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Reconstructing a quantum state

❑Given multiple copies of the same quantum state, how do 
we learn the state?

[Altepeter et al. PRL 2004]

➢Quantum state tomography (QST)

one 
qubit:

two 
qubits:

➔ Essentially, measure Pauli product expectation, e.g., 

➔ QST also enables process tomography



Exponential barrier to learn 

❑ Need to measure Pauli product expectation 
e.g., 

3102 different kinds of measurements would 
have been needed for a 102-qubit experiment 
in [Yu, Zhao & Wei, PRR 2023]

➔ Exponentially many observables to measure 

❑ Compromises to make progress:

❖ Matrix-product-state inspired: few-qubit 
QST + unitary to successively disentangle 
qubits ➔ linear  
[Cramer et al. Nat. Comm. 2010]

➔ How many copies are needed?

❖ Compressed sensing for low-rank states:                        
observables needed [Gross et la. PRL 2010]



Learn only restricted observables is plausible

❑ Quantum overlapping tomography [Cotler& Wilczek PRL 2019] : to learn 
(up to) k-local Paulis, i.e., only k non-identity, e.g., 

[Cotler & Wilczek] 

❑ Quantum shadow tomography [Huang, Kueng & Preskill, Nat Phys 2020] 

❖ Order log(M) measurements suffice: 

❖ Goal: to predict M different observables {Oi} of the state

❖               reduced density matrices (i.e. quantum marginals) to measure

❖                     measurements (i.e. samples) needed

There is a specific overlapping tomography protocol in [Yu 2020] , 

using O(10k log(m)/λ2) samples for m different k-qubit reduced density 

matrices accurate up to a trace norm parameter λ.

Four perfect hash functions; 
red=0; blue=1; nonidentical pair 
(I,j) has at least one function with 
i & j different colors 



Quantum marginals and numerical ranges

❑ N-representability problem is QMA-complete: ❑ Numerical ranges of few-body operators 
provide useful insight into many-body physics 

[Verstraete & Cirac, PRB 2006]

separable 
states

Given a set of quantum marginals, is there a 
global state that is compatible with them?

Fermions: [Liu, Christandl & Verstraete, PRL 2007]

Spins: [Kitaev, Shen & Vyalyi 2002, …]

Bosons: [Wei, Mosca & Nayak, PRL 2010] 

[Coulson 1960, Coleman 1973…] 

➢ Its solution would allow solving general 
ground-state energy problems: 



Are there states we can learn well?

❑ Quantum overlapping tomography & shadow tomography 
abandon complete characterization for a quantum state, but to 
learn/predict some observables

❑ Learning a generic state is exponentially hard, but is there a 
subset of physically relevant states that we can learn well?

Yes! (1) Unique ground states of local Hamiltonians with gap &
        (2) Output state of a short-depth quantum circuit

➔ For these (restricted) states, we don’t need to know all n-point correlators, but 
just some reduced density matrices (marginals)  → Learning marginals suffices! 



Example circuits

Nearest-neighbor gates
in 1D

Nearest-neighbor gates
in 2D

Non-local but 2-lcaol 
gates

➔ We would like to learn output of these circuits



Example Hamiltonians

[gapped: Poma & Wei, PRL 2020; 
Lemm, Sandivik &Wang, PRL 2020]

❑ Affleck-Kennedy-Lieb-Tasaki (AKLT) Hamiltonians 
[AKLT ’87,’88] :

❑ Kitaev’s toric code Hamiltonian [Kitaev ‘03] :

X
X

X
X

Z

ZZ
Z



Learning and circuit complexities

(2) The minimum depth of the quantum circuit necessary to implement a state [we use 2-local gates]

≈: the circuit complexity of a quantum state 

(1) The minimum number of copies of the same quantum state necessary to reconstruct the 

state (which depends on the type of measurement, e.g. Pauli vs. Clifford) [we use Pauli’s]

≈: the learning complexity of a quantum state

Key results: We show that the marginals (reduced density matrices) uniquely determine 

quantum states with low circuit complexity. Moreover, the determination procedure is robust 

against the potential noise of the marginals (such as statistical noise in the measurement). 

Our result also bridges quantum circuit complexity and ground states of gapped local 

Hamiltonians.

We will be interested in 
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UDA notion and unique ground states

❑Unique ground states of local Hamiltonians are always uniquely determined 

by their local reduced density matrices among all mixed states (UDA)

➢ A pure state ψ is UDA with respect to a set of multi-sites {𝑆𝑖}𝑖=1
𝑚  (interaction graph)

❖ We use ψ𝑆𝑖
 to denote the reduced density matrices of pure state ψ supported 

on sites in 𝑆𝑖, i.e. 

