What is an anomaly?

Dan Freed
University of Texas at Austin

February 7, 2023

Steinberger, Adler, Bell-Jackiw

PhySical review volume 76, Numbers october 15. 1949

On the Use of Subtraction Fields and the Lifetimes of Some Types of Meson Decay

$$
\begin{aligned}
& \begin{array}{c}
\text { J. STBingerger* }
\end{array} \\
& \begin{array}{l}
\text { Adoancel Sludy, Princeton, New Jersey } \\
\text { (Received June 13, 1949) }
\end{array}
\end{aligned}
$$

The method of subtraction fields in current meson perturbation theory is described, and it is shown that it leads to finite results in all processes. The method is, however, not without ambiguities, and these are
stated. It is then applied to the following problems in meson decay: Decay of a neutral meson into two and
paysical mevizw
volume ity, numbers
Axial-Vector Vertex in Spinor Electrodynamics

A PCAC PUZZIE: $\Pi^{\circ} \rightarrow Y Y$ TII THE σ MODEI

J.S. Bell
CERN - Geneva
and
Roman Jackiw +
CERN - Geneva
and

Anomalies and the Atiyah-Singer index theorem

Nuclear Physics B
E.i.g
ELSVIER

Axial anomaly and Atiyah-Singer theorem
N.K. Nielsen, Bert Schroer

Nuccear Physiss 8234 (1983) 269-330 © North-Holland Publishing Company

GRavitational anomalies
Lais alvarez-gaumé

$$
\text { Lyman Laboratory of Physics, Hannard Unicerity, Cambriage, MA } 02138, \text { USA }
$$

Edward WITTEN

Sosech Herry Received 7 October 1983

 The condititons for anomaly cancellation between fielelds od difterent spin is inivestigated. Ins six
 -2 supergraviy theory, which is the low enererg linito of one of the sperestring theo
in dimensions there is no way to cancel anomalies between fiedds of different spin.

Voumme 53, Number 16

 PHYSICAL REVIEW LETTERS
Gregory Moore and Philip Nelson Lyman Laboratory of Physics. Hanard Universi(i) Cambride Hanurd University: Camin (Reseived 15 June 1984)

Certain nonlinear sigma models with fermions suffer from an anomaly simila to the one
in non-Abelian gauge theory. We extibidit this anomaly using both perturbative and global in non-Abelian gauge theory. We extibit this anomaly using both perturbative and globe
methods. The affected theories are ill defined and hence unsuitable for describing low. energy dynamics. They incluse cerrain supersymmetric models in four-space dimension

ALGEBRAIC AND HAMILTONIAN METHODS IN THE THEORY of Non-abelian anomalies
L. D. Faddeev and S.L. Shatashvili

The non-Abelian anomalies and the Wess-Zumino action are given a new interpretatio in terms of infinitesimal and global cocycles of the representation of the gauge group acting on functionals of Yang-Mills fields. On the basis of this interpretation, two imple methods of nonperturbative calculation of the anomalies and the Wess-Zumino action are proposed

Proc. Natl. Acad. Sci. USA Vil. 81, Mp. $2597-2600$, April 19
 Mathematics

Dirac operators coupled to vector potentials

(elliptic operators/index theory/characteristic classes/anomalies/gauge fields)
M. F. Atiyah ${ }^{\dagger}$ and I. M. Singer ${ }^{\ddagger}$

TMathematical Institue, University of Oxford, Oxford, England; and \ddagger Department of Mathematics, University of California, Berkeley, CA 94720
Contributed by I. M. Singer, January 6, 1984
Theorem 4. A gauge covariant $\mathscr{F}_{\mathrm{r}}(\mathrm{A})$ smooth in A exists if and only if the determinant line bundle of Ind \not is triviali.e., $\mathrm{d}_{2}=0$ in $\mathrm{H}^{2}(\mathscr{H} / \mathscr{G}, \mathrm{Z})$ or $\mathrm{t}_{1}=0$ in $\mathrm{H}^{1}(\mathscr{G}, \mathrm{Z})$.

The characteristic forms $d_{2 j} \varepsilon H^{2 j}(\mathfrak{A} / \mathscr{G}, Z)$ are obstructions to the existence of a covariant propagator for $\not_{\mathfrak{Q} / \mathscr{G}}$. We ask the question: Do the higher obstructions have physical significance?

Hamiltonian Interpretation of Anomalies

Philip Nelson ${ }^{1 *}$ and Luis Alvarez-Gaumé ${ }^{2}$
Institute for Theoretical Physics, University of California, Santa Barbara, CA93106, USA
L yman Laboratory of Physies, Harvard University, Cambridee, MA02138, USA

Abstract. A family of quantum systems parametrized by the points of compact space can realize its classical symmetries via a new kind of nontrivial ray representation. We show that this phenomenon in fact occurs for the quantum mechanics of fermions in the presence of background gauge fields and is responsible for both the nonabelian anomaly and Witten's $\mathrm{SU}(2)$ anomaly. This provides a hamiltonian interpretation of anomalies: in the
affected theories Gauss' law cannot be implemented. The analysis clearly affected theories Gauss law cannot be implemented. The analysis clearly
shows why there are no further obstructions corresponding to higher spheres in shows why there are no further obstructions corresponding to higher spheres
configuration space, in agreement with a recent result of Atiyah and Singer
51. General renarkg

Faddeev [3] has pointed out that when a gauge theory 10 quantized the gavge operators act with anomalous conmutation relations - so called "Schuinger terns" - on the Hilbert apace \oint of otates. In mathematical language this means that the the algebra \mathcal{L} of the gauge group does not act on \mathcal{S}, but an extenaion of \mathcal{L} by the vector space for scalar-valued functions on the apace of gauge flelds does act. (hore for is regarded as an abelian L ie algebra.) The extension 10 described by a cocycle

$$
c: \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{F}
$$

Global Gravitational Anomalies

Edward Witten*
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Abstract. A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example,
not obvious. Usually, the only simple way to study a diffeomorphism π is to investigate the associated manifold $\left(M \times S^{1}\right)_{\pi}$ discussed in Sect. II. The simplest properties of $\left(M \times S^{1}\right)_{\pi}$ are invariants of a manifold B which has it for boundary. The only evident connection between $\left(M \times S^{1}\right)_{\pi}$ and B in which spinors play a role is the Atiyah-Patodi-Singer theorem concerning the η-invariant [29]. The η invariant can be defined as

$$
\begin{equation*}
\eta=\lim _{\varepsilon \rightarrow 0} \sum_{E_{A} \neq 0}\left(\operatorname{sign} E_{A}\right) \exp -\varepsilon\left|E_{A}\right|, \tag{22}
\end{equation*}
$$

where E_{A} are the eigenvalues of the Dirac operator on $\left(M \times S^{1}\right)_{\pi}$. The Atiyah-Patodi-Singer theorem asserts (for the spin $1 / 2$ case) that

$$
\frac{\eta}{2}=\operatorname{index}_{B}(i D)-\int_{B} \hat{A}(R),
$$

WORLD-SHEET CORRECTIONS

 VIA D-INSTANTONS
Edward Witten

School of Natural Sciences, Institute for Advanced Study
Olden Lane, Princeton, NJ 08540, USA

[^0]
Two myths

Just in case. . .

Myth 1: Anomalies are only caused by fermionic fields

Myth 2: Anomalies are only associated to symmetries

Two myths

Just in case. . .

