The Quantum Wasserstein Distance of Order 1

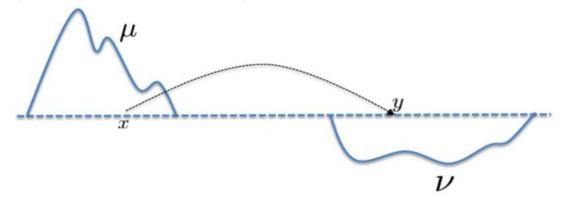
Giacomo De Palma

GdP, Milad Marvian, Dario Trevisan, Seth Lloyd IEEE Transactions on Information Theory 67(10), 6627-6643 (2021)

GdP, Milad Marvian, Cambyse Rouzé, Daniel Stilck França, arXiv:2204.03455

The classical Wasserstein distance

- Probability distributions as distributions of unit amount of mass
- Moving unit mass from x to y has cost d(x,y)
- $W_1(p,q)$: minimum cost to transport p onto q
- Recovers d for Dirac deltas
- Induced by a norm
- Countless applications in geometric analysis, probability, information theory, machine learning
- For bit strings, d = Hamming distance



Quantum W_1 distance: Why?

- Hamming distance ubiquitous in classical probability, information theory, machine learning
- Yet no quantum version for qubits!!
- Bit flip small change wrt Hamming distance, but can generate orthogonal state
- Orthogonal states maximally far for any unitarily invariant distance
- Desired properties:
 - Recovery of Hamming distance for canonical basis states
 - Robust wrt one-qubit operations
 - Global quantities (e.g., entropy) continuous

Quantum W_1 norm

- Neighboring states: coincide after discarding one qudit
- Require: neighboring states have distance at most one,
 i.e., differences between neighboring states belong to unit ball
- Quantum W_1 norm: maximum norm that assigns distance at most one to any couple of neighboring states
- Unit ball: convex hull of differences between neighboring states
- Semidefinite program!

Properties

- Recovers classical W_1 distance for states diagonal in canonical basis
- Recovers Hamming distance for canonical basis states
- Extensivity

$$\|\rho_{AB} - \sigma_{AB}\|_{W_1} \ge \|\rho_A - \sigma_A\|_{W_1} + \|\rho_B - \sigma_B\|_{W_1}$$

Relation with trace distance

$$\frac{1}{2} \|\rho - \sigma\|_{1} \le \|\rho - \sigma\|_{W_{1}} \le \frac{n}{2} \|\rho - \sigma\|_{1}$$

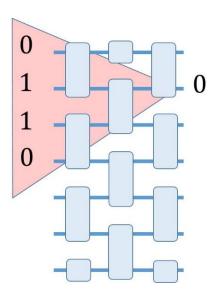
Robust wrt local operations

$$\operatorname{Tr}_A \rho = \operatorname{Tr}_A \sigma \implies \|\rho - \sigma\|_{W_1} \le 2|A|$$

Shallow quantum circuits

• Expand W_1 distance by at most twice the size of the largest light-cone of a qudit

$$\left\| U \rho U^{\dagger} - U \sigma U^{\dagger} \right\|_{W_1} \le 2B(U) \left\| \rho - \sigma \right\|_{W_1}$$



Continuity of the von Neumann entropy

von Neumann entropy

$$S(\rho) = -\text{Tr}\left[\rho \log \rho\right]$$

- Quantifies uncertainty
- Continuity bound wrt trace distance void for orthogonal states, but flipping one qudit can turn state into orthogonal state with entropy change at most 2 log d
- Continuity bound wrt quantum W_1 distance

$$\frac{1}{n} |S(\rho) - S(\sigma)| \le h_2 \left(\frac{1}{n} \|\rho - \sigma\|_{W_1} \right) + \frac{1}{n} \|\rho - \sigma\|_{W_1} \log \left(d^2 - 1 \right)
h_2(p) = -p \log p - (1 - p) \log (1 - p)$$

Only intensive quantities!

Transportation-Cost Inequality (TCI)

Quantum relative entropy

$$S(\rho \| \omega) = \text{Tr} \left[\rho \left(\ln \rho - \ln \omega \right) \right]$$

Pinsker's inequality

$$\frac{1}{2} \|\rho - \omega\|_1 \le \sqrt{\frac{1}{2}} S(\rho \|\omega)$$

Quantum TCI for product states

$$\frac{1}{n} \|\rho - \omega_1 \otimes \ldots \otimes \omega_n\|_{W_1} \leq \sqrt{\frac{1}{2n}} S(\rho \|\omega_1 \otimes \ldots \otimes \omega_n)$$

The quantum Lipschitz constant

• Lipschitz constant $\|f\|_L = \max_{x,y} \frac{|f(x) - f(y)|}{d(x,y)}$

Quantum generalization

$$||H||_L = 2 \max_{i \in [n]} \min_{H_{i^c}} ||H - \mathbb{I}_i \otimes H_{i^c}||_{\infty}$$

