Integrability from braided tensor categories

Paul Fendley
All Souls College, University of Oxford

Paper within a month?!?

Closely related work on lattice topological defects with David Aasen (Station Q) and Roger Mong (Pittsburgh); Ising case in arXiv:1601.07185, the general story on arXiv very soon!
Many interesting two-dimensional statistical mechanical models are conveniently described in terms of knot and link invariants.

This observation was made in the ’80s, but mostly neglected since.

The excitement about topological quantum computation ignited condensed-matter physicists’ interest in knot invariants, and the time is ripe for (re)applying them to statistical mechanics.

The key mathematics I exploit is that a tensor category gives a consistent set of rules that allow graphs to be manipulated without changing their evaluation.

The moral of the story is: draw pictures!
Outline

1. Fusion categories

2. Defining lattice models using fusion categories
 - Geometric (e.g. counting loops)
 - Spins/heights (e.g. Ising/Potts/hard squares/RSOS)
 - Quantum Hamiltonians (e.g. spin/anyon chains)

3. Integrable lattice models via Yang-Baxter

4. Braided tensor categories

5. Baxterization via fractional-spin conserved currents

Will give a simple formula for the Boltzmann weights in terms of category data that guarantees the existence of conserved currents. In all known examples, these weights also satisfy the Yang-Baxter equation.
1. Fusion categories

Associates a topological invariant to a fusion diagram, a labeled planar graph built from trivalent vertices.

The edges are labeled by the (finite number of) objects a, b, c, \ldots

The objects satisfy a fusion algebra

$$a \otimes b = \bigoplus_{c} N_{ab}^{c} c$$

For each $N_{ab}^{c} \neq 0$, a trivalent vertex

For example, the tensor products of representations of (the quantum deformation of) $SO(n)$ form a fusion algebra. Identity rep is equivalent to no line.
Evaluating the fusion diagram

is done using data from a category \mathcal{C}:

$$F \text{ symbols: } F_{tt'} \begin{bmatrix} r & s \\ a & b \end{bmatrix}$$

bubble removal: $a \rightarrow r \rightarrow s \rightarrow b = \delta_{ab} \sqrt{\frac{d_r d_s}{d_a}}$

Setting $a=b=0$ allows a closed loop to be removed completely: $\circ = d_r$

F move:

$$= \sum_{t' \in \mathcal{C}} F_{tt'} \begin{bmatrix} r & s \\ a & b \end{bmatrix}$$

F moves preserve the evaluations. Doing them and bubble removal repeatedly express a fusion diagram as a sum over closed loops, and hence a number.
Lots of identities and consistency relations

A famous consistency relation is the **pentagon equation**, which is of the form

\[
F \cdot F = \sum F \cdot F \cdot F \cdot F
\]

I view the category and its data as **input** to the manipulations.
2. Lattice models from fusion categories

The story long predates fusion categories:

Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem

BY H. N. V. TEMPERLEY
Department of Applied Mathematics, University College, Swansea, Wales, U.K.

AND E. H. LIEB†
Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Mass., U.S.A.

A transfer-matrix approach is introduced to calculate the ‘Whitney polynomial’ of a planar lattice, which is a generalization of the ‘percolation’ and ‘colouring’ problems. This new approach turns out to be equivalent to calculating eigenvalues and traces of Heisenberg type operators on an auxiliary lattice which are very closely related to problems of ‘ice’ or ‘hydrogen-bond’ type that have been solved analytically by Lieb (1967a to d). Solutions for

Aka Tutte polynomial
Aka Potts model partition function

aka six-vertex model/XXZ chain
The completely packed loop/random-cluster/Q-state Potts models

Every edge of the square lattice is covered by non-crossing loops; the only degrees of freedom are how they avoid at each vertex.

$$d\#\text{loops} \times v\#\text{vertical avoidance} \times h\#\text{horizontal avoidance}$$

Partition function of form

$$Z = \sum_{\text{loops}} \text{(topological weight)} \times \text{(local weights)}$$
The Boltzmann weights, pictorially

Picture loop model Boltzmann weights on the square lattice as

\[u = v(u) + h(u) \]

