A Bridge Between the Baum-Connes Conjecture and the Langlands Program

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S., Sorbonne Université and Université Paris Cité

Mathematical Picture Language Seminar

Harvard University

14 February 2023

The fields we will consider:

- p: prime number
- F: a non-archimedean local field, i.e. a finite extension of
 - $\mathbb{Q}_p := \{ x = \sum_{m=M}^{+\infty} a_m p^m : a_m \in \{0, 1, \dots, p-1\} \}.$
 - or of the field of formal Laurent series $\mathbb{F}_p((T))$ over the finite field \mathbb{F}_p , with p elements;
- \mathfrak{o}_F ring of integers of F, and \mathfrak{p}_F its maximal ideal.

Example

The p-adic norm:

$$\left|p^m \frac{a}{b}\right|_p := p^{-m}, \quad \text{if } a, b \in \mathbb{Z} \text{ not divisible by } p \text{ and } m \in \mathbb{Z}_{\geq 0}.$$

We have
$$|xy|_p = |x|_p \cdot |y|_p$$
 but $|x + y|_p \le \max(|x|_p, |y|_p)$.

$$\mathfrak{o}_{\mathbb{Q}_p} = \mathbb{Z}_p = \left\{ x \in \mathbb{Q}_p \, : \, |x|_p \leq 1 \right\} \quad \text{and} \quad \mathfrak{p}_{\mathbb{Z}_p} = \left\{ x \in \mathbb{Z}_p \, : \, |x|_p < 1 \right\}.$$

The groups we will consider:

- **G** connected reductive algebraic group defined over *F*.
- $G = \mathbf{G}(F)$: *p*-adic reductive group

Examples

$$\operatorname{GL}_n(F)$$
, $\operatorname{SL}_n(F)$, $\operatorname{Sp}_{2n}(F)$, $\operatorname{SO}_m(F)$, exceptional groups $\operatorname{E}_n(F)$, $n=6,7,8$, $\operatorname{G}_2(F)$, $\operatorname{F}_4(F)$.

Topology

Every neighbourhood of the identity in G contains a compact open subgroup (equivalently, G is locally compact and totally disconnected).

Example

The subgroups $K_0 := \operatorname{GL}_n(\mathfrak{o}_F)$ and $K_m := 1 + \mathfrak{p}_F^m \operatorname{M}_n(\mathfrak{o}_F)$, $m \ge 1$, of $G = \operatorname{GL}_n(F)$ are compact open and give a fundamental system of neighbourhoods of the identity in G.

Representations of G

- (π, V) : V a \mathbb{C} -vector space (in general of infinite dimension) and $\pi \colon G \to \operatorname{GL}(V)$ a group morphism
- (π, V) is smooth if for any $v \in V$, $G_v := \{g \in G : \pi(g)(v) = v\}$ is an open subgroup of G.

Let $\mathfrak{R}(G)$ denote the category of smooth representations of G.

Parabolic induction

- P: parabolic subgroup of G
- Levi decomposition: P = LU with L Levi factor, U unipotent radical
- σ : smooth representation of L
- $\widetilde{\sigma}$: inflation of σ to P
- $\operatorname{Ind}_P^G(\widetilde{\sigma})$: induction of $\widetilde{\sigma}$ to G.

The parabolic induction functor $i_{L,P}^{\mathcal{G}} \colon \mathfrak{R}(L) \to \mathfrak{R}(\mathcal{G})$ is defined by

$$i_{L,P}^{G}(\sigma) := \operatorname{Ind}_{P}^{G}(\widetilde{\sigma}).$$

Definition

A smooth representation π of G is supercuspidal if it is not a subquotient of a proper parabolically induced representation.

Characterization

 π is supercuspidal if and only if all its matrix coefficients have compact support modulo the center of G. (A matrix coefficient of π is a function on G of the form $c_{\widetilde{v},v}\colon g\mapsto \langle \widetilde{v},\pi(g)v\rangle$, for a fixed $(\widetilde{v},v)\in \widetilde{V}\times V$, where \widetilde{V} is the space of the contragredient of (π,V) .)