Myth 1: Anomalies are only caused by fermionic fields
Mythbuster 1: The flavor symmetry of QCD is anomalous-indeed, that anomaly involves fermions-but the anomaly persists in the effective theory of pions, which is a bosonic theory

Myth 2: Anomalies are only associated to symmetries

Two myths

Just in case. . .

Myth 1: Anomalies are only caused by fermionic fields
Mythbuster 1: The flavor symmetry of QCD is anomalous-indeed, that anomaly involves fermions-but the anomaly persists in the effective theory of pions, which is a bosonic theory

Myth 2: Anomalies are only associated to symmetries
Mythbuster 2: The theory of a free spinor field has an anomaly

Main thesis

Quantum theory is projective. Quantization is linear.

Main thesis

Quantum theory is projective. Quantization is linear.

The anomaly of a quantum theory expresses its projectivity

Main thesis

Quantum theory is projective. Quantization is linear.

The anomaly of a quantum theory expresses its projectivity
The anomaly is a feature, not a bug ('t Hooft)

Main thesis

Quantum theory is projective. Quantization is linear.

The anomaly of a quantum theory expresses its projectivity
The anomaly is a feature, not a bug ('t Hooft)
The anomaly is an obstruction only when quantizing

Outline

- Projective spaces, linearization, and symmetry
- Quantum mechanics as a projective system
- Quantum field theory as a projective system
- Invertible field theories
- Anomalies as an obstruction to quantization
- Anomaly of a spinor field

Projectivization of a linear space

W	(complex) vector space
$\mathbb{P}(W)$	projective space of lines $L \subset W$
$\operatorname{End}(W)$	algebra of linear maps $T: W \longrightarrow W$

Projectivization of a linear space

W	(complex) vector space
$\mathbb{P}(W)$	projective space of lines $L \subset W$
$\operatorname{End}(W)$	algebra of linear maps $T: W \longrightarrow W$

If K is any line (1-dimensional vector space), then there are canonical isomorphisms

$$
\begin{array}{rlrl}
\mathbb{P}(W) & \longrightarrow \mathbb{P}(W \otimes K) & \operatorname{End}(W) & \longrightarrow \operatorname{End}(W \otimes K) \\
L & \longmapsto \otimes K & T & \longmapsto
\end{array}
$$

Projectivization of a linear space

W	(complex) vector space
$\mathbb{P}(W)$	projective space of lines $L \subset W$
$\operatorname{End}(W)$	algebra of linear maps $T: W \longrightarrow W$

If K is any line (1-dimensional vector space), then there are canonical isomorphisms

$$
\begin{array}{rlrl}
\mathbb{P}(W) & \longrightarrow \mathbb{P}(W \otimes K) & \operatorname{End}(W) & \longrightarrow \operatorname{End}(W \otimes K) \\
L & \longmapsto \otimes K & T & \longmapsto
\end{array}
$$

A linear symmetry of W induces a projective symmetry of $\mathbb{P}(W)$

Projectivization of a linear space

W	(complex) vector space
$\mathbb{P}(W)$	projective space of lines $L \subset W$
$\operatorname{End}(W)$	algebra of linear maps $T: W \longrightarrow W$

If K is any line (1-dimensional vector space), then there are canonical isomorphisms

$$
\begin{array}{rrr}
\mathbb{P}(W) \longrightarrow \mathbb{P}(W \otimes K) & \operatorname{End}(W) \longrightarrow \operatorname{End}(W \otimes K) \\
L & \longmapsto \otimes K & T
\end{array}>T \otimes \operatorname{id}_{K}
$$

A linear symmetry of W induces a projective symmetry of $\mathbb{P}(W)$
A projective symmetry of $\mathbb{P}(W)$ has a \mathbb{C}^{\times}-torsor of lifts to a linear symmetry of W

Projective symmetries

$$
\mathbb{C}^{\times} \longrightarrow \mathrm{GL} \longrightarrow \mathrm{PGL}
$$

Short exact sequence of Lie groups

Projective symmetries

Short exact sequence of Lie groups
Lie group G of projective symmetries

Projective symmetries

Short exact sequence of Lie groups
Lie group G of projective symmetries
Pullback group extension; linear action of \widetilde{G}

Projective symmetries

Short exact sequence of Lie groups
Lie group G of projective symmetries
Pullback group extension; linear action of \widetilde{G}
Lift to linear symmetries \longleftrightarrow splitting of group extension

Projective symmetries

Short exact sequence of Lie groups
Lie group G of projective symmetries
Pullback group extension; linear action of \widetilde{G}
Lift to linear symmetries \longleftrightarrow splitting of group extension
Obstruction to lifting

Projective symmetries

$$
B \mathbb{C}^{\times}
$$

$$
\mathbb{C}^{\times} \longrightarrow \widetilde{G} \longrightarrow G
$$

$G \longrightarrow B \mathbb{C}^{\times} \longleftrightarrow$ group extension

Projective symmetries

$G \longrightarrow B \mathbb{C}^{\times} \longleftrightarrow$ group extension
Projective action of G with projectivity $\longleftrightarrow \longleftrightarrow$ linear action of \widetilde{G} s.t. \mathbb{C}^{\times}acts by scalar mult

Projective symmetries

$G \longrightarrow B \mathbb{C}^{\times} \longleftrightarrow$ group extension
Projective action of G with projectivity $\longleftrightarrow \longleftrightarrow$ linear action of \widetilde{G} s.t. \mathbb{C}^{\times}acts by scalar mult
In QM one has analogs of the projective action
In QFT one has analogs of the amomaly and the linear action

Projective symmetries

$G \longrightarrow B \mathbb{C}^{\times} \longleftrightarrow$ group extension
Projective action of G with projectivity \longleftrightarrow linear action of \widetilde{G} s.t. \mathbb{C}^{\times}acts by scalar mult
In QM one has analogs of the projective action
In QFT one has analogs of the amomaly and the linear action
The analog of the splitting is a linearization or trivialization of the

Cohomological interpretation; splittings

$$
B \mathbb{C}^{x}
$$

The projectivity has an equivalence class in
for some cohomology theory

Cohomological interpretation; splittings

The projectivity has an equivalence class in
for some cohomology theory
The extension is a "cocycle" for this cohomology class

Cohomological interpretation; splittings

The projectivity has an equivalence class in
for some cohomology theory
The extension is a "cocycle" for this cohomology class
Splittings of the extension-trivializations of -form a torsor over characters of G

Cohomological interpretation; splittings

The projectivity has an equivalence class in
for some cohomology theory
The extension is a "cocycle" for this cohomology class
Splittings of the extension-trivializations of -form a torsor over characters of G
Characters-invertible linear representations-are elements of $H^{1}\left(G ; \mathbb{C}^{\times}\right)$

Cohomological interpretation; splittings

The projectivity has an equivalence class in
for some cohomology theory
The extension is a "cocycle" for this cohomology class
Splittings of the extension-trivializations of -form a torsor over characters of G
Characters-invertible linear representations-are elements of $H^{1}\left(G ; \mathbb{C}^{\times}\right)$
Summary: Projectivity is a "suspended" invertible linear representation

What is a projective space?

Goal: Define a projective space \mathbb{P} without committing to a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P}(W)$

What is a projective space?

Goal: Define a projective space \mathbb{P} without committing to a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P}(W)$
Geometric structure à la Klein-Cartan specified by a model geometry $H \subset X$

What is a projective space?

Goal: Define a projective space \mathbb{P} without committing to a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P}(W)$
Geometric structure à la Klein-Cartan specified by a model geometry $H \subset X$
An instance of that geometry is associated to a right H-torsor T by mixing: $X_{T}:=T \times_{H} X$

What is a projective space?