If for any mixed state ρ :

[note similar notion of being uniquely determined by marginals among all pure states (UDP) 

can be defined]

Example: [Parashar& Rana, PRA 2009]

Is UDA by all 2-body reduced density matrices

not UDA (nor UDP)
There exist states that are UDP but not UDA 
[Xin et al. PRL2017]

n

n



UDA and unique ground states

(i) A quantum state |ψ⟩ is UDA by its k-local reduced density matrices on 

the interaction graph G only if the tuple of its reduced density matrices is 

an extreme point of R={(σ𝑆1
, σ𝑆2

,.., σ𝑆𝑚
)}

(ii) A quantum state |φ⟩ is the unique ground state of a Hamiltonian with 

the interaction graph G only if the tuple of its reduced density matrices 

is an exposed point of R

(iii) A quantum state |φ⟩ is the unique ground state of a Hamiltonian with 

the interaction graph G only if it is UDA by its reduced density matrices on 

the interaction graph G. 

If a pure state is UDA and its tuple of reduced density matrices (over 

some interaction graph G) is also an exposed point, it is a unique ground 

state of some local Hamiltonian with the same interaction graph

Note: An exposed point does not always imply UDA, nor UDP.

UDA

Extreme 
pt.

ψ Tup(ψ𝑆1
)

=(ψ𝑆1
, ψ𝑆2

,.., ψ𝑆𝑚
)

Exposed 
pt.

ψ

Unique 
GS 

Tup(ψ𝑆1
)

[Wikipedia]

exposed

extreme
but not 
exposed

Note: UDA → Unique GSx
[Karuvade et al. PRA 2019]



Robust fingerprint of ground state: tuple of 
reduced density matrices

Lemma. Let |ψ⟩ be the unique ground state of a k-local Hamiltonian H with gap ∆ > 0 

and interaction graph G = {s1, · · · , sm}, for any state ρ, one of the following conditions 

must be satisfied:

1. ||ψ − ρ||1 < ε;

2. ||ψsi − ρsi ||1 > ∆ ε2/2m for some i.

where m is number of terms, ψ ≡ |ψ⟩⟨ψ| and ψsi
 denotes the marginal supported on 

subsystem si

➔ Sufficient to perform tomography of all the k-local reduced density matrices with precision ∆ε2/2m 

for trace norm to determine the unique ground state ψ of some k-local Hamiltonian up to precision ε 

in trace norm.

Note: There is a specific overlapping tomography protocol in [Yu 2020] , which uses O(10k log(m)/ϵ2) 

samples for the tomography of m different k-qubit reduced density matrices accurate up to a trace 

norm parameter ϵ.



Proof of Lemma
Lemma. Let |ψ⟩ be the unique ground state of a k-local Hamiltonian H with gap ∆ > 0 and 

interaction graph G = {s1, · · · , sm}, for any state ρ, one of the following conditions must be 

satisfied:

1. ||ψ − ρ||1 < ε;   2. ||ψsi − ρsi ||1 > ∆ ε2/2m for some i.

where m is number of terms, ψ ≡ |ψ⟩⟨ψ| and ψsi
 denotes the marginal supported on subsystem si

Proof. From the ground state and the gap:

If scenario 1 does NOT hold:

*

➔

Thus,

➔ At least one *Use:

*note:
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Output of a short-depth quantum circuit
The output state |ψD⟩ of an n-qubit quantum circuit with depth D ≥ 1 is the unique

ground state of a k-local frustration-free Hamiltonian with a gap at least 1. 

Moreover, k = 2D, if the gates are not geometrically local; k = 2D for a chain; 

k = γ2(D) for the square lattice.

