2, c_3, c_4 \end{array} \right| \begin{array}{c} a_1b_1a_4b_2, a_1b_2a_4b_4, a_1b_3a_2b_1, \\ a_1b_4a_2b_3, a_1b_5a_1b_6, a_2b_2a_2b_6 \\ a_1c_1a_2c_8, a_1c_2a_4c_4, a_1c_3a_2c_2, a_1c_4a_3c_3, \\ a_1c_5a_1c_6, a_1c_7a_4c_1, a_2c_1a_4c_6, a_2c_4a_2c_7 \\ b_1c_1b_5c_4, b_1c_2b_1c_5, b_1c_3b_6c_1, \\ b_1c_4b_3c_6, b_1c_6b_2c_3, b_1c_7b_1c_8, \\ b_2c_1b_3c_2, b_2c_2b_5c_5, b_2c_4b_5c_3, \\ b_2c_7b_6c_4, b_3c_1b_6c_6, b_3c_4b_6c_3 \end{array} \right> \]
Introduction C*-algebras Buildings Higher dimensional words Graph C*-algebras nD polyhedral C*-algebras Further directions of research

Graph C*-algebras

Let $\Gamma = \mathbb{Z} \ast \mathbb{Z}$, the free group on two generators a and b.

A. Vdovina
Newcastle University

Buildings, C*-algebras and new higher-dimensional analogues of the Thompson groups.
Graph C^*-algebras

- Let $\Gamma = \mathbb{Z} \ast \mathbb{Z}$, the free group on two generators a and b.
- The Cayley graph of Γ with respect to the generating set $\{a, b\}$, $\text{Cay}(\Gamma, \{a, b\})$, is a homogeneous tree of degree 4.
Graph C*-algebras

- Let $\Gamma = \mathbb{Z} \ast \mathbb{Z}$, the free group on two generators a and b.
- The Cayley graph of Γ with respect to the generating set $\{a, b\}$, $\text{Cay}(\Gamma, \{a, b\})$, is a homogeneous tree of degree 4.
- The vertices of the tree are elements of Γ i.e. reduced words in $S = \{a, b, a^{-1}, b^{-1}\}$.
The boundary, Ω, of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1 x_2 x_3 \ldots$, where $x_i \in S$.
Graph C*-algebras

- The boundary, \(\Omega \), of the tree can be thought of as the set of all semi-infinite reduced words \(w = x_1x_2x_3..., \) where \(x_i \in S \)
- \(\Omega \) has a natural compact (totally disconnected) topology.
Graph C*-algebras

- The boundary, Ω, of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1x_2x_3..., $ where $x_i \in S$
- Ω has a natural compact (totally disconnected) topology:
- if $x \in \Gamma$ then let $\Omega(x)$ be all semi-infinite words with the prefix x
Graph C*-algebras

- The boundary, Ω, of the tree can be thought of as the set of all semi-infinite reduced words $w = x_1x_2x_3..., \text{ where } x_i \in S$
- Ω has a natural compact (totally disconnected) topology:
- If $x \in \Gamma$ then let $\Omega(x)$ be all semi-infinite words with the prefix x
- $\Omega(x)$ is open and closed in Ω and the sets $g\Omega(x)$ and $g(\Omega \setminus \Omega(x))$, where $g \in \Gamma$ and $x \in S$, form a base for the topology of Ω.
Graph C^*-algebras

Left multiplication by $x \in \Gamma$ induces an action α of Γ on $C(\Omega)$ by

$$\alpha(x)f(w) = f(x^{-1}w).$$

$C(\Omega) \rtimes \Gamma$ is generated by $C(\Omega)$ and the image of a unitary representation π of Γ such that $\alpha(g)f = \pi(g)f\pi^*(g)$ for $f \in C(\Omega)$ and $g \in \Gamma$ and every such C^*-algebra is a quotient of $C(\Omega) \rtimes \Gamma$.
Graph C*-algebras

For $x \in \Gamma$, let p_x denote the projection defined by the characteristic function $1_{\Omega(x)} \in C(\Omega)$.

