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The classical Wassersteln distance

- Probability distributions as distributions of unit amount of
mass

- Moving unit mass from x to y has cost d(x,y)
- W,(p,q): minimum cost to transport p onto g
- Recovers d for Dirac deltas

- Induced by a norm

- Countless applications in geometric analysis, probability,
Information theory, machine learning

- For bit strings, d = Hamming distance




Quantum W, distance: Why?

- Hamming distance ubiquitous in classical probability,
Information theory, machine learning

- Yet no quantum version for qubits!!

- Bit flip small change wrt Hamming distance, but can
generate orthogonal state

- Orthogonal states maximally far for any unitarily invariant
distance

- Desired properties:
- Recovery of Hamming distance for canonical basis states
- Robust wrt one-qubit operations
- Global quantities (e.g., entropy) continuous
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Quantum W, norm

- Neighboring states: coincide after discarding one qudit

- Require: neighboring states have distance at most one,
l.e., differences between neighboring states belong to unit
ball

- Quantum W, norm: maximum norm that assigns distance
at most one to any couple of neighboring states

- Unit ball: convex hull of differences between neighboring
states

- Semidefinite program!



Properties

- Recovers classical W, distance for states diagonal in
canonical basis

- Recovers Hamming distance for canonical basis states
- Extensivity
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- Relation with trace distance
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- Robust wrt local operations
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Shallow quantum circuits

- Expand W, distance by at most twice the size of the largest
light-cone of a qudit
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Continuity of the von Neumann entropy

- von Neumann entropy

S(p) = —Tr[plog p]

- Quantifies uncertainty

- Continuity bound wrt trace distance void for orthogonal
states, but flipping one qudit can turn state into orthogonal

state with entropy change at most 2 log d
- Continuity bound wrt quantum W, distance
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- Only intensive quantities!
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Transportation-Cost Inequality (TCI)

- Quantum relative entropy
S(plw) =Tr[p(Inp - Inw)]

- Pinsker’s inequality
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- Quantum TCI for product states
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The quantum Lipschitz constant
@)~ fW)

- Lipschitz constant = ma
p 112 = max ==

- Quantum generalization
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- Recovers classical Lipschitz constant for operators
diagonal in canonical basis

- Provides dual SDP for quantum W, distance
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Gaussian concentration for maximally mixed state

- In high dimension, smooth functions are essentially
constant

- Upper bound on partition function
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Quadratic concentration for product states

- W product state
Var,H <n HHH2L

- p output of quantum circuit with blow-up B

Var,H < 4n B? |H|;



Combinatorial optimization

- Goal: find bit string that maximizes cost function C
- Local cost: sum of functions each depending on O(1) bits
- Efficient classical algorithms usually achieve

C' = aCpax 0<a<l

- Example: maximum cut problem, i.e., find the bipartition
of a graph that maximizes the # of edges connecting the

two parts
- Associate one bhit to each vertex, set to 1 bits in second
half of bipartition RagabN
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- NP complete!



Variational guantum algorithms

- Associate one qubit to each bit, quantum Hamiltonian to
cost function

- Train parametric quantum circuit to generate high-energy
states

- Example: Quantum Alternating Operator Ansatz (QAOA)
- Alternate time evolution with H and mixing Hamiltonian
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Limitations of QAOA for MaxCut

- Toy model: D-regular bipartite graph (maxcut=n D/ 2)
- Technical assumption:

C(x) > (g—\/D—1> min{|z|, n — ||} V2 €{0,1}"

- Satisfied by Ramanujan expander graphs with D=3 and
for large n by random D-regular graphs with high
probability

- Observation [Bravyi et al., PRL 125, 260505 (2020)]:
QAOA circuit commutes with X®n

- Probability distribution of output measurement symmetric
wrt flipping all bits and cannot be concentrated on single
string
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Limitations of QAOA for MaxCut

- Result: if
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then the quadratic concentration inequality implies
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- Holds for any circuit and initial state commuting with X®n

- Improves Bravyi et al.
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Limitations of noisy quantum CIrcuits

- Goal: generate high-energy state of traceless local
Hamiltonian H

- Model: L layers of 2-qubit gates with depolarizing noise on
each qubit after each layer

- Result: output energy exponentially concentrated about O

- Quantum advantage exponentially unlikely for
5
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Proof idea

- 2-Reényi divergence wrt maximally mixed state w
decreases exponentially with L
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- Gaussian concentration for w implies Gaussian
concentration for p
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Perspectives

- Quantum Wasserstein Generative Adversarial Networks

[Kiani, GdP, Marvian, Liu, Lloyd, Quantum Sci Technol 7,
045002 (2022)]

- Robustness of quantum algorithms for machine learning
with quantum input

- Design of quantum error correcting codes
- Quantum rate-distortion theory

- Statistical mechanics of quantum spin systems [GdP,
Rouzé, Ann Henri Poincaré 23, 3391 (2022)]

- Quantum spin systems on infinite lattices [GdP, Trevisan,
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