Definition/Notation

A character $\chi \colon G \to \mathbb{C}^{\times}$ is unramified if χ is trivial on every compact subgroup of G. Let $\mathfrak{X}(G)$ denote the group of unramified characters of G, and $\mathfrak{X}_{\mathrm{u}}(G) \subset \mathfrak{X}(G)$ the subgroup of unitary unramified characters of G.

Orbits of supercuspidal representations

Let L be a Levi subgroup of G and σ an irreducible supercuspidal smooth representation of L. We set

$$\mathcal{O} := \{ \sigma \otimes \chi, \text{ with } \chi \in \mathfrak{X}_{\mathrm{nr}}(L) \}$$

and write $\mathfrak{s} := (L, \mathcal{O})_G = [L, \sigma]_G$ for the *G*-conjugacy class of the pair (L, \mathcal{O}) . Let $\mathfrak{B}(G)$ denote the set of such classes \mathfrak{s} .

The Bernstein decomposition of the category of smooth representations

Let $\mathfrak{R}^{\mathfrak{s}}(G)$ be the full subcategory of $\mathfrak{R}(G)$ whose objects are the representations (π,V) such that every subquotient of π is equivalent to a subquotient of a parabolically induced representation $i_{L,P}^G(\sigma')$, where $\sigma' \in \mathcal{O}$. The categories $\mathfrak{R}^{\mathfrak{s}}(G)$ are indecomposable and split the full smooth category $\mathfrak{R}(G)$ in a direct product:

$$\mathfrak{R}(G) = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} \mathfrak{R}^{\mathfrak{s}}(G).$$

The Bernstein decomposition in concrete terms

Let (π, V) be a smooth representation of G. Then for each $\mathfrak{s} \in \mathfrak{B}(G)$ the space V has a unique G-subspace $V^{\mathfrak{s}}$ such that

- (1) $V^{\mathfrak{s}}$ is an object of $\mathfrak{R}^{\mathfrak{s}}(G)$, and
- (2) $V^{\mathfrak{s}}$ is maximal for property (1).

Moreover, $V = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} V^{\mathfrak{s}}$, and, if (π', V') is another smooth representation of G, we have $\operatorname{Hom}_G(V, V') = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} \operatorname{Hom}_G(V^{\mathfrak{s}}, V'^{\mathfrak{s}})$.

Application: the Bernstein decomposition of the Hecke algebra of G

Let $\mathcal{H}(G)$ be the vector space $C_c^\infty(G)$ of locally constant compactly supported functions on G, endowed with the convolution product. It provides a smooth representation of G, via left translation of functions. The spaces $\mathcal{H}(G)^s$ are then two-sided ideals of $\mathcal{H}(G)$.

Definition

Choose a left-invariant Haar measure on G and form the Hilbert space $L^2(G)$.

The left regular representation λ of $L^1(G)$ is given by $(\lambda(f))(h) := f * h$, where $f \in L^1(G)$ and $h \in L^2(G)$, and * denotes convolution.

The reduced C^* -algebra of G is the C^* -algebra $C^*_r(G)$ generated by the image of λ .

Its spectrum may be identified to the tempered dual $Irr_t(G)$ of G.

The Bernstein decomposition of the reduced C^* -algebra of G

We have

$$C_{\mathrm{r}}^*(G) = \bigoplus_{\mathfrak{s} \in \mathfrak{B}(G)} C_{\mathrm{r}}^*(G)^{\mathfrak{s}},$$

where $C_{\mathbf{r}}^*(G)^{\mathfrak{s}}$ is the closure of $\mathcal{H}(G)^{\mathfrak{s}}$ in $C_{\mathbf{r}}^*(G)$.

The spectrum of $C^*_{\rm r}(G)^{\mathfrak s}$ may be identified to ${\rm Irr}_{\rm t}(G)\cap {\rm Irr}^{\mathfrak s}(G)$, where ${\rm Irr}_{\rm t}(G)$ is the tempered dual of G and ${\rm Irr}^{\mathfrak s}(G)$ is the set of irreducible objects of the category $\mathfrak R^{\mathfrak s}(G)$.