For $g \in \Gamma$, we have

$$gp_x g^{-1} = \alpha(g) 1_{\Omega(x)} = 1_{g\Omega(x)}$$

and therefore for each $x \in S$,

$$p_x + xp_{x^{-1}}x^{-1} = 1.$$
Partial isometries

For $x \in S$ we define a partial isometry $s_x \in C(\Omega) \rtimes \Gamma$ by

$$s_x = x(1 - p_{x^{-1}}).$$

Then,

$$s_x s_x^* = x(1 - p_x) x^{-1} = p_x$$

and

$$s_x^* s_x = 1 - p_{x^{-1}} = \sum_{y \neq x^{-1}} s_y s_y^*.$$

These relations show that the partial isometries s_x, for $x \in S$, generate a C*-algebra \mathcal{O}_A.
Transition matrix

Where

\[
A = \begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{pmatrix}
\]

relative to \(\{a, a^{-1}, b, b^{-1}\} \times \{a, a^{-1}, b, b^{-1}\} \).
Polyhedral C*-algebras

- Buildings (instead of trees);
Polyhedral C*-algebras

- Buildings (instead of trees);
- Boundary Ω is defined by an equivalence relation on sectors (just as in the case of trees it is given by an equivalence relation on words);
Polyhedral C*-algebras

- Buildings (instead of trees);
- Boundary Ω is defined by an equivalence relation on sectors (just as in the case of trees it is given by an equivalence relation on words);
- Γ is a fundamental group of the polyhedron P defined earlier.
nD polyhedral algebras

The following definition is a natural generalization of the Jones’ Pythagorean algebra.

Definition

An nD polyhedral algebra is the universal C^*-algebra generated by partial isometries $S_{u,v}$, where u and v are words in the given nD alphabet, with $t(u) = t(v)$, satisfying the relations

\[
S_{u,v}^* S_{v,u} = S_{u,v}, \quad S_{u,v} S_{v,w} = S_{u,w},
\]

\[
S_{u,v} = \sum S_{uw,vw}, \quad S_{u,u} S_{v,v} = 0, \quad \forall u \neq v
\]

(1)

(The sum here is over n-dimensional words w with $o(w) = t(u) = t(v)$ and with shape $\sigma(w) = e_j$, for $j = 1, \ldots, n$, where e_j is the j-th standard basis vector in \mathbb{Z}^n.)

We note, that nD words in an nD-alphabet need to satisfy certain compatibility conditions, these alphabets turn out to give new solutions to Yang-Baxter equations.
Example of a letter of an nD-alphabet

The set X is taken to be the set of labels on the edges of the cubes, the bijection R is induced by squares of the complex, namely is $x_ix_jx_kx_l$ is a label of a square, then $R(x_i,x_j) = (x_i^{-1},x_j^{-1})$. In the $(3,5,7)$ example the set X has 18 elements, so the R-matrix is of size 153×153.

$$R^{12}R^{23}R^{12}(a_1,b_1,c_2) = R^{12}R^{23}(b_2^{-1},a_2,c_2) = R^{12}(b_2^{-1},c_3^{-1},a_1^{-1}) = (c_4,b_2^{-1},a_1^{-1}).$$

$$R^{23}R^{12}R^{23}(a_1,b_1,c_2) = (c_4,b_2^{-1},a_1^{-1}).$$
Theorem (J. Konter, AV)

The order of the class $[1]$ of the identity element 1 of $C(\Omega) \rtimes \Gamma$ in $K_0(C(\Omega) \rtimes \Gamma)$ is $q - 1$, where Γ is a group acting on a triangular Euclidean building with three orbits and $q = 2^{2l-1}, l \in \mathbb{Z}$.
Further directions of research

- Unitary representations of Higher D Thompson groups;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
- Higher-dimensional expanders;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
- Higher-dimensional expanders;
- Groups acting on higher-dimensional buildings;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
- Higher-dimensional expanders;
- Groups acting on higher-dimensional buildings;
- Higher-dimensional graph algebras;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
- Higher-dimensional expanders;
- Groups acting on higher-dimensional buildings;
- Higher-dimensional graph algebras;
- Representations of groups acting on buildings as complex reflection groups;
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
- Higher-dimensional expanders;
- Groups acting on higher-dimensional buildings;
- Higher-dimensional graph algebras;
- Representations of groups acting on buildings as complex reflection groups;
- Further applications of harmonic maps to study of buildings and higher-dimensional complexes;

A. Vdovina
Newcastle University

Buildings, C^*-algebras and new higher-dimensional analogues of the Thompson groups.
Further directions of research

- Unitary representations of Higher D Thompson groups;
- Set-theoretical solutions of Yang-Baxter equations coming from cube complexes;
- K-theory of nD dimensional polyhedral algebras for new cases of Baum-Connes conjecture;
- Simple higher-dimensional CAT(0) groups?
- Higher-dimensional expanders;
- Groups acting on higher-dimensional buildings;
- Higher-dimensional graph algebras;
- Representations of groups acting on buildings as complex reflection groups;
- Further applications of harmonic maps to study of buildings and higher-dimensional complexes;
- New applications of polygonal presentations to algebraic geometry: Beauville surfaces and fake quadrics.
Relevant references