Goal: Define a projective space \mathbb{P} without committing to a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P}(W)$
Geometric structure à la Klein-Cartan specified by a model geometry $H \subset X$

An instance of that geometry is associated to a right H-torsor T by mixing: $X_{T}:=T \times_{H} X$ Parametrized family: principal H-bundle $P \longrightarrow S \quad$ symmetry: a groupoid/stack $S=* / / G$

What is a projective space?

Goal: Define a projective space \mathbb{P} without committing to a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P}(W)$
Geometric structure à la Klein-Cartan specified by a model geometry $H \subset X$
An instance of that geometry is associated to a right H-torsor T by mixing: $X_{T}:=T \times_{H} X$ Parametrized family: principal H-bundle $P \longrightarrow S \quad$ symmetry: a groupoid/stack $S=* / / G$ Model geometries for complex projective space: $\mathrm{PGL}_{n+1} \mathbb{C} \subset \mathbb{C P}^{n}$ (complex manifold) $\mathrm{PU}_{n+1} \subset \mathbb{C P}^{n}$ (Kähler manifold) $\widehat{\mathrm{PGL}}_{n+1} \mathbb{C} \subset \mathbb{C P}^{n}$ (+ antiholomorphic) $\mathrm{PQ}_{n+1} \subset \mathbb{C P}^{n}$ (+ antiunitary)
(= Fubini-Study isoms)

What is a projective space?

Goal: Define a projective space \mathbb{P} without committing to a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P}(W)$
Geometric structure à la Klein-Cartan specified by a model geometry $H \subset X$
An instance of that geometry is associated to a right H-torsor T by mixing: $X_{T}:=T \times_{H} X$ Parametrized family: principal H-bundle $P \longrightarrow S \quad$ symmetry: a groupoid/stack $S=* / / G$ Model geometries for complex projective space: $\mathrm{PGL}_{n+1} \mathbb{C} \subset \mathbb{C P}^{n}$ (complex manifold)

$$
\begin{aligned}
\mathrm{PU}_{n+1} & \subset \mathbb{C P}^{n} \\
\widehat{\mathrm{PGL}}_{n+1} \mathbb{C} \subset \mathbb{C P}^{n} & (\text { Kähler manifold) } \\
\mathrm{PQ}_{n+1} \subset \mathbb{C P}^{n} & (+ \text { antiholomitary }) \\
& (=\text { Fubini-Study isoms })
\end{aligned}
$$

There are infinite dimensional analogs

Outline

- Projective spaces, linearization, and symmetry
- Quantum mechanics as a projective system
- Quantum field theory as a projective system
- Invertible field theories
- Anomalies as an obstruction to quantization
- Anomaly of a spinor field

Quantum mechanics as a linear system

complex separable Hilbert space
space of pure states
Hamiltonian
transition probability function $\left(\psi_{i} \in L_{i}\right.$ unit norm $)$

Quantum mechanics as a linear system

```
H
P\mathcal{H}
H\in\operatorname{End}(\mathcal{H})
```

$p: \mathbb{P H} \times \mathbb{P} \mathcal{H} \longrightarrow[0,1]$
$L_{0}, L_{1} \longmapsto\left|\left\langle\psi_{0}, \psi_{1}\right\rangle\right|^{2}$
complex separable Hilbert space
space of pure states
Hamiltonian
transition probability function $\left(\psi_{i} \in L_{i}\right.$ unit norm)

Probability: $p\left(L_{f}, e^{-i\left(t_{f}-t_{n}\right) H / \hbar} A_{n} \cdots e^{-i\left(t_{2}-t_{1}\right) H / \hbar} A_{1} e^{-i\left(t_{1}-t_{0}\right) H / \hbar} L_{0}\right) \in[0,1]$
$t_{0}<t_{1}<\cdots<t_{n}<t_{f}$ real numbers, $\quad A_{1}, \ldots, A_{n} \in$ End $\mathcal{H}, \quad L_{0}, L_{f} \in \mathbb{P F} \mathcal{H}$

Quantum mechanics as a linear system

\mathcal{H}
$\mathbb{P H}$
$H \in \operatorname{End}(\mathcal{H})$
$p: \mathbb{P \mathcal { H }} \times \mathbb{P} \mathcal{H} \longrightarrow[0,1]$

$$
L_{0}, L_{1} \longmapsto\left|\left\langle\psi_{0}, \psi_{1}\right\rangle\right|^{2}
$$

complex separable Hilbert space
space of pure states
Hamiltonian
transition probability function $\left(\psi_{i} \in L_{i}\right.$ unit norm $)$

Probability: $p\left(L_{f}, e^{-i\left(t_{f}-t_{n}\right) H / \hbar} A_{n} \cdots e^{-i\left(t_{2}-t_{1}\right) H / \hbar} A_{1} e^{-i\left(t_{1}-t_{0}\right) H / \hbar} L_{0}\right) \in[0,1]$
$t_{0}<t_{1}<\cdots<t_{n}<t_{f}$ real numbers, $\quad A_{1}, \ldots, A_{n} \in \operatorname{End} \mathcal{H}, \quad L_{0}, L_{f} \in \mathbb{P F}$

Amplitude: $\left\langle\psi_{f}, e^{-i\left(t_{f}-t_{n}\right) H / \hbar} A_{n} \cdots e^{-i\left(t_{2}-t_{1}\right) H / \hbar} A_{1} e^{-i\left(t_{1}-t_{0}\right) H / \hbar} \psi_{0}\right\rangle_{\mathcal{H}} \in \mathbb{C} \quad$ if we choose vectors $\psi_{0} \in L_{0}, \psi_{f} \in L_{f} ; \quad$ as a function of L_{0}, L_{f} the amplitude lies in the hermitian line $\left(L_{0} \otimes \overline{L_{f}}\right)^{*} ; \quad$ the probability is the norm square: \mid Amplitude $\left.\right|^{2}=$ Probability

Quantum mechanics as a projective system

We only need a projective space, not a linear space:
projective space complex algebra

$$
H \in \operatorname{End}(\mathscr{A} \mathbb{P})
$$

Hamiltonian

$$
\begin{aligned}
p: \mathbb{P} \times \mathbb{P} & \longrightarrow[0,1] \\
\sigma_{0}, \sigma_{1} & \longmapsto\left|\left\langle\psi_{0}, \psi_{1}\right\rangle\right|_{\mathscr{H}}^{2}
\end{aligned}
$$

$$
\text { for any linearization } \mathbb{P} \xrightarrow{\cong} \mathbb{P H}
$$

Quantum mechanics as a projective system

We only need a projective space, not a linear space:

\mathbb{P}	projective space
$\mathscr{A}_{\mathbb{P}}$	complex algebra
$H \in \operatorname{End}\left(\mathscr{A}_{\mathbb{P}}\right)$	Hamiltonian
$p: \mathbb{P} \times \mathbb{P} \longrightarrow[0,1]$	for any linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P H}$
$\sigma_{0}, \sigma_{1} \longmapsto\left\|\left\langle\psi_{0}, \psi_{1}\right\rangle\right\|_{\mathscr{H}}^{2}$	

Probability: $p\left(\sigma_{f}, e^{-i\left(t_{f}-t_{n}\right) H / \hbar} A_{n} \cdots e^{-i\left(t_{2}-t_{1}\right) H / \hbar} A_{1} e^{-i\left(t_{1}-t_{0}\right) H / \hbar} \sigma_{0}\right) \in[0,1]$

Quantum mechanics as a projective system

We only need a projective space, not a linear space:

\mathbb{P}	projective space
$\mathscr{A} \mathbb{P}$	complex algebra
$H \in \operatorname{End}\left(\mathscr{A}_{\mathbb{P}}\right)$	Hamiltonian
$p: \mathbb{P} \times \mathbb{P} \longrightarrow[0,1]$	for any linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P \mathcal { H }}$
$\sigma_{0}, \sigma_{1} \longmapsto\left\|\left\langle\psi_{0}, \psi_{1}\right\rangle\right\|_{\mathscr{H}}^{2}$	

Probability: $p\left(\sigma_{f}, e^{-i\left(t_{f}-t_{n}\right) H / \hbar} A_{n} \cdots e^{-i\left(t_{2}-t_{1}\right) H / \hbar} A_{1} e^{-i\left(t_{1}-t_{0}\right) H / \hbar} \sigma_{0}\right) \in[0,1]$

Amplitude: $\left\langle-, e^{-i\left(t_{f}-t_{n}\right) H / \hbar} A_{n} \cdots e^{-i\left(t_{2}-t_{1}\right) H / \hbar} A_{1} e^{-i\left(t_{1}-t_{0}\right) H / \hbar}-\right\rangle \in \mathcal{L}_{\sigma_{0}, \sigma_{f}}$

The symmetry/structure group of quantum mechanics

\mathbb{P}	projective space
$p: \mathbb{P} \times \mathbb{P} \longrightarrow[0,1]$	transition probability function

Fix a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P F}$; then the group $\operatorname{Aut}(\mathbb{P}, p)$ of maps $\mathbb{P} \longrightarrow \mathbb{P}$ preserving p is the isometry group of the Fubini-Study metric $d: \mathbb{P J} \times \mathbb{P F} \mathcal{H} \longrightarrow \mathbb{R}^{\geqslant 0} \quad \cos (d)=2 p-1$

The symmetry/structure group of quantum mechanics

```
P
p:\mathbb{P}\times\mathbb{P}\longrightarrow[0,1]
```

projective space transition probability function

Fix a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P F}$; then the group $\operatorname{Aut}(\mathbb{P}, p)$ of maps $\mathbb{P} \longrightarrow \mathbb{P}$ preserving p is the isometry group of the Fubini-Study metric $d: \mathbb{P F} \times \mathbb{P} \mathcal{H} \longrightarrow \mathbb{R}^{\geqslant 0} \quad \cos (d)=2 p-1$

Example: $\operatorname{dim} \mathcal{H}=2, \mathbb{P}=\mathbb{C P}^{1} \approx S^{2}$ (round metric), $\operatorname{Aut}(\mathbb{P}, p)=\mathrm{O}_{3}$

$$
\begin{aligned}
& \mathbb{T} \longrightarrow \mathrm{U}_{2} \longrightarrow \mathrm{SO}_{3} \\
& \mathbb{T} \longrightarrow \mathrm{Q}_{2} \longrightarrow \mathrm{O}_{3}=\mathrm{PQ}_{2}
\end{aligned}
$$

The symmetry/structure group of quantum mechanics

```
P
p:\mathbb{P}\times\mathbb{P}\longrightarrow[0,1]
```

projective space
transition probability function

Fix a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P F}$; then the group $\operatorname{Aut}(\mathbb{P}, p)$ of maps $\mathbb{P} \longrightarrow \mathbb{P}$ preserving p is the isometry group of the Fubini-Study metric $d: \mathbb{P J} \times \mathbb{P F} \mathcal{H} \longrightarrow \mathbb{R}^{\geqslant 0} \quad \cos (d)=2 p-1$

Example: $\operatorname{dim} \mathcal{H}=2, \mathbb{P}=\mathbb{C P}^{1} \approx S^{2}$ (round metric), $\operatorname{Aut}(\mathbb{P}, p)=\mathrm{O}_{3}$

$$
\begin{aligned}
& \mathbb{T} \longrightarrow \mathrm{U}_{2} \longrightarrow \mathrm{SO}_{3} \\
& \mathbb{T} \longrightarrow \mathrm{Q}_{2} \longrightarrow \mathrm{O}_{3}=\mathrm{PQ}_{2}
\end{aligned}
$$

Theorem (von Neumann-Wigner): The group PQ of projective QM symmetries fits into a group extension $\mathbb{T} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{PQ}$, where $\mathrm{Q}=$ group of unitaries and antiunitaries

The symmetry/structure group of quantum mechanics

```
P
p:\mathbb{P}\times\mathbb{P}\longrightarrow[0,1]
```

projective space
transition probability function

Fix a linearization $\mathbb{P} \xrightarrow{\cong} \mathbb{P F}$; then the group $\operatorname{Aut}(\mathbb{P}, p)$ of maps $\mathbb{P} \longrightarrow \mathbb{P}$ preserving p is the isometry group of the Fubini-Study metric $d: \mathbb{P J} \times \mathbb{P F} \mathcal{H} \longrightarrow \mathbb{R}^{\geqslant 0} \quad \cos (d)=2 p-1$

Example: $\operatorname{dim} \mathcal{H}=2, \mathbb{P}=\mathbb{C P}^{1} \approx S^{2}$ (round metric), $\operatorname{Aut}(\mathbb{P}, p)=\mathrm{O}_{3}$

$$
\begin{aligned}
& \mathbb{T} \longrightarrow \mathrm{U}_{2} \longrightarrow \mathrm{SO}_{3} \\
& \mathbb{T} \longrightarrow \mathrm{Q}_{2} \longrightarrow \mathrm{O}_{3}=\mathrm{PQ}_{2}
\end{aligned}
$$

Theorem (von Neumann-Wigner): The group PQ of projective QM symmetries fits into a group extension $\mathbb{T} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{PQ}$, where $\mathrm{Q}=$ group of unitaries and antiunitaries

Therefore, $\mathrm{PQ}_{n} \mathrm{C} \mathbb{C P}^{n}$ or $\mathrm{PQ}_{\infty} \mathrm{C} \mathbb{C P}^{\infty}$ is the model geometry for QM

Linearization and anomalies

$$
\mathbb{T} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{PQ} \longrightarrow \widetilde{B \mathbb{T}}
$$

The extension of QM symmetry groups is classified by a twisted cocycle

Linearization and anomalies

$$
\mathbb{T} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{PQ} \longrightarrow \widetilde{B \mathbb{T}}
$$

The extension of QM symmetry groups is classified by a twisted cocycle
A family $X \longrightarrow S$ of QM systems over S is specified by a principal PQ-bundle $P \longrightarrow S$

Linearization and anomalies

$$
\mathbb{T} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{PQ} \quad \widetilde{B \mathbb{T}}
$$

The extension of QM symmetry groups is classified by a twisted cocycle
A family $X \longrightarrow S$ of QM systems over S is specified by a principal PQ-bundle $P \longrightarrow S$
Associated "wisted gerbe" over S is the amomaly-obstruction to a linearization-which is a lift to a principal Q-bundle over S. Isomorphism class of
lies in " $H^{2}(S ; \widetilde{\mathbb{T}})$ "

Linearization and anomalies

$$
\mathbb{T} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{PQ} \quad \widetilde{B \mathbb{T}}
$$

The extension of QM symmetry groups is classified by a twisted cocycle
A family $X \longrightarrow S$ of QM systems over S is specified by a principal PQ-bundle $P \longrightarrow S$
Associated "wisted gerbe" over S is the amomaly-obstruction to a linearization-which is a lift to a principal Q-bundle over S. Isomorphism class of lies in " $H^{2}(S ; \widetilde{\mathbb{T}})$ "