Notation

We set

$$W^{\mathfrak s}:=\{n\in \mathrm{N}_{G}(L): \ ^{n}\sigma\sim\sigma\otimes\chi \ \text{ for some }\chi\in\mathfrak{X}(L)\}\,/L,$$

and $T_{\mathbf{u}}^{\mathfrak{s}} := \mathfrak{X}_{\mathbf{u}}(L) \cdot \sigma$, where σ is chosen to be unitary.

Conjecture [A-Baum-Plymen (2011)]

Suppose that G is F-split. For each $\mathfrak{s} \in \mathfrak{B}(G)$, we have

$$\mathcal{K}_{W^{\mathfrak{s}}}^{j}(\mathcal{T}_{\mathrm{u}}^{\mathfrak{s}}) \simeq \mathcal{K}_{j}(\mathcal{C}_{\mathrm{r}}^{st}(\mathcal{G})^{\mathfrak{s}}) \quad ext{for } j=0,1,$$

where $K_{W_s}^j(T_u^s)$ is the classical topological equivariant K-theory for the finite (extended Weyl) group W^s acting on the compact torus T_u^s .

Remark

The conjecture holds true when $\mathcal{H}(G)^{\mathfrak{s}}$ is Morita equivalent to an affine Hecke algebra, which is notably the case when G is a classical group or the exceptional group $G_2(F)$. Note however that $\mathcal{H}(G)^{\mathfrak{s}}$ is not always Morita equivalent to an affine Hecke algebra (counter-example when $G = \mathrm{SL}_n(F)$).

Q: What about arbitrary *p*-adic groups?

A: Add a 2-cocycle twist!

Conjecture [A-Baum-Plymen-Solleveld, 2017]

Let G be an arbitrary p-adic group. For each $\mathfrak{s}\in\mathfrak{B}(G)$, there exists a 2-cocycle $abla^{\mathfrak{s}}\colon W^{\mathfrak{s}}\times W^{\mathfrak{s}}\to\mathbb{C}^{\times}$ such that

$$\mathcal{K}_{W^{\mathfrak{s}}, \boldsymbol{\mathfrak{h}}^{\mathfrak{s}}}^{j}(\mathcal{T}_{\mathrm{u}}^{\mathfrak{s}}) \simeq \mathcal{K}_{j}(\mathcal{C}_{\mathrm{r}}^{st}(\mathcal{G})^{\mathfrak{s}}) \quad ext{for } j = 0, 1,$$

where

$${\mathcal K}^j_{W^{\mathfrak s}, {\boldsymbol \natural}^{\mathfrak s}}({\mathcal T}^{\mathfrak s}_{\mathrm{u}}) := p_{{\boldsymbol \natural}^{\mathfrak s}} {\mathcal K}^j_{\widetilde{W}^{\mathfrak s}}({\mathcal T}^{\mathfrak s}_{\mathrm{u}}) \simeq {\mathcal K}_j({\mathcal C}_0({\mathcal T}^{\mathfrak s}_{\mathrm{u}}) \rtimes {\mathbb C}[W^{\mathfrak s}, {\boldsymbol \natural}^{\mathfrak s}]),$$

with $C_0(T^{\mathfrak s}_{\mathrm u}):=\{f\in C(T^{\mathfrak s}_{\mathrm u}\sqcup\{\infty\}): f(\infty)=0\}$ and $p_{\natural^{\mathfrak s}}\in \mathbb C[W^{\mathfrak s}]$ a minimal idempotent such that $p_{\natural^{\mathfrak s}}\mathbb C[\widetilde W^{\mathfrak s}]\simeq \mathbb C[W^{\mathfrak s},\natural^{\mathfrak s}]$, for a central extension $\widetilde W^{\mathfrak s}$ of $W^{\mathfrak s}$

The conjecture holds modulo torsion [Solleveld, 2022]:

We have

$$\mathcal{K}^{j}_{W^{\mathfrak{s}}, \mathfrak{b}^{\mathfrak{s}}}(\mathcal{T}^{\mathfrak{s}}_{\mathrm{u}}) \otimes_{\mathbb{Z}} \mathbb{C} \simeq \mathcal{K}_{j}(\mathcal{C}^{st}_{\mathrm{r}}(\mathcal{G})^{\mathfrak{s}}) \otimes_{\mathbb{Z}} \mathbb{C} \quad ext{for } j = 0, 1.$$

The Baum–Connes Conjecture (proved by V. Lafforgue)

Let $\mathcal{I}(G)$ be the Bruhat-Tits building of G, it is a universal space for proper G-actions. Let $K_*^G(\mathcal{I}(G))$ denote its G-equivariant K-homology. The canonical assembly map

$$K_*^G(\mathcal{I}(G)) o K_*(C_{\mathrm{r}}^*(G))$$

is an isomorphism.

Consequence

The ABPS K-theory conjecture asserts the existence of a bijection

$$\mathcal{K}_*^{\mathcal{G}}(\mathcal{I}(\mathcal{G}))
ightarrow igoplus_{\mathfrak{s} \in \mathfrak{B}(\mathcal{G})} \mathcal{K}_{W^{\mathfrak{s}},
abla^{\mathfrak{s}}}^{j}(\mathcal{T}_{\mathrm{u}}^{\mathfrak{s}}).$$

Notation

- Γ : (finite) group acting on a topological space X
- Γ_x : stabilizer in Γ of $x \in X$.

$$\natural_x \colon \Gamma_x \times \Gamma_x \to \mathbb{C}^\times,$$

such that $abla_{\gamma x}$ and $\gamma_*
abla_x$ define the same class in $H^2(\Gamma_{\gamma x}, \mathbb{C}^{\times})$, where $\gamma_* \colon \Gamma_x \to \Gamma_{\gamma x}$ sends α to $\gamma \alpha \gamma^{-1}$.

A topological space

Let $\mathbb{C}[\Gamma_x, \natural_x]$ be the group algebra of Γ_x twisted by \natural_x . We set

$$\widetilde{X}_{
abla} := \{(x, \tau) : x \in X, \ \tau \in \operatorname{Irr} \mathbb{C}[\Gamma_x,
abla_x]\},$$

and topologize \widetilde{X}_{\natural} by decreeing that a subset of \widetilde{X}_{\natural} open if its projection to the first coordinate is open in X.

Required condition:

For every $(\gamma, x) \in \Gamma \times X$, there is an algebra isomorphism

$$\phi_{\gamma,x} \colon \mathbb{C}[\Gamma_x, \natural_x] \to \mathbb{C}[\Gamma_{\gamma x}, \natural_{\gamma x}]$$

such that

- (a) if $\gamma x = x$, then $\phi_{\gamma,x}$ is the conjugation by an element of $\mathbb{C}[\Gamma_x, \natural_x]^{\times}$;
- (b) $\phi_{\gamma',\gamma x} \circ \phi_{\gamma,x} = \phi_{\gamma'\gamma,x}$ for all $\gamma', \gamma \in \Gamma$ and $x \in X$.

Definition

Define a Γ -action on \widetilde{X}_{\natural} by $\gamma \cdot (x, \tau) := (\gamma x, \tau \circ \phi_{\gamma, x}^{-1})$.

The *twisted extended quotient* of X by Γ with respect to \natural is

$$(X//\Gamma)_{\natural} := \widetilde{X}_{\natural}/\Gamma.$$

In the case when the 2-cocycles \natural_x are trivial, write simply $X//\Gamma$ for $(X//\Gamma)_{\natural}$ and refer to it as the *extended quotient* of X by Γ .