Local weights are written in terms of "spectral parameter" \(u \)

\[Z = \text{eval} \left(\begin{array}{c}
\begin{array}{c}
\text{loop configurations}
\end{array}
\end{array} \right) \]

where \(\text{eval} \) means to expand out each vertex to get loops with the appropriate local weights, then sum over all loop configurations with weight \(d \) per loop.

\[Z = \sum_{\text{loop configurations}} d^{\#\text{loops}} v^{\#} h^{\#} \]
Loops and fusion categories

This loop model can be written in terms of the fusion category $SU(2)_k$

The $k+1$ objects are labelled $0, \frac{1}{2}, 1, \ldots, \frac{k}{2}$

They obey a truncated version of the fusion rules of the representations of $SL(2)$

\[
\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1
\]

The lines making up the loops are labeled by the object $\frac{1}{2}$

When two lines meet in the loop model, they avoid:

When two lines meet in the fusion category model, they fuse:

Fusing to identity 0

or 1
\[F \text{ moves give two linear relations among the four diagrams:} \]

\[
\begin{align*}
\text{Diagram 1:} & \quad = \frac{1}{d} \quad \text{Diagram 2:} \\
\text{Diagram 3:} & \quad = \frac{\sqrt{d_1}}{d} \\
\text{Diagram 4:} & \quad = \frac{d_2}{d} \\
\end{align*}
\]

\[
\begin{align*}
&d = d_1^2 = 2 \cos \left(\frac{\pi}{k+2} \right) \\
&d_1 = d^2 - 1 = \frac{\sin \left(\frac{3\pi}{k+2} \right)}{\sin \left(\frac{\pi}{k+2} \right)}
\end{align*}
\]

Can rewrite degrees of freedom in any fashion desired.

Although it looks like I’ve made life more complicated, multiple advantages:

- Can define geometric models for any category: \[Z = \sum_{\mathcal{F}} \text{eval}[\mathcal{F}] \times \text{local weights} \]

- Allows local models to be rewritten in terms of topological data

- Derive new properties, even for ancient models like the Ising and Potts models
Topological structure of local models

``Height'' degrees of freedom live on the graph dual to the fusion diagram

Heights are objects in the category

Through the miracle of shadow world, can define local Boltzmann weights for the heights so that the partition function is the same as the corresponding geometric model!

Temperley-Lieb, Baxter-Kelland-Wu, Pasquier, Jones, Reshetikhin, Turaev-Viro, Barrett-Westbury ...

Using shadow world, Ising, Potts, RSOS, eight-vertex and many other local models can all be written in terms of topological data from a fusion category, e.g.
Lattice topological defects

• Using a fusion category gives a general and systematic way of finding them.

• Topologically invariant junctions of defect lines

• Many generalizations of Kramers-Wannier duality, given explicitly and exactly

• Exact lattice derivation of g-factors for conformal boundary conditions

• By doing Dehn twists on the lattice, get momentum quantization conditions that yield exact conformal spins of operators in the continuum limit

• Derive exact degeneracies of non-symmetry related ground states and low-lying kink/breather states in gapped spin chains.

Aasen, Fendley and Mong
3. Integrability from the Yang-Baxter equation

Sums of products of three Boltzmann weights obey

\[u \cdot u' \cdot (u+u') = (u+u') \cdot u \cdot u' \]

Note \(u \) and \(u' \) have changed places: use to construct commuting transfer matrices and the resulting local conserved currents needed for integrability.

Heights:

need to sum over central height
The YBE for completely packed loops

The YBE gives functional equations for the Boltzmann weights.

For the loop model above, get for the local weight ratio \(w(u) = \frac{h(u)}{v(u)} \)

\[
w(u)w(u + u')w(u') + d w(u)w(u') + w(u) + w(u') - w(u + u') = 0
\]

Parametrize the weight per loop by \(d = q + q^{-1} \). Then the solution is

\[
w(u) = \frac{q^{-1}e^{iu} - qe^{-iu}}{e^{iu} - e^{-iu}}
\]

Using shadow world gives local Boltzmann weights for the Andrews-Baxter-Forrester height models at their integrable critical points.

How does something so simple arise from such a complicated equation?
4. Braiding

From a very lowbrow perspective, the key innovation of Jones was to show that the Temperley-Lieb algebra (the $SU(2)_k$ fusion category) can be extended to give representations of the braid group.