Linearizations, if they exist, are a "categorical torsor" (gerbe) over principal \mathbb{T}-bundles

Linearization and anomalies

The extension of QM symmetry groups is classified by a twisted cocycle
A family $X \longrightarrow S$ of QM systems over S is specified by a principal PQ-bundle $P \longrightarrow S$
Associated "wisted gerbe" over S is the momaly—obstruction to a linearization-which is a lift to a principal Q-bundle over S. Isomorphism class of lies in " $H^{2}(S ; \widetilde{\mathbb{T}})$ "

Linearizations, if they exist, are a "categorical torsor" (gerbe) over principal \mathbb{T}-bundles
For $S=* / / G$ (single QM system with G-symmetry), reduce to group extension discussion

Outline

- Projective spaces, linearization, and symmetry
- Quantum mechanics as a projective system
- Quantum field theory as a projective system
- Invertible field theories
- Anomalies as an obstruction to quantization
- Anomaly of a spinor field

Wick-rotated QFT as a linear representation

Graeme Segal (mid 1980's): Wick-rotated QFT is a representation of a bordism category

Wick-rotated QFT as a linear representation

Graeme Segal (mid 1980's): Wick-rotated QFT is a representation of a bordism category
There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}

Wick-rotated QFT as a linear representation

Graeme Segal (mid 1980's): Wick-rotated QFT is a representation of a bordism category
There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F} n is the dimension of "spacetime"

Wick-rotated QFT as a linear representation

Graeme Segal (mid 1980's): Wick-rotated QFT is a representation of a bordism category
There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}
n is the dimension of "spacetime"
$\operatorname{Man}_{n} \quad$ category of smooth n-manifolds and local diffeomorphisms
sSet category of simplicial sets
Definition: A Wick-rotated field is a sheaf

$$
\mathcal{F}: \operatorname{Man}_{n}^{\mathrm{op}} \longrightarrow \mathrm{sSet}
$$

Examples: Riemannian metrics, G-connections, \mathbb{R}-valued functions, M-valued functions, orientations, spin structures, gerbes, ...
\mathcal{F} can be a collection of fields; $\mathcal{F}(M)$ is the simplicial set of fields on an n-manifold M

Axiom System: $\operatorname{Bord}_{n}(\mathcal{F})$ bordism category
n dimension of spacetime
\mathcal{F} background fields (orientation, Riemannian metric, ...)

Axiom System: $\operatorname{Bord}_{n}(\mathcal{F})$ bordism category
n dimension of spacetime
\mathcal{F} background fields (orientation, Riemannian metric, ...)

Vect linear category of topological vector spaces and linear maps

Axiom System: $\operatorname{Bord}_{n}(\mathcal{F})$ bordism category
n dimension of spacetime
\mathcal{F} background fields (orientation, Riemannian metric, ...)

Vect linear category of topological vector spaces and linear maps
$F: \operatorname{Bord}_{n}(\mathcal{F}) \longrightarrow$ Vect linear representation of bordism category

Axiom System: $\operatorname{Bord}_{n}(\mathcal{F})$ bordism category
n dimension of spacetime
\mathcal{F} background fields (orientation, Riemannian metric, ...)

Vect linear category of topological vector spaces and linear maps
$F: \operatorname{Bord}_{n}(\mathcal{F}) \longrightarrow$ Vect linear representation of bordism category

Fully local for topological theories; full locality in principle for general theories

Axiom System: $\operatorname{Bord}_{n}(\mathcal{F})$ bordism category
n dimension of spacetime
\mathcal{F} background fields (orientation, Riemannian metric, ...)

Vect linear category of topological vector spaces and linear maps
$F: \operatorname{Bord}_{n}(\mathcal{F}) \longrightarrow$ Vect linear representation of bordism category

Fully local for topological theories; full locality in principle for general theories
Unitarity is encoded via an additional reflection positivity structure

Axiom System: $\operatorname{Bord}_{n}(\mathcal{F})$ bordism category
n dimension of spacetime
\mathcal{F} background fields (orientation, Riemannian metric, ...)

Vect linear category of topological vector spaces and linear maps
$F: \operatorname{Bord}_{n}(\mathcal{F}) \longrightarrow$ Vect linear representation of bordism category

Fully local for topological theories; full locality in principle for general theories
Unitarity is encoded via an additional reflection positivity structure
Kontsevich-Segal: recent paper with these axioms for nontopological theories geometric form of Wick rotation via admissible complex metrics theorem constructing theory on globally hyperbolic Lorentz manifolds

Wick-rotated QFT as a projective representation; the anomaly

Proj category of "(holomorphic) projective spaces and holomorphic maps"
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Wick-rotated QFT as a projective representation; the anomaly

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

$$
\text { Line } \longrightarrow \text { Vect } \longrightarrow \text { Proj }
$$

Wick-rotated QFT as a projective representation; the anomaly

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

$$
\text { Line } \longrightarrow \text { Vect } \longrightarrow \text { Proj } \quad \Sigma(\text { Line })
$$

Wick-rotated QFT as a projective representation; the anomaly

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Projective theory \bar{F}

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Projective theory \bar{F}
Its anomaly = projectivity a

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Projective theory \bar{F}
Its anomaly $=$ projectivity α and resulting extension of the bordism category

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Projective theory \bar{F}
Its anomaly $=$ projectivity a and resulting extension of the bordism category
Trivialization of $\alpha=$ linearization of \bar{F} to F

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Projective theory \bar{F}
Its anomaly $=$ projectivity α and resulting extension of the bordism category
Trivialization of $\alpha=$ linearization of \bar{F} to F
Ratio of trivializations: an invertible n-dimensional theory

Segal: 1980s paper on 2d conformal field theory


```
            For any modular functor }E\mathrm{ we have a map }\textrm{E}(\textrm{X})\otimes\textrm{E}(\textrm{Y})->\textrm{E}(\textrm{X}\circY)\mathrm{ when
X and Y are composable morphisms in }\mathcal{G}\mathrm{ with their boundaries compatibly
labelled. So E defines an extension }\mp@subsup{b}{}{E}\mathrm{ of the category }b\mathrm{ . An object
of }\mp@subsup{\ell}{}{E}\mathrm{ is a collection of circles each with a label from }\Phi\mathrm{ , and a
morphism is a pair (X,\epsilon), where X is an morphism in b and \epsilon\epsilonE(X).
Definition (5.2). A weakly conformal field theory is a representation
of f}\mp@subsup{|}{}{E}\mathrm{ for some modular functor E, satisfying conditions as in (4.4).
```


Anomaly as an invertible field theory

$$
\Sigma(\text { Line })
$$

$\Sigma($ Line) is a groupoid of gerbes, a categorification of Line

Anomaly as an invertible field theory

$$
\Sigma(\text { Line })
$$

$$
\operatorname{Bord}_{n}(\mathcal{F})
$$

Σ (Line) is a groupoid of gerbes, a categorification of Line
The anomaly theory a is a once-categorified n-dimensional invertible field theory

Anomaly as an invertible field theory

Σ (Line) is a groupoid of gerbes, a categorification of Line
The anomaly theory a is a once-categorified n-dimensional invertible field theory
An n-dimensional theory \bar{F} relative to assigns $\bar{F}\left(X^{n}\right): \mathbb{C} \longrightarrow \quad$ for X^{n} closed
(Note: Relative field theories are called twisted theories by Stolz-Teichner)

