
The Quantum Wasserstein 

Distance of Order 1

GdP, Milad Marvian, Dario Trevisan, Seth Lloyd

IEEE Transactions on Information Theory 67(10), 6627-6643 (2021)

GdP, Milad Marvian, Cambyse Rouzé, Daniel Stilck França, 

arXiv:2204.03455

Giacomo De Palma

https://doi.org/10.1109/TIT.2021.3076442
https://arxiv.org/abs/2204.03455


• Probability distributions as distributions of unit amount of 

mass

• Moving unit mass from x to y has cost d(x,y)

• W1(p,q): minimum cost to transport p onto q

• Recovers d for Dirac deltas

• Induced by a norm

• Countless applications in geometric analysis, probability, 

information theory, machine learning

• For bit strings, d = Hamming distance

The classical Wasserstein distance
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Quantum W1 distance: Why?
• Hamming distance ubiquitous in classical probability, 

information theory, machine learning

• Yet no quantum version for qubits!!

• Bit flip small change wrt Hamming distance, but can 

generate orthogonal state

• Orthogonal states maximally far for any unitarily invariant 

distance

• Desired properties:

• Recovery of Hamming distance for canonical basis states

• Robust wrt one-qubit operations

• Global quantities (e.g., entropy) continuous
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Quantum W1 norm

• Neighboring states: coincide after discarding one qudit

• Require: neighboring states have distance at most one, 

i.e., differences between neighboring states belong to unit 

ball

• Quantum W1 norm: maximum norm that assigns distance 

at most one to any couple of neighboring states

• Unit ball: convex hull of differences between neighboring 

states

• Semidefinite program!
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Properties
• Recovers classical W1 distance for states diagonal in 

canonical basis

• Recovers Hamming distance for canonical basis states

• Extensivity

• Relation with trace distance

• Robust wrt local operations
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Shallow quantum circuits

• Expand W1 distance by at most twice the size of the largest 

light-cone of a qudit
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Continuity of the von Neumann entropy

• Quantifies uncertainty

• Continuity bound wrt trace distance void for orthogonal 

states, but flipping one qudit can turn state into orthogonal 

state with entropy change at most 2 log d

• Continuity bound wrt quantum W1 distance
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• Only intensive quantities!

• von Neumann entropy



Transportation-Cost Inequality (TCI)

• Pinsker’s inequality

• Quantum TCI for product states

• Quantum relative entropy
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The quantum Lipschitz constant

• Lipschitz constant

• Quantum generalization

• Recovers classical Lipschitz constant for operators 

diagonal in canonical basis

• Provides dual SDP for quantum W1 distance 
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Gaussian concentration for maximally mixed state

• In high dimension, smooth functions are essentially 

constant

• Spectrum of H lies in interval with size
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• Upper bound on partition function



Quadratic concentration for product states

• ω product state
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• ρ output of quantum circuit with blow-up B



Combinatorial optimization

• Goal: find bit string that maximizes cost function C

• Local cost: sum of functions each depending on O(1) bits

• Efficient classical algorithms usually achieve
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• Example: maximum cut problem, i.e., find the bipartition 

of a graph that maximizes the # of edges connecting the 

two parts

• Associate one bit to each vertex, set to 1 bits in second 

half of bipartition

• NP complete!



Variational quantum algorithms
• Associate one qubit to each bit, quantum Hamiltonian to 

cost function
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• Train parametric quantum circuit to generate high-energy 

states

• Example: Quantum Alternating Operator Ansatz (QAOA)

• Alternate time evolution with H and mixing Hamiltonian



Limitations of QAOA for MaxCut

• Toy model: D-regular bipartite graph (maxcut = n D / 2)

• Technical assumption:
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• Satisfied by Ramanujan expander graphs with D≥3 and 
for large n by random D-regular graphs with high 
probability

• Observation [Bravyi et al., PRL 125, 260505 (2020)]: 
QAOA circuit commutes with X⊗n

• Probability distribution of output measurement symmetric 
wrt flipping all bits and cannot be concentrated on single 
string

https://doi.org/10.1103/PhysRevLett.125.260505


Limitations of QAOA for MaxCut
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• Result: if

then the quadratic concentration inequality implies

• Improves Bravyi et al.

• Holds for any circuit and initial state commuting with X⊗n



Limitations of noisy quantum circuits

• Goal: generate high-energy state of traceless local 

Hamiltonian H

16

• Model: L layers of 2-qubit gates with depolarizing noise on 

each qubit after each layer

• Result: output energy exponentially concentrated about 0

• Quantum advantage exponentially unlikely for



Proof idea

• 2-Rényi divergence wrt maximally mixed state ω

decreases exponentially with L
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• Gaussian concentration for ω implies Gaussian 

concentration for ρ



Perspectives

• Quantum Wasserstein Generative Adversarial Networks

[Kiani, GdP, Marvian, Liu, Lloyd, Quantum Sci Technol 7, 

045002 (2022)]

• Robustness of quantum algorithms for machine learning 

with quantum input

• Design of quantum error correcting codes

• Quantum rate-distortion theory

• Statistical mechanics of quantum spin systems [GdP, 

Rouzé, Ann Henri Poincaré 23, 3391 (2022)]

• Quantum spin systems on infinite lattices [GdP, Trevisan, 

arXiv:2210.?????]

18

https://doi.org/10.1088/2058-9565/ac79c9
https://doi.org/10.1007/s00023-022-01181-1