A knot or link invariant such as the Jones polynomial depends only on the topology of the knot. To compute, project the knot/link onto the plane:
The skein relation resolves each over/undercrossing to turn each knot/link into a sum over planar fusion diagrams.

For the Jones polynomial, loops! The Kauffman bracket:

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=2cm]{crossing1} \\
\includegraphics[width=2cm]{crossing2}
\end{array}
\end{align*}
\]

\[
= q^{\frac{1}{2}} \quad \quad - \quad q^{-\frac{1}{2}}
\]

Resolving turns a link into a sum over graphs of closed loops. To get the Jones polynomial (in \(q \)), evaluate by replacing each loop with

\[
\begin{align*}
\includegraphics[width=1cm]{loop} \\
= d = q + q^{-1}
\end{align*}
\]
To yield a topological invariant, must satisfy the Reidemeister moves:

#2:

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics{diagram1}
\end{array}
\end{array}
\]

Remove using \(d = q + q^{-1} \)

#3:

The resemblance to the YBE is obvious:
One subtlety turns out to be a feature, not a bug.

#1:

But instead:

To undo, make each link a **ribbon**, and keep track of twists. Topological invariant after multiplying by \((-q)^{\frac{3}{2}}w\), where \(w = \#(\text{signed twists}) = \text{writhe}\).
Braided tensor categories

are fusion categories with more data, the spins s_a

$$
\nu_{abc} = \pm 1
$$

$$
\Omega_a = e^{i\pi s_a}
$$

Don’t need any more data, as can use this with F move to get braiding

$$
= \sum_a \sqrt{\frac{d_a}{d_b d_c}}
$$

$$
= \sum_a \sqrt{\frac{d_a}{d_b d_c}} \frac{\Omega_b \Omega_c}{\Omega_a}
$$
Baxterizing

The initial work by Jones prompted much work finding knot and link invariants from statistical-mechanical models in the mid to late ’80s.

Jones then suggested people try the converse: to Baxterize is to start with a knot invariant and then try to generalize to a solution of the YBE and hence a lattice integrable model.

Easier said than done, since the YBE is trilinear in the Boltzmann weights.

A somewhat successful approach was to forget the pictures and exploit the representation theory of quantum-group algebras.

Jimbo; Zhang, Gould, Bracken, Delius

Their solution ends up involving very little of the quantum group. Suggests there is a better way...
5. Baxterization from fractional-spin conserved currents

• Smirnov defined non-local operators in a few lattice models that are discrete "holomorphic": they obey half the lattice Cauchy-Riemann equations.

• Examples are fermion operator in the Ising model (which obeys all the lattice C-R equations), or parafermions in the 3-state Potts model. Cardy and collaborators found many more in geometric lattice models.

• Cardy et al also had a different philosophy. They did not require a priori that the Boltzmann weights satisfy the YBE. Requiring this conserved current exist then gives a linear condition for the Boltzmann weights. Solving it gives turns out to yield a solution of the full trilinear Yang-Baxter equation. Baxterization!

• I explain how the category gives a natural and general way of defining such operators in local and geometric models and the condition they satisfy. The ensuing condition on the Boltzmann weights can be solved easily.
Recall for loops:

\[u = v(u) + h(u) \]

In general,

\[u = \sum_{\chi} A_\chi(u) \]

\[Z = \text{eval} \left(\prod_{v} A_{\chi_v}(u) \right) \]

In local models:

\[u = \sum_{\chi} A_\chi(u) \]
Defining the currents

Choose an object $\phi \in \rho \otimes \rho$ so that there is a vertex

$$\left\langle \overline{J}(w)J(z) \right\rangle = \frac{1}{Z} \text{eval}$$

Current is non-local: need braiding for string to go over intervening edges.

Independent of path except for

$$\phi \quad = \quad \Omega_{\phi}^{-1} \quad \phi$$
For loops/Temperley-Lieb/Potts/Jones, this rule is simple: the weight is zero unless the string connects two points on the same loop.

$$= 0$$

Smirnov; Riva and Cardy; Rajabpour and Cardy; Ikhlef and Cardy; Ikhlef, Fendley and Cardy; de Gier et al; Batchelor et al; Ikhlef and Weston; Chelkak, Glazman and Smirnov
QUANTUM GROUP SYMMETRIES IN TWO-DIMENSIONAL LATTICE QUANTUM FIELD THEORY

Denis BERNARD

Service de Physique Théorique de Saclay*, F-91191 Gif-sur-Yvette, France

Giovanni FELDER**

Institut für Theoretische Physik, ETH—Hönggerberg, 8093 Zürich, Switzerland

Received 2 April 1991

We present a general theory of non-local conserved currents in two-dimensional quantum field theory in the lattice approximation. They reflect quantum group symmetries. Various examples are studied.