Anomaly as an invertible field theory

Σ (Line) is a groupoid of gerbes, a categorification of Line
The anomaly theory a is a once-categorified n-dimensional invertible field theory
An n-dimensional theory \bar{F} relative to assigns $\bar{F}\left(X^{n}\right): \mathbb{C} \longrightarrow \quad$ for X^{n} closed
To Y^{n-1} closed, \bar{F} assigns a projective space with projectivity

Anomaly as an invertible field theory

$\Sigma($ Line) is a groupoid of gerbes, a categorification of Line
The anomaly theory a is a once-categorified n-dimensional invertible field theory
An n-dimensional theory \bar{F} relative to assigns $\bar{F}\left(X^{n}\right): \mathbb{C} \longrightarrow \quad$ for X^{n} closed
To Y^{n-1} closed, \bar{F} assigns a projective space with projectivity
Ratios of trivializations of a : a standard type of n-dimensional invertible theory

Extension of anomaly theory; relative theory \longrightarrow boundary theory

$$
\operatorname{Bord}_{n}(\mathcal{F}) \hookrightarrow \longrightarrow \operatorname{Bord}_{n+1}(\tilde{\mathcal{F}})
$$

In many cases the once-categorified n-dimensional anomaly theory has an extension to an ($n+1$)-dimensional theory

Extension of anomaly theory; relative theory \longrightarrow boundary theory

$$
\operatorname{Bord}_{n}(\mathcal{F}) \hookrightarrow \longrightarrow \operatorname{Bord}_{n+1}(\tilde{\mathcal{F}})
$$

In many cases the once-categorified n-dimensional anomaly theory has an extension to an ($n+1$)-dimensional theory

In that case a theory relative to is promoted to a boundary theory for

Extension of anomaly theory; relative theory \longrightarrow boundary theory

$$
\operatorname{Bord}_{n}(\mathcal{F}) \longleftrightarrow \operatorname{Bord}_{n+1}(\tilde{\mathcal{F}})
$$

In many cases the once-categorified n-dimensional anomaly theory has an extension to an ($n+1$)-dimensional theory

In that case a theory relative to is promoted to a boundary theory for
The extended anomaly theory assigns a nonzero number to a closed $(n+1)$-manifold which, though not part of an n-dimensional anomalous theory, is a useful quantity

Extension of anomaly theory; relative theory \longrightarrow boundary theory

$$
\operatorname{Bord}_{n}(\mathcal{F}) \longleftrightarrow \operatorname{Bord}_{n+1}(\tilde{\mathcal{F}})
$$

In many cases the once-categorified n-dimensional anomaly theory has an extension to an ($n+1$)-dimensional theory

In that case a theory relative to is promoted to a boundary theory for
The extended anomaly theory assigns a nonzero number to a closed ($n+1$)-manifold which, though not part of an n-dimensional anomalous theory, is a useful quantity

Anomaly theories α, \tilde{a} are not in general topological; if so, topological tools are available

Outline

- Projective spaces, linearization, and symmetry
- Quantum mechanics as a projective system
- Quantum field theory as a projective system
- Invertible field theories
- Anomalies as an obstruction to quantization
- Anomaly of a spinor field

Preliminary: differential cohomology

$$
h^{\bullet}
$$ cohomology theory (on CW complexes) differential refinement (on smooth manifolds)

Preliminary: differential cohomology

h°
$\check{h}^{\bullet} \longrightarrow h^{\circ}$ cohomology theory (on CW complexes) differential refinement (on smooth manifolds)

Preliminary: differential cohomology

h^{\bullet}
$h^{\bullet} \longrightarrow$ cohomology theory (on CW complexes) differential refinement (on smooth manifolds)

$\{\mathbb{R} / \mathbb{Z}$-connections on $M\} / \cong \quad\{$ principal \mathbb{R} / \mathbb{Z}-bundles on $M\} / \cong$

Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman
Generalized differential cocycles on bordism, values in Anderson dual $I \mathbb{Z}$ to sphere; based on ideas of Hopkins-Singer

Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman
Generalized differential cocycles on bordism, values in Anderson dual $I \mathbb{Z}$ to sphere; based on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (\mathcal{B} is a differential bordism spectrum)

Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman
Generalized differential cocycles on bordism, values in Anderson dual $I \mathbb{Z}$ to sphere; based on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (\mathcal{B} is a differential bordism spectrum)

The curvature, or "anomaly polynomial", encodes the local anomaly

Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman
Generalized differential cocycles on bordism, values in Anderson dual $I \mathbb{Z}$ to sphere; based on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (\mathcal{B} is a differential bordism spectrum)

The curvature, or "anomaly polynomial", encodes the local anomaly
The deformation class is accessible via homotopical methods

Outline

- Projective spaces, linearization, and symmetry
- Quantum mechanics as a projective system
- Quantum field theory as a projective system
- Invertible field theories
- Anomalies as an obstruction to quantization
- Anomaly of a spinor field

Quantum theory is projective. Quantization is linear.

$\pi: \mathcal{F} \longrightarrow \overline{\mathcal{F}} \quad$ fiber bundle of collection of fields fibers of $\pi \quad$ fluctuating fields
$\overline{\mathcal{F}}$
background fields

Quantum theory is projective. Quantization is linear.

$\pi: \mathcal{F} \longrightarrow \overline{\mathcal{F}} \quad$ fiber bundle of collection of fields
fibers of $\pi \quad$ fluctuating fields
$\overline{\mathcal{F}}$
background fields
Quantization: passage from a theory F on \mathcal{F} to a theory \bar{F} on $\overline{\mathcal{F}}$ via integration over π

$\pi: \mathcal{F} \longrightarrow \overline{\mathcal{F}} \quad$ fiber bundle of collection of fields
fibers of $\pi \quad$ fluctuating fields
$\overline{\mathcal{F}} \quad$ background fields
Quantization: passage from a theory F on \mathcal{F} to a theory \bar{F} on $\overline{\mathcal{F}}$ via integration over π Closed n-manifold X : Feynman path integral

$\pi: \mathcal{F} \longrightarrow \overline{\mathcal{F}} \quad$ fiber bundle of collection of fields
fibers of $\pi \quad$ fluctuating fields
$\overline{\mathcal{F}} \quad$ background fields
Quantization: passage from a theory F on \mathcal{F} to a theory \bar{F} on $\overline{\mathcal{F}}$ via integration over π Closed n-manifold X : Feynman path integral

Closed $(n-1)$-manifold Y : canonical quantization

$\pi: \mathcal{F} \longrightarrow \overline{\mathcal{F}} \quad$ fiber bundle of collection of fields
fibers of $\pi \quad$ fluctuating fields
$\overline{\mathcal{F}}$
background fields

Quantization: passage from a theory F on \mathcal{F} to a theory \bar{F} on $\overline{\mathcal{F}}$ via integration over π Closed n-manifold X : Feynman path integral

Closed ($n-1$)-manifold Y : canonical quantization
To carry out quantization we must descend the projectivity/anomaly α :
$\operatorname{Bord}_{n}(\mathcal{F})$

$$
\Sigma^{n+1} I \mathbb{C}^{\times}
$$

anomaly is obstruction to existence descents form a torsor over n-dimensional theories
$\operatorname{Bord}_{n}(\overline{\mathcal{F}})$

Anomalies: summary

- Quantum theory is projective - the 't Hooft anomaly is the projectivity

Anomalies: summary

- Quantum theory is projective - the 't Hooft anomaly is the projectivity
- Quantization is linear-the anomaly obstructs quantization

Anomalies: summary

- Quantum theory is projective - the 't Hooft anomaly is the projectivity
- Quantization is linear - the anomaly obstructs quantization
- If the obstruction vanishes, one must specify descent data, which is a torsor over an abelian group of invertible field theories