2123 3

Light cone contains linear 
number of points (k=2D)

depth D

1
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3 3 3

Light cone contains quadratic 
number of points k= γ2(D) = O(D2)

➢ Initial state is |00…0>, unique ground state of 

➢ D-layer circuit: turns 1-local H0,i to at most k(D)-local, preserving gap 

with gap 1
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When multiple terms share same support

2123 3

Light cone contains linear 
number of points (k=2D)

depth D

1

22
3

3 3 3

Light cone contains quadratic 
number of points k= γ2(D) = O(D2)

4

4

4

4

4

4

4

4

Light cone contains exponential 
number of points k= 2D

➢ Initial state is |00…0>, unique ground state of 

➢ D-th circuit: turns 1-local H0,i to at most k(D)-local, preserving gap 

with gap 1

❖ When more than one terms  in                       share same support, replace those by a single one   

where any single site 𝑎 ∊ 𝑆𝑖  propagate by UD to same final support
𝑎 𝑎′

2 2

33

3 3



Closeness to output of shallow circuits

Theorem: Suppose n-qubit |ψ⟩ has circuit complexity at most D. For any state 

(possibly mixed) ρ, one of the following conditions must be satisfied:

1. ||ψ − ρ||1 < ε;

2. ||ψs − ρs||1 > ε2/2n for some s ⊆ {0, · · · , n − 1} with |s| = k(D).

Note: ψ = |ψ⟩⟨ψ|

➔ Intuitive picture: For an output of a short-depth quantum circuit, 
any state is either close to it or “far” from it which is detectable by quantum marginals 

Proof: from our previous Lemma setting gap ∆=1, and number m of terms in the 
Hamiltonian m ≤ n (i.e. number of qubits)

Lemma. Let |ψ⟩ be the unique ground state of a k-local Hamiltonian H with gap ∆ > 0 

and interaction graph G = {s1, · · · , sm}, for any state ρ, one of the following conditions 

must be satisfied:

1. ||ψ − ρ||1 < ε;  2. ||ψsi − ρsi ||1 > ∆ ε2/2m for some i.



Sample complexity for shallow-circuit output

Theorem. To accomplish the quantum state tomography for depth-D circuit output 

with precision ε, 

1. O(n2·10k log 𝑛
𝑘

 /ε4) suffices, if we do not know the circuit structure;

2. O(n2·10k log(n) /ε4) suffices, if we know the circuit structure,
where k=k(D)

Employ the overlapping tomography protocol in [Yu 2020] , 

that uses O(10k log(m)/γ2) samples for m different k-qubit reduced 

density matrices accurate up to a trace norm parameter λ.

1. Set 2. Set

(1) one-dimension: k=2D; (2) two dimensions: k= γ2(D) = O(D2); (3) non-local: k= 2D  

Proof:



For polynomial samples, how deep can D be?

If we only have polynomial number of samples, poly(n,1/ε), we can probe output of a 

quantum circuit with depth D with precision ε, if

1. For one dimension (nearest-neighbor gates): 

2. For two dimensions (nearest-neighbor gates): 

3. For gates geometrically non-local:

1. 10k to be poly(n) ➔ that is k=2D=O(log n)

2. For 2-dim, k~D2, D has to be O( log(𝑛)) 

3. For general case, k=2D,  D has to be log(log n).

Proof:



Circuit complexity

➢ Complexity emerges as an important quantity in holography, AdS/CFT and black holes

“Complexity = Volume”

❑ We define the circuit complexity of a quantum state to be the 

minimum depth of the quantum circuit (using 2-local gates) 

necessary to implement the state (from an initial | ⟩00…0  state)

The volume of Einstein-Rosen bridges corresponds to the 
complexity of the CFT on the boundary of an AdS space

[Stanford & Susskind, PRD 
2014]

“Complexity = Action” Quantum complexity of a holographic state is dual to the action 
of a certain spacetime region 

[Brown et al., PRL 2016]

➢ Random unitary circuits for evolution of generic 

quantum systems 

[Haferkamp et al. Nat. Phys. 2022]

Complexity for unitary U, implemented from blocks of
two-qubit random-Haar gates, grows linearly until the 
number of gates ~ T ≥ 4n − 1



Testing circuit complexity of a state
❑ Check if given poly copies of an n-qubit state ρ, can it be approximated by 

a depth-D circuit?

That is to distinguish between:

1. ||ψ − ρ|| < ε2/6n for some quantum state |ψ⟩ with circuit complexity ≤ D;

2. ||ψ − ρ|| > ε for any quantum state |ψ⟩ with circuit complexity ≤ D

Input: n-qubit ρ & D ➔ Output: case 1 or 2

Step 1: Do overlapping tomography to obtain all {෤ρS} with|S|≤ k to 
precision ε2/6n

Step 2: Compute and check if a state |ψ⟩ w. circuit depth ≤ D exists such 
that 

If ψ exists → case 1; otherwise, case 2 

[May not be easy 
to do though]for all S with |S|≤k

“Algorithm”



Testing circuit complexity
Theorem. For an unknown n-qubit quantum state ρ, and a given 

circuit depth D, O(n2·10k log 𝑛
𝑘

 /ε4) samples (with k=k(D)) suffice 

to distinguish between the two cases:

1. ||ψ − ρ|| < ε2/6n for some quantum state |ψ⟩ with circuit complexity ≤ D;

2. ||ψ − ρ|| > ε for any quantum state |ψ⟩ with circuit complexity ≤ D

➔Perform overlapping tomography on ρ to obtain k-marginals ෤ρS with|S|≤ k, 
     up to precision ε2/6n. 