The ABPS Conjecture (2015)

For each $\mathfrak{s} \in \mathfrak{B}(G)$, there is a collection of 2-cocycles

$$\natural_t \colon W_t^{\mathfrak s} imes W_t^{\mathfrak s} o \mathbb C^{ imes} \quad (t \in \mathcal T^{\mathfrak s})$$

and a bijection (with good properties)

$$\eta^{\mathfrak{s}} \colon \mathrm{Irr}^{\mathfrak{s}}(G) \stackrel{1-1}{\longleftrightarrow} (T^{\mathfrak{s}} /\!/ W^{\mathfrak{s}})_{\natural}$$

which restricts to a bijection

$$\eta_{\mathrm{t}}^{\mathfrak{s}} \colon \mathrm{Irr}_{\mathrm{t}}(G) \cap \mathrm{Irr}^{\mathfrak{s}}(G) \overset{1-1}{\longleftrightarrow} (T_{\mathfrak{t}_{1}}^{\mathfrak{s}} /\!/ W^{\mathfrak{s}})_{\natural}.$$

Theorem [Brodzki-Plymen 2000: $GL_n(F)$; Moussaoui 2015: split classical groups, ABPS 2017: principal series of split p-adic groups; 2019: inner forms of $GL_n(F)$ and $SL_n(F)$; Solleveld 2021: in general]

The conjecture holds true. Moreover, the 2-cocycles \sharp_t can be taken to be trivial for principal series of split p-adic groups [ABPS], for $G_2(F)$ [A-Xu], and for pure inner forms of split classical groups [A-Moussaoui-Solleveld].

Notation (Galois side)

- $W_F \subset \operatorname{Gal}(F_{\operatorname{sep}}/F)$: Weil group of F
- G^{\vee} : complex reductive group with root datum dual to that of G

Definition (assuming that G is an inner form of an F-split group)

A Langlands parameter – or *L*-parameter – is a continuous morphism $\varphi \colon W_F \times \operatorname{SL}_2(\mathbb{C}) \to G^{\vee} =: {}^L G$ such

- $\varphi|_{\mathrm{SL}_2(\mathbb{C})}$ is morphism of algebraic groups,
- $\varphi(w)$ is a semisimple element of G^{\vee} , for any $w \in W_F$.
- $\Phi(G) := \text{set of } G^{\vee}\text{-conjugacy classes of } L\text{-parameters for } G$

The Local Langlands Correspondence (crude form)

It predicts a surjective map with finite fibers, called *L*-packets, (with good properties),

$$\operatorname{Irr}(G) \longrightarrow \Phi(G)$$

$$\pi \mapsto \varphi_{\pi}$$

Notation

- G_{der}^{\vee} derived group of G^{\vee}
- ullet $G_{
 m sc}^ee$ simply connected cover of $G_{
 m der}^ee$

Groups attached to an *L*-parameter φ :

- $\mathrm{Z}_{G_{\mathrm{sc}}^{\vee}}(\varphi) := \mathrm{Z}_{G_{\mathrm{sc}}^{\vee}}(\varphi(W_F'))$, where $W_F' := W_F \times \mathrm{SL}_2(\mathbb{C})$
- $S_{\varphi} := \pi_0 \left(Z_{G_{e_c}^{\vee}}(\varphi) \right)$ component group of $Z_{G_{e_c}^{\vee}}(\varphi)$

Definition

An enhanced *L*-parameter is a pair (φ, ρ) where φ is an *L*-parameter and ρ an irreducible representation of S_{φ} .

The representation ρ is called an enhancement of φ .

Action of G^{\vee} on the set of enhanced *L*-parameters:

$$g \cdot (\varphi, \rho) := (g\varphi g^{-1}, {}^g\rho)$$
, for $g \in G^{\vee}$, where ${}^g\rho \colon h \mapsto \rho(g^{-1}hg)$. $\Phi_e(G)$: set of G^{\vee} -conjucacy classes of enhanced L -parameters.

The Local Langlands Correspondence (refined form)

It predicts a bijection (with good properties),

$$\operatorname{Irr}(\mathcal{G}) \xrightarrow{\mathfrak{L}^{\mathcal{G}}} \Phi_{\operatorname{e}}(\mathcal{G}).$$
 $\pi \mapsto (\varphi_{\pi}, \rho_{\pi}).$

Q: How does the Bernstein decomposition of $\operatorname{Irr}(G)$ reflect on $\Phi_{\mathrm{e}}(G)$?