- Recovers classical Lipschitz constant for operators diagonal in canonical basis
- Provides dual SDP for quantum W_1 distance

$$\|\rho - \sigma\|_{W_1} = \max_{\|H\|_L \le 1} \operatorname{Tr} \left[(\rho - \sigma) H \right]$$

Gaussian concentration for maximally mixed state

- In high dimension, smooth functions are essentially constant
- Upper bound on partition function

$$\frac{1}{n} \ln \text{Tr } e^H \le \ln d + \frac{1}{8} \|H\|_L^2 \qquad \text{Tr } H = 0$$

• Spectrum of H lies in interval with size $O\left(\sqrt{n} \|H\|_L\right)$

$$\frac{1}{d^n}\dim\left(H \ge n\,\delta\right) \le e^{-\frac{2n\delta^2}{\|H\|_L^2}}$$

Quadratic concentration for product states

ω product state

$$\operatorname{Var}_{\omega} H \leq n \|H\|_{L}^{2}$$

• ρ output of quantum circuit with blow-up B

$$\operatorname{Var}_{\rho} H \le 4n B^2 \|H\|_L^2$$

Combinatorial optimization

- Goal: find bit string that maximizes cost function C
- Local cost: sum of functions each depending on O(1) bits
- Efficient classical algorithms usually achieve

$$C = a C_{\text{max}}$$
 $0 < a \le 1$

- Example: maximum cut problem, i.e., find the bipartition of a graph that maximizes the # of edges connecting the two parts
- Associate one bit to each vertex, set to 1 bits in second half of bipartition
- NP complete!

Variational quantum algorithms

 Associate one qubit to each bit, quantum Hamiltonian to cost function

$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x|$$

- Train parametric quantum circuit to generate high-energy states
- Example: Quantum Alternating Operator Ansatz (QAOA)
- Alternate time evolution with H and mixing Hamiltonian

$$\left(\prod_{k=1}^{P} e^{-i\gamma_k \sum_{i=1}^{n} X_i} e^{-i\beta_k H}\right) |+\rangle^{\otimes n}$$

Limitations of QAOA for MaxCut

- Toy model: D-regular bipartite graph (maxcut = n D / 2)
- Technical assumption:

$$C(x) \ge \left(\frac{D}{2} - \sqrt{D-1}\right) \min\{|x|, n-|x|\} \qquad \forall x \in \{0,1\}^n$$

- Satisfied by Ramanujan expander graphs with D≥3 and for large n by random D-regular graphs with high probability
- Observation [Bravyi *et al.*, PRL 125, 260505 (2020)]: QAOA circuit commutes with $X^{\otimes n}$
- Probability distribution of output measurement symmetric wrt flipping all bits and cannot be concentrated on single string

Limitations of QAOA for MaxCut

Result: if

$$\operatorname{Tr}\left[\rho H\right] \ge C_{\max}\left(\frac{5}{6} + \frac{\sqrt{D-1}}{3D}\right)$$

then the quadratic concentration inequality implies

$$P \ge \frac{1}{2\log(D+1)}\log\frac{n}{576} = \Omega(\log n)$$

- Holds for any circuit and initial state commuting with $X^{\otimes n}$
- Improves Bravyi et al.

$$P \ge \frac{1}{3(D+1)} \log_2 \frac{n}{4096}$$

Limitations of noisy quantum circuits

- Goal: generate high-energy state of traceless local Hamiltonian H
- Model: L layers of 2-qubit gates with depolarizing noise on each qubit after each layer
- Result: output energy exponentially concentrated about 0

$$\mathbb{P}\left(|H| \ge n\,\delta\right) \le \exp\left(-\frac{n}{2}\left(\frac{\delta^2}{\|H\|_L^2} - (1-p)^{2L}\right)\right)$$

Quantum advantage exponentially unlikely for

$$L > \left| \frac{\log \frac{\delta}{\|H\|_L}}{\log (1 - p)} \right| = O\left(\frac{1}{p}\right)$$

Proof idea

 2-Rényi divergence wrt maximally mixed state ω decreases exponentially with L

$$D_2(\rho \| \omega) = \log \operatorname{Tr} \left(\omega^{-\frac{1}{4}} \rho \omega^{-\frac{1}{4}} \right)^2 \le n (1-p)^{2L}$$

• Gaussian concentration for ω implies Gaussian concentration for ρ

$$\mathbb{P}_{\rho}\left(|H| \ge n\,\delta\right) \le \sqrt{2}\exp\left(\frac{1}{2}\,D_2(\rho\|\omega) - \frac{n\,\delta^2}{\|H\|_L^2}\right)$$

Perspectives

- Quantum Wasserstein Generative Adversarial Networks [Kiani, GdP, Marvian, Liu, Lloyd, Quantum Sci Technol 7, 045002 (2022)]
- Robustness of quantum algorithms for machine learning with quantum input
- Design of quantum error correcting codes
- Quantum rate-distortion theory
- Statistical mechanics of quantum spin systems [GdP, Rouzé, <u>Ann Henri Poincaré 23, 3391 (2022)</u>]
- Quantum spin systems on infinite lattices [GdP, Trevisan, arXiv:2210.?????]