Anomalies: summary

- Quantum theory is projective - the 't Hooft anomaly is the projectivity
- Quantization is linear - the anomaly obstructs quantization
- If the obstruction vanishes, one must specify descent data, which is a torsor over an abelian group of invertible field theories
- There is a well-developed theory of invertible field theories, so the projectivity of quantum field theory is accessible using geometric and topological tools

Anomalies: summary

- Quantum theory is projective - the 't Hooft anomaly is the projectivity
- Quantization is linear - the anomaly obstructs quantization
- If the obstruction vanishes, one must specify descent data, which is a torsor over an abelian group of invertible field theories
- There is a well-developed theory of invertible field theories, so the projectivity of quantum field theory is accessible using geometric and topological tools
- The anomaly of a QFT is itself a field theory, so obeys locality and, typically, unitarity

Outline

- Projective spaces, linearization, and symmetry
- Quantum mechanics as a projective system
- Quantum field theory as a projective system
- Invertible field theories
- Anomalies as an obstruction to quantization
- Anomaly of a spinor field

Free spinor field data on \mathbb{M}^{n}

$$
\begin{aligned}
& \mathbb{M}^{n} \\
& C \subset \mathbb{R}^{1, n-1} \\
& \operatorname{Spin}_{1, n-1} \subset \operatorname{Cliff}_{n-1,1}^{0}
\end{aligned}
$$

Minkowski spacetime (affine space, Lorentz metric) component of timelike vectors (time-orientation) Lorentz group

Free spinor field data on \mathbb{M}^{n}

$$
\begin{aligned}
& \mathbb{M}^{n} \\
& C \subset \mathbb{R}^{1, n-1} \\
& \operatorname{Spin}_{1, n-1} \subset \operatorname{Cliff}_{n-1,1}^{0} \\
& \mathbb{S} \\
& \Gamma: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}^{1, n-1} \\
& m: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}
\end{aligned}
$$

Minkowski spacetime (affine space, Lorentz metric) component of timelike vectors (time-orientation)

Lorentz group
real (ungraded) Cliff ${ }_{n-1,1}^{0}$-module
symmetric $\operatorname{Spin}_{1, n-1}$-invariant form; $\Gamma(s, s) \in \bar{C}$ for all $s \in \mathbb{S}$
skew-symmetric Spin $_{1, n-1}$-invariant (mass) form

Free spinor field data on \mathbb{M}^{n}

$$
\begin{aligned}
& \mathbb{M}^{n} \\
& C \subset \mathbb{R}^{1, n-1} \\
& \operatorname{Spin}_{1, n-1} \subset \operatorname{Cliff}_{n-1,1}^{0} \\
& \mathbb{S} \\
& \Gamma: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}^{1, n-1} \\
& m: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}
\end{aligned}
$$

Minkowski spacetime (affine space, Lorentz metric) component of timelike vectors (time-orientation)

Lorentz group
real (ungraded) Cliff ${ }_{n-1,1}^{0}$-module
symmetric $\operatorname{Spin}_{1, n-1}$-invariant form; $\Gamma(s, s) \in \bar{C}$ for all $s \in \mathbb{S}$ skew-symmetric Spin $_{1, n-1}$-invariant (mass) form

- If \mathbb{S} is irreducible, Γ exists and is unique up to scale

Free spinor field data on \mathbb{M}^{n}

$$
\begin{aligned}
& \mathbb{M}^{n} \\
& C \subset \mathbb{R}^{1, n-1} \\
& \operatorname{Spin}_{1, n-1} \subset \operatorname{Cliff}_{n-1,1}^{0} \\
& \mathbb{S} \\
& \Gamma: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}^{1, n-1} \\
& m: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}
\end{aligned}
$$

Minkowski spacetime (affine space, Lorentz metric) component of timelike vectors (time-orientation)

Lorentz group
real (ungraded) Cliff ${ }_{n-1,1}^{0}$-module
symmetric $\operatorname{Spin}_{1, n-1}$-invariant form; $\Gamma(s, s) \in \bar{C}$ for all $s \in \mathbb{S}$ skew-symmetric Spin $_{1, n-1}$-invariant (mass) form

- If \mathbb{S} is irreducible, Γ exists and is unique up to scale
- Given a pairing Γ there is a unique compatible Cliff $_{n-1,1}{\text {-module structure on } \mathbb{S} \oplus \mathbb{S}^{*}}^{*}$

Free spinor field data on \mathbb{M}^{n}

$$
\begin{aligned}
& \mathbb{M}^{n} \\
& C \subset \mathbb{R}^{1, n-1} \\
& \operatorname{Spin}_{1, n-1} \subset \operatorname{Cliff}_{n-1,1}^{0} \\
& \mathbb{S} \\
& \Gamma: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}^{1, n-1} \\
& m: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}
\end{aligned}
$$

Minkowski spacetime (affine space, Lorentz metric) component of timelike vectors (time-orientation)

Lorentz group
real (ungraded) Cliff ${ }_{n-1,1}^{0}$-module
symmetric Spin $_{1, n-1}$-invariant form; $\Gamma(s, s) \in \bar{C}$ for all $s \in \mathbb{S}$ skew-symmetric Spin $_{1, n-1}$-invariant (mass) form

- If \mathbb{S} is irreducible, Γ exists and is unique up to scale
- Given a pairing Γ there is a unique compatible Cliff $n-1,1$-module structure on $\mathbb{S} \oplus \mathbb{S}^{*}$
- Every finite dimensional Cliff $n-1,1$ - module is of this form

Free spinor field data on \mathbb{M}^{n}

$$
\begin{aligned}
& \mathbb{M}^{n} \\
& C \subset \mathbb{R}^{1, n-1} \\
& \operatorname{Spin}_{1, n-1} \subset \operatorname{Cliff}_{n-1,1}^{0} \\
& \mathbb{S} \\
& \Gamma: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}^{1, n-1} \\
& m: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}
\end{aligned}
$$

Minkowski spacetime (affine space, Lorentz metric) component of timelike vectors (time-orientation)
Lorentz group
real (ungraded) Cliff ${ }_{n-1,1}^{0}$-module
symmetric $\operatorname{Spin}_{1, n-1}$-invariant form; $\Gamma(s, s) \in \bar{C}$ for all $s \in \mathbb{S}$ skew-symmetric Spin $_{1, n-1}$-invariant (mass) form

- If \mathbb{S} is irreducible, Γ exists and is unique up to scale
- Given a pairing Γ there is a unique compatible Cliff $n-1,1$-module structure on $\mathbb{S} \oplus \mathbb{S}^{*}$
- Every finite dimensional Cliff ${ }_{n-1,1}$-module is of this form

Lemma (F -Hopkins): Nondegenerate mass terms for $\mathbb{S} \longleftrightarrow$ Cliff $_{n-1,2}$-module structures on $\mathbb{S} \oplus \mathbb{S}^{*}$ that extend the Cliff $n-1,1$-module structure

Problem: For $(\mathbb{S}, \Gamma)($ with $m=0)$, deduce the $(n+1)$-dimensional anomaly theory $\alpha_{(\mathbb{S}, \Gamma)}$

Problem: For $(\mathbb{S}, \Gamma)($ with $m=0)$, deduce the $(n+1)$-dimensional anomaly theory $\alpha_{(\mathbb{S}, \Gamma)}$

- $\alpha_{(\mathbb{S}, \Gamma)}$ is an invertible field theory with $\mathcal{F}=$ Riem \times Spin
- We implicitly take a universal target for invertible field theories