Notation/Proposition

- \mathcal{G}_{φ} : inverse image in G_{sc}^{\vee} of the group $Z_{G_{\mathrm{ad}}^{\vee}}(\varphi(W_{F}))$
- $u_{\varphi} := \varphi(1, \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right)) \in \mathcal{G}_{\varphi}^{\circ}$ (a unipotent element)
- $A_{\mathcal{G}_{\varphi}}(u_{\varphi}) := \pi_0(\mathbf{Z}_{\mathcal{G}_{\varphi}}(u_{\varphi}))$

We have $S_{\varphi} \simeq A_{\mathcal{G}_{\varphi}}(u_{\varphi})$.

Definition [A-Moussaoui-Solleveld (2018)]

An enhanced L-parameter $(\varphi,\varrho)\in\Phi_{\mathrm{e}}(G)$ is cuspidal if

- φ is discrete: $\varphi(W_F')$ is not contained in any proper Levi subgroup of G^{\vee} ,
- (u_{φ}, ϱ) is a cuspidal pair in \mathcal{G}_{φ} : there is an $\mathcal{G}_{\varphi}^{\circ}$ -equivariant cuspidal local system on the $\mathcal{G}_{\varphi}^{\circ}$ -conjugacy class of u_{φ} .

 $\Phi_{\mathrm{e}}^{\mathrm{cusp}}(G) := \{G^{\vee}\text{-conjugacy classes of cuspidal }(\varphi,\varrho)\} \subset \Phi_{\mathrm{e}}(G).$

Theorem

We have

LLC:
$$\operatorname{Irr}^{\operatorname{cusp}}(G) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e}}^{\operatorname{cusp}}(G),$$

when G is an inner form of $\mathrm{GL}_n(F)$ or $\mathrm{SL}_n(F)$ [A-Moussaoui-Solleveld, 2018], when $G=\mathrm{G}_2(F)$ [A-Xu, 2022], and when G is a pure inner form of a split classical group [A-Moussaoui-Solleveld, 2022]. (We expect it always holds.)

Mimic the *p*-adic side:

Let L be a Levi subgroup of G and $(\varphi_c, \varrho_c) \in \Phi_e^{\mathrm{cusp}}(L)$. Define $\mathfrak{s}^\vee := [{}^L L, (\varphi_c, \varrho_c)]_{G^\vee}$ to be the G^\vee -conjugacy class of the orbit of (φ_c, ϱ_c) under the action of $\mathfrak{X}_{\mathrm{nr}}({}^L L)$, a group naturally isomorphic to the group $\mathfrak{X}_{\mathrm{nr}}(L)$. Let $\mathfrak{B}^\vee(G)$ be the set of such \mathfrak{s}^\vee .

More details:

 $\mathfrak{X}_{\mathrm{nr}}(^L L) := (\mathbf{Z}_{L^\vee \rtimes I_F})^\circ_{W_F}$, where $I_F \subset W_F$ is the inertia group of F and $\mathbf{Z}_{L^\vee \rtimes I_F}$ is the center of $L^\vee \rtimes I_F$.

Theorem [A.-Moussaoui-Solleveld, 2018]

The set $\Phi_{e}(G)$ is partitioned as

$$\Phi_{\mathrm{e}}(\mathit{G}) = \prod_{\mathfrak{s}^{\vee} \in \mathfrak{B}(^{\mathit{L}}\mathit{G})} \Phi_{\mathrm{e}}^{\mathfrak{s}^{\vee}}(\mathit{G}),$$

where $\Phi_{\rm e}^{\mathfrak{s}^\vee}(G)$ consists of the enhanced L-parameters whose cuspidal support lies in \mathfrak{s}^\vee .