For case 2: Assume we can obtain a ϕ such that

Then

➔                              → Contradicts assumption of case 2, thus ϕ does NOT exist.

➔ The state ψ can be obtained from running/computing 
     depth-D variational circuit and minimizing the trace norm

For case 1:
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Lower bound on quantum state complexity

Theorem. If |ψ⟩ is not UDA by its r local reduced density matrices, its circuit complexity is

at least: (1) ⌈(r+1)/2⌉ for 1-d chain; (2) max D: such that γ2(D)≤ r+1 on the square lattice; (3) 

log(r+1) for non-geometrical circuits

Example. Take the GHZ state |ψ⟩ = 1/ 2 (|0⟩⊗n + |1⟩⊗n) as an example, it is not UDA 
by its n − 1 reduced density matrices:

➔ Circuit complexity is at least n/2 if only nearest neighbor on 1D geometry; 

O( 𝑛) for 2-dim; log(n) if any two local gates can be applied

which is also the (n-1)-qubit marginal of  

Proof. Output is unique GS of k(D)-local Hamiltonian ➔ UDA on k-local interaction graph and we have k > r 



Intrinsic topological states

❑ These are long-ranged entangled states that cannot be created 
by a finite-depth quantum circuit from a product state

[Chen, Gu & Wen, PRB 2010]

❖ n-qubit GHZ state is such an example:

❖ Kitaev’s toric code → can be exactly renormalized via log(n)-depth non-local gates 

❖ Levin-Wen string-nets → can also be renormalized via log(n)-depth non-local gates 

|ψ⟩ = 1/ 2 (|0⟩⊗n + |1⟩⊗n) 

[Aguado &Vidal, 
 PRL 2008]

[Koenig, Reichardt &Vidal, 
 PRB 2009]

→ Unfortunately, does not lead to a useful bound on locality k 
[expect to measure logical operators, linear size of the lattice]  



Symmetry-protected topological states

❑ These are short-ranged entangled states that can be created 
by a finite-depth D quantum circuit from a product state 
(without respecting the symmetry); but cannot if symmetry is 
respected

[Chen, Gu & Wen, PRB 2010]

❑ Even with symmetry respected, finite-depth non-local gates 
can disentangle them!

[Stephen et al., arXiv 2022]

➔ These states can be uniquely determined by their k(D)-local marginals
➔UDA is a property for short-ranged entangled phases! 



Conclusion

❑ Properties of unique ground states & 
their quantum marginals

❑ UDA and lower bound on quantum state complexity

❑ Learning marginals of the output of a shallow 
quantum circuit suffices to determine the
global state

❑ Future: explicit bounds for intrinsic topological states; 
extension to longer-depth circuits; inclusion of 
measurements? 

UDA

Extreme 
pt.

ψ Tup(ψ𝑆1
)

=(ψ𝑆1
, ψ𝑆2

,.., ψ𝑆𝑚
)

Exposed 
pt.

ψ

Unique 
GS 

Tup(ψ𝑆1
)



Announcement: Faculty Search

➢ Yang Institute for Theoretical Physics (YITP) has two tenure track positions

Required qualifications:  PhD degree or foreign equivalent in theoretical 
physics or closely related field, with an established record of outstanding 
independent research, including experience in the broad area of quantum 
information science--including, but not limited to, various approaches of 
quantum computation and information processing, quantum information 
theory interfacing with many-body physics, complexity and other 
theoretical physics, quantum error correction and mitigation, quantum 
simulations and algorithms that advance quantum advantage.

https://apply.interfolio.com/132644

* For full consideration, applications must be submitted by November 20, 2023

(2) Theoretical Physics:
PhD degree or foreign equivalent in theoretical physics or closely related 
field, with an established record of outstanding independent research, 
including experience in fundamental areas of quantum field theory 
and/or string theory, broadly defined, possibly in addition to other topics 
in theoretical physics.

(1) QIS theory :  

https://apply.interfolio.com/132647

https://apply.interfolio.com/132644
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