Problem: For $(\mathbb{S}, \Gamma)($ with $m=0)$, deduce the $(n+1)$-dimensional anomaly theory $\alpha_{(\mathbb{S}, \Gamma)}$

- $\alpha_{(\mathbb{S}, \Gamma)}$ is an invertible field theory with $\mathcal{F}=$ Riem \times Spin
- We implicitly take a universal target for invertible field theories
- The "curvature" of the theory (local anomaly) is a degree $(n+2)$ differential form on Riem, a component of the Chern-Weil form for \hat{A}; it vanishes if $n \not \equiv 2(\bmod 4)$, in which case $\alpha_{(\mathbb{S}, \Gamma)}$ is a topological theory; it factors through $\mathcal{F}=$ Spin

Problem: For $(\mathbb{S}, \Gamma)($ with $m=0)$, deduce the $(n+1)$-dimensional anomaly theory $\alpha_{(\mathbb{S}, \Gamma)}$

- $\alpha_{(\mathbb{S}, \Gamma)}$ is an invertible field theory with $\mathcal{F}=$ Riem \times Spin
- We implicitly take a universal target for invertible field theories
- The "curvature" of the theory (local anomaly) is a degree $(n+2)$ differential form on Riem, a component of the Chern-Weil form for \hat{A}; it vanishes if $n \not \equiv 2(\bmod 4)$, in which case $\alpha_{(\mathbb{S}, \Gamma)}$ is a topological theory; it factors through $\mathcal{F}=$ Spin
- Let $M(\mathbb{S})$ denote the vector space of mass pairings. (It may be the zero vector space.) We can take $\mathcal{F}=$ Riem $\times \operatorname{Spin} \times M(\mathbb{S})$ and deduce the anomaly; see arXiv:1905.09315 with Córdova-Lam-Seiberg

Free fermion anomaly theory (F-Hopkins)

```
S real (ungraded) Cliffol,1,1}
\Gamma : \mathbb { S } \times \mathbb { S } \longrightarrow \mathbb { R } ^ { 1 , n - 1 }
```

```
symmetric Spin
```

```
symmetric Spin
```

Lemma: Nondegenerate mass terms for $\mathbb{S} \longleftrightarrow$ Cliff $_{n-1,2 \text {-module structures on } \mathbb{S} \oplus \mathbb{S}^{*}}$ that extend the Cliff $n-1,1$-module structure

Free fermion anomaly theory (F-Hopkins)

```
S real (ungraded) Cliff
\Gamma : \mathbb { S } \times \mathbb { S } \longrightarrow \mathbb { R } ^ { 1 , n - 1 }
symmetric Spin}1,n-1\mathrm{ -invariant form; }\Gamma(s,s)\in\overline{C}\mathrm{ for all }s\in\mathbb{S
```

Lemma: Nondegenerate mass terms for $\mathbb{S} \longleftrightarrow$ Cliff $_{n-1,2 \text {-module structures on } \mathbb{S} \oplus \mathbb{S}^{*}}$ that extend the Cliff ${ }_{n-1,1}$-module structure
$[\mathbb{S}] \in \pi_{2-n} K O \cong\left[S^{0}, \Sigma^{n-2} K O\right] \quad$ (Atiyah-Bott-Shapiro)

Free fermion anomaly theory (F-Hopkins)

\mathbb{S}
$\Gamma: \mathbb{S} \times \mathbb{S} \longrightarrow \mathbb{R}^{1, n-1}$

$$
\begin{aligned}
& \text { real (ungraded) } \text { Cliff }_{n-1,1}^{0} \text {-module } \\
& \text { symmetric } \operatorname{Spin}_{1, n-1} \text {-invariant form; } \Gamma(s, s) \in \bar{C} \text { for all } s \in \mathbb{S}
\end{aligned}
$$

Lemma: Nondegenerate mass terms for $\mathbb{S} \longleftrightarrow$ Cliff $_{n-1,2^{2}}$ module structures on $\mathbb{S} \oplus \mathbb{S}^{*}$ that extend the Cliff $n-1,1$-module structure
$[\mathrm{S}] \in \pi_{2-n} K O \cong\left[S^{0}, \Sigma^{n-2} K O\right] \quad$ (Atiyah-Bott-Shapiro)
Claim: The isomorphism class of $\alpha_{(\mathbb{S}, \Gamma)}$ is the differential lift of the composition

$$
M \operatorname{Spin} \xrightarrow{\phi \wedge[\mathbb{S}]} K O \wedge \Sigma^{n-2} K O \xrightarrow{\mu} \Sigma^{n-2} K O \xrightarrow{\text { Pfaff }} \Sigma^{n+2} I \mathbb{Z}
$$

Free fermion anomaly theory (F-Hopkins)

```
real (ungraded) Cliff 0
symmetric Spin}1,n-1\mathrm{ -invariant form; }\Gamma(s,s)\in\overline{C}\mathrm{ for all }s\in\mathbb{S
```

Lemma: Nondegenerate mass terms for $\mathbb{S} \longleftrightarrow$ Cliff $_{n-1,2}$-module structures on $\mathbb{S} \oplus \mathbb{S}^{*}$ that extend the Cliff $n-1,1$ - module structure
$[\mathbb{S}] \in \pi_{2-n} K O \cong\left[S^{0}, \Sigma^{n-2} K O\right] \quad$ (Atiyah-Bott-Shapiro)
Claim: The isomorphism class of $\alpha_{(\mathbb{S}, \Gamma)}$ is the differential lift of the composition

$$
M \operatorname{Spin} \xrightarrow{\phi \wedge[\mathbb{S}]} K O \wedge \Sigma^{n-2} K O \xrightarrow{\mu} \Sigma^{n-2} K O \xrightarrow{\text { Pfaff }} \Sigma^{n+2} I \mathbb{Z}
$$

Partition function on a Riemannian spin $(n+1)$-manifold is an exponentiated η-invariant

[^0]: .) Such a relation means that there is a three-manifold $U \subset Y$ whose boundary is the union of the C_{i} (or more generally a three-manifold U with a map $\phi: U \rightarrow Y$ such that the boundary of U is mapped diffeomorphically to the union of the C_{i}). In this situation, we can give a relation, which depends only on the gauge-invariant H-field and not on the mysterious B-field, for the product $\prod_{i=1}^{s} F\left(C_{i}\right)$
 First of all, though the factors $\exp \left(i \int_{C_{\mathrm{i}}} B\right)$ are mysterious individually, for their product we can write an obvious classical formula that depends only on H and U :

 $$
 \begin{equation*}
 \prod_{i=1}^{s} \exp \left(i \int_{C_{i}} B\right)=\exp \left(i \int_{U} H\right) \tag{2.25}
 \end{equation*}
 $$

 This expression depends on U, though this is not shown in the notation on the left hand side.

 More subtle is the product of the Pfaffians. We recall that each fermion path integral $\operatorname{Pfaff}\left(\mathcal{D}_{F}\left(C_{i}\right)\right)$ takes values in a complex line $\mathcal{L}_{C_{G}}$. However, according to a theorem of Dai and Freed [11], for every choice of a three-manifold U whose boundary is the union of the C, (together with an extension of all of the bundles over U), there is a canonical trivialization of the product $\otimes_{\mathcal{L}} \mathcal{L}_{C}$, This trivialization is obtained by suitably interpreting the quantity $\exp (i \pi \eta(U) / 2)$, where $\eta(U)$ is an eta-invariant of a Dirac operator on U defined using global (Atiyah-Patodi-Singer) boundary conditions on the C_{i}. We write the trivialization