Theorem [A-Moussaoui-Solleveld, 2018] (Galois version of ABPS)

For each $\mathfrak{s}^{\vee} = [{}^{L}L, \lambda]_{G^{\vee}} \in \mathfrak{B}({}^{L}G)$, there is a collection of 2-cocycles

$$\sharp_t^{\mathfrak{s}^\vee} \colon W_t^{\mathfrak{s}^\vee} \times W_t^{\mathfrak{s}^\vee} o \mathbb{C}^{\times} \quad (t \in \mathcal{T}^{\mathfrak{s}^\vee})$$

and a bijection (with good properties)

$$\eta^{\mathfrak s^ee} \colon \Phi^{\mathfrak s^ee}_{\mathrm{e}}(\mathsf{G}) \overset{1-1}{\longleftrightarrow} (T^{\mathfrak s^ee}/\!\!/ W^{\mathfrak s^ee})_{\natural^{\mathfrak s^ee}}$$

where $T^{\mathfrak{s}^{\vee}} := \mathfrak{X}(^L L) \cdot \lambda$ and $W_t^{\mathfrak{s}^{\vee}}$ is the stabilizer of t in

$$W^{\mathfrak{s}^{\vee}} := \left\{ w \in W(L^{\vee}) : {}^{w}\lambda \sim \lambda \otimes \chi^{\vee} \text{ for some } \chi^{\vee} \in \mathfrak{X}({}^{L}L) \right\}$$

with $W(L^{\vee}) = N_{G^{\vee}}(L^{\vee})/L^{\vee}$. Moreover, $\eta^{\mathfrak{s}^{\vee}}$ restricts to a bijection

$$\eta_{\mathrm{t}}^{\mathfrak{s}^{\vee}} \colon \Phi_{\mathrm{e}}^{\mathrm{bd}}(G) \cap \Phi_{\mathrm{e}}^{\mathfrak{s}^{\vee}}(G) \overset{1-1}{\longleftrightarrow} (\mathcal{T}_{\mathrm{u}}^{\mathfrak{s}^{\vee}} /\!/ W^{\mathfrak{s}^{\vee}})_{\natural^{\mathfrak{s}^{\vee}}},$$

where $T_{\mathbf{u}}^{\mathfrak{s}^{\vee}} := \mathfrak{X}_{\mathbf{u}}({}^{L}L) \cdot \lambda$ and $\Phi_{\mathbf{e}}^{\mathbf{bd}}(G)$ consists of the G^{\vee} -conjugacy classes of (φ, ρ) with φ bounded.

Summary:

For any *p*-adic group G, any $\mathfrak{s} = [L, \sigma]_G \in \mathfrak{B}(G)$ and any $\mathfrak{s}^{\vee} = [L, \lambda]_{G^{\vee}} \in \mathfrak{B}^{\vee}(G)$, we have bijections:

$$\mathrm{Irr}^{\mathfrak s}(G) \overset{1-1}{\longleftrightarrow} (\mathcal{T}^{\mathfrak s} /\!/ W^{\mathfrak s})_{\natural^{\mathfrak s}} \quad \text{and} \quad (\mathcal{T}^{\mathfrak s^\vee} /\!/ W^{\mathfrak s^\vee})_{\natural^{\mathfrak s^\vee}} \overset{1-1}{\longleftrightarrow} \Phi_{\mathrm{e}}^{\mathfrak s^\vee}(G).$$

Hypothesis

For any $\mathfrak{s} \in \mathfrak{B}(G)$, there exists a map

$$\begin{array}{ccc} \mathfrak{L}^{\mathfrak{s}} \colon & \operatorname{Irr}^{\mathfrak{s}}(L) & \longrightarrow & \Phi_{\mathrm{e}}^{\mathrm{cusp}}(L) \\ \sigma & \mapsto & \lambda = (\varphi_{\sigma}, \varrho_{\sigma}) \end{array}$$

which satisfies the following functoriality property.

Property

(1) For any $\chi \in \mathfrak{X}_{nr}(L)$, we have

$$(\varphi_{\chi\otimes\sigma},\varrho_{\chi\otimes\sigma})=\chi^{\vee}\cdot(\varphi_{\sigma},\varrho_{\sigma}),$$

where $\chi \mapsto \chi^{\vee}$ is the canonical isomorphism $\mathfrak{X}_{\mathrm{nr}}(L) \stackrel{\sim}{\to} \mathfrak{X}_{\mathrm{nr}}(^{L}L)$.