The graphical representation of eqs. (2.7) and (2.8) is then

\[
\begin{align*}
\begin{array}{c}
a \\downarrow \\
\end{array} \\
\begin{array}{c}
\ast \\
\end{array} \\
\end{align*}
\begin{align*}
+ \begin{array}{c}
a \\downarrow \\
\end{array} \\
\begin{array}{c}
\ast \\
\end{array} \\
\end{align*}
= \begin{align*}
\begin{array}{c}
a \\downarrow \\
\ast \\
\end{array} \\
\begin{array}{c}
\ast \\
\end{array} \\
\end{align*}
+ \begin{align*}
\begin{array}{c}
a \\downarrow \\
\ast \\
\end{array} \\
\begin{array}{c}
\ast \\
\end{array} \\
\end{align*}
\end{align*}
\]
Conserved-current relation in a braided tensor category

All the data save μ and the amplitudes $A_x(u)$ are specified by the category

In all known cases, the weights solving the linear equation also solve the YBE!
Solving the conserved-current relation

Plug

\[u \]

= \[\sum_{\chi} A_{\chi}(u) \]

into each of the terms

\[\phi \]

= \[\sum_{a \in \rho \otimes \rho} F_{\rho a} \begin{bmatrix} \phi & \chi \end{bmatrix} \]

Then manipulate to a common form:

\[\phi \]

= \[\sum_{a \in \rho \otimes \rho} F_{\rho a} \begin{bmatrix} \chi & \phi \end{bmatrix} \]

\[\chi = \Omega_{\phi} \]

= \[\sum_{a} F_{\rho a} \begin{bmatrix} \phi & \chi \end{bmatrix} \]

\[\chi = \sum_{a} \frac{\Omega_{\chi}}{\Omega_{\rho}} F_{\rho a} \begin{bmatrix} \phi & \chi \end{bmatrix} \]
Solving the conserved-current relation

\[0 = \sum_{a,\chi \in \rho \otimes \rho} B_{a\chi} \overset{\chi}{\sum} a \chi \]
\[\Rightarrow B_{a\chi} = 0 \]

Find all \(F \) symbols cancel, leaving only twist factors and \(\mu \equiv e^{iu} \)

\[\frac{A_{\chi}(u)}{A_a(u)} = \frac{e^{iu}\Omega_{\chi} + \Omega_a}{\Omega_{\chi} + e^{iu}\Omega_a} \]

for all \(a, \chi, \phi \in \rho \otimes \rho \)

such that \(N^\phi_{a\chi} \neq 0 \)
\[\frac{A_{\chi}(u)}{A_a(u)} = \frac{e^{iu}\Omega_{\chi} + \Omega_a}{\Omega_\chi + e^{iu}\Omega_a} \quad \text{for all} \quad a, \chi, \phi \in \rho \otimes \rho \]

such that \(N_{a\chi}^\phi \neq 0 \)

This formula generalizes the quantum-group result of Zhang, Gould and Bracken (using Jimbo's work) to all braided tensor categories and any choice of \(\phi \).

No need for quantum-group representation theory!

A solution is not guaranteed.

Need to check that ratios are all consistent with \(N_{a\chi}^\phi \neq 0 \), and the \(\Omega_a \). Nevertheless, many many solutions exist, sometimes even more than one for a given lattice model.
Future directions

• Would be nice to prove that such weights **always** give a solution of the YBE.

• Would be nice to have a **general criterion** for when it works. For any choice of ρ is there always a ϕ defining a conserved current?

• Most resulting models are critical (trigonometric solutions of the YBE). Elliptic?

• **Relax** some of the category constraints, e.g. finite number of simple objects.

• For any fusion category, there exists a (more complicated) braided category called the **Drinfeld center**. Makes plausible very new and different solutions of the YBE. Haagerup anyone?