Contextual Subspace Variational Quantum Eigensolver

Will Kirby ${ }^{1}$, Andrew Tranter ${ }^{1,2}$, Alexis Ralli ${ }^{3}$, Tim Weaving ${ }^{3}$, Peter Coveney ${ }^{3}$, and Peter Love ${ }^{1,4}$

${ }^{1}$ Department of Physics and Astronomy, Tufts University, Medford, MA 02155 ${ }^{2}$ Cambridge Quantum Computing, Cambridge, CB2 1UB, United Kingdom ${ }^{3}$ Centre for Computational Science, Department of Chemistry, University College London, WC1H 0AJ, United Kingdom ${ }^{4}$ Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

Harvard Mathematical Picture
 Language Seminar

March 21st 2023

Outline

(1) Testing contextuality of VQE
(2) Classical (quasi-quantized) model for noncontextual VQE
(3) Contextual Subspace VQE

Variational quantum eigensolver

Goal: find ground state energy of

$$
H=\sum_{P \in \mathcal{S}} h_{P} P
$$

for Pauli operators P in some set \mathcal{S}.

Method:

(1) Main process: on classical computer, minimize

$$
E(\vec{\theta})=\langle\psi(\vec{\theta})| H|\psi(\vec{\theta})\rangle=\sum_{P \in \mathcal{S}} h_{P}\langle\psi(\vec{\theta})| P|\psi(\vec{\theta})\rangle
$$

for ansatz $|\psi(\vec{\theta})\rangle$.
(2) Iteration step: on quantum computer, estimate $\langle P\rangle$ for each $P \in \mathcal{S}$.

Experimental implementations of VQE

Outline

(1) Testing contextuality of VQE

Variational quantum eigensolver

Want to understand where "quantumness" appears in this algorithm.

$$
H=\sum_{P \in \mathcal{S}} h_{P} P
$$

\Rightarrow Focus on \mathcal{S}.

Contextuality of Pauli operators

Given \mathcal{S}, suppose you want to construct a classical, realistic model (think HVM). This consists of:
(1) joint value assignments to \mathcal{S} (the "classical, real" values).
(2) probability distributions over the joint value assignments.

Two Obstacles:

1) Uncertainty principle: cannot assign definite values to non commuting operators
2) Strong measurement contextuality: cannot pre-assign values to commuting operators without contradiction

Solve 1) by imposing an uncertainty relation on the epistemic states (probability distributions) of the classical model (a "quasi-quantized model")

Strong contextuality: when is it possible versus impossible to construct the joint value assignments?

Contextuality of Pauli operators

Focus on joint value assignments.

Any commuting subset of \mathcal{S} is simultaneously measurable.
$P, Q \in \mathcal{S}$ and $[P, Q]=0 \Rightarrow$ by measuring P and Q infer value assigned to $P Q$ (since joint value assignment interpreted as "real" values for \mathcal{S}).

Example. $\mathcal{S}=\{X I, I X\} \Rightarrow$ for assignment $\{ \pm 1, \pm 1\}$ to \mathcal{S}, can infer assignment to $X X$:

\mathcal{S} is contextual if any joint values necessarily violate some such inference.

Contextuality of Pauli operators

Example: $\mathcal{S}=\{X I, I X, Z I, I Z\}$.

$\Rightarrow \quad \forall$ joint value assignments to \mathcal{S}, we infer that $Y Y$ and $-Y Y$ have the same value \Rightarrow contradiction! $\Rightarrow \mathcal{S}$ is contextual.

Contextuality of Pauli operators

Result [KL19]. \mathcal{S} is noncontextual iff it has the form

$$
\mathcal{S}=\mathcal{Z} \cup \mathcal{T}=\mathcal{Z} \cup \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \cdots \cup \mathcal{C}_{N}
$$

where commutation is an equivalence relation on \mathcal{T} ($\mathcal{C}_{i}=$ equivalence classes), and any $A