(2) For any $w \in W(L) := N_G(L)/L$, we have

$$^{\mathsf{w}^{\vee}}(\varphi_{\sigma},\varrho_{\sigma})\simeq(\varphi_{\mathsf{w}_{\sigma}},\varrho_{\mathsf{w}_{\sigma}}),$$

where $w \mapsto w^{\vee}$ is the canonical isomorphism $W(L) \stackrel{\sim}{\to} W(L^{\vee})$.

(3) The collections of 2-cocycles $\sharp^{\mathfrak s}$ and $\sharp^{\mathfrak s^\vee}$ satisfy the following

$$\natural_{\chi^\vee}^{\mathfrak s^\vee}=\natural_\chi^{\mathfrak s}\quad\text{for any }\sigma\in\mathfrak s\text{ and any }\chi\in\mathcal T^{\mathfrak s}\simeq\mathfrak X_{\mathrm{nr}}(\mathit{L})/\mathfrak X_{\mathrm{nr}}(\mathit{L},\sigma),$$

where
$$\mathfrak{X}_{\rm nr}(L,\sigma) := \{ \chi \in \mathfrak{X}_{\rm nr}(L) : \chi \otimes \sigma \simeq \sigma \}.$$

Conclusion

Then there is a canonical bijection

$$(T^{\mathfrak s} /\!/ W^{\mathfrak s})_{
atural} \overset{1-1}{\longleftrightarrow} (T^{\mathfrak s^ee} /\!/ W^{\mathfrak s^ee})_{
atural},$$

and, as a consequence:

$$(*) \qquad \mathrm{Irr}(\mathcal{G}) = \bigcup_{\mathfrak{s} \in \mathfrak{B}(\mathcal{G})} \mathrm{Irr}^{\mathfrak{s}}(\mathcal{G}) \overset{1-1}{\longleftrightarrow} \bigcup_{\mathfrak{s}^{\vee} \in \mathfrak{B}^{\vee}(\mathcal{G})} \Phi_{\mathrm{e}}^{\mathfrak{s}^{\vee}}(\mathcal{G}) = \Phi_{\mathrm{e}}(\mathcal{G}).$$

$$(*^{\mathrm{t}}) \qquad \operatorname{Irr}^{\mathrm{t}}(G) \overset{1-1}{\longleftrightarrow} \Phi_{\mathrm{e}}^{\mathrm{bd}}(G).$$

Theorem [A-Moussaoui-Solleveld, 2022]

Let G be a pure inner inner form of an F-split classical group, with F a p-adic field. Then all the cocycles are trivial, the restriction to $\operatorname{Irr}^{\operatorname{cusp}}(L)$ of the LLC defined by Arthur satisfies the Hypothesis, and the bijection (*) (resp. $(*^t)$) coincides with the LLC (resp. the tempered LLC) constructed by Arthur.

Consequence

When the Hypothesis and the ABPS K-theory conjecture hold (for instance when G is $G_2(F)$, or when F is a p-adic field and G is a pure inner inner form of an F-split classical group), we obtain

$$\mathcal{K}_*^{\mathcal{G}}(\mathcal{I}(\mathcal{G})) \overset{\mathsf{BC}}{\longrightarrow} \mathcal{K}_*(\mathcal{C}^*_{\mathrm{red}}(\mathcal{G})) \overset{1-1}{\longleftrightarrow} \mathcal{K}^*(\mathrm{Irr}^{\mathrm{t}}(\mathcal{G})) \overset{1-1}{\longleftrightarrow} \text{``}\mathcal{K}^*(\Phi^{\mathrm{bd}}_{\mathrm{e}}(\mathcal{G}))'',$$

where

$$\text{``} \mathcal{K}^*(\Phi_{\mathrm{e}}^{\mathrm{bd}}(\mathit{G}))'' := \bigoplus_{\mathfrak{s}^\vee \in \mathfrak{B}^\vee(\mathit{G})} \mathcal{K}^*_{\mathit{W}^{\mathfrak{s}^\vee}, ^L \natural^{\mathfrak{s}^\vee}}(\mathit{T}^{\mathfrak{s}^\vee}_{\mathrm{u}}).$$

Thank you very much for your attention!

