Fundamental bound on time signal generation

Renato Renner
joint work with Yuxiang Yang

\[\sigma_x \cdot \sigma_p = \frac{\hbar}{2} \]

\[H(X) + H(P) = \log(e \pi) \]

Two types of "clock":

- stopwatch

- ticking clock

\[t_2 - t_1 \]

\[\Rightarrow k \Delta T \Delta T' \]
Examples:
- classical pendulum clock
- optical clock

\[T_n = \alpha T_1 + \alpha T_2 + \ldots + \alpha T_n \]

\[\sigma_{\Delta T}^2 = n \sigma_{\Delta T}^2 \]

\[\sigma_{\Delta T} = \sqrt{n} \sigma_{\Delta T} \]

\[\mu = \langle \Delta T_i \rangle \]

\[\sigma = \sqrt{\langle (\Delta T_i - \mu)^2 \rangle} \]
\[G_{tn} \geq N \]
\[n6^2 = \kappa^2 \]
\[n = \frac{\kappa^2}{6^2} = R \]

Idea:
- \(d_{ctri} \geq \) number of dirt states that \(S \) admits during its time evolutions.

Formally:
\[d_{ctri} = \max 2^{I(Ref:S)} \]
\[8_{SRef} = S_{d+\Omega_3(t)} \cdot 1t=1/Ref \]
I(Ref; S) = \(H(S) - H(S/Ref) \)

\[x \sim e \]

\(k < x < 1 \)

\[\sigma x \sim \frac{k}{n} \]

disks slabs \(\sim \frac{\sigma x}{\Delta x} \sim e \frac{1}{n} \)

\(\text{Ref} \)

\(\text{S} \)

\(\text{SAF} \)
\[u \sim \frac{v}{\hbar} \]
\[\Rightarrow \ell \sim \frac{\hbar}{v} \]
\[\Rightarrow d_{_{\text{ch}}} \sim \sqrt{n} \frac{\hbar}{v^2} \]

Optical clock: \(n \) photons
\[d_{_{\text{ch}}} \sim \sqrt{n} \quad \text{for classical light} \]
\[d_{_{\text{ch}}} \sim n \quad \text{for squeezed light} \]

Thm: \(R \leq 2\pi e d_{_{\text{ch}}}^2 \)

Conversely, the bound is approximately achievable!
Remark about proof:

Data Privacy Inequality

\[I(A:B) = I(A':B') \]

Conclusions: To build a good signal generator (tickling clock) one has to look for a system with large data, e.g., a fully controlled quantum device.

For n-qubit device, \(d_{cb} = 2^n \)

\[R \sim 2^{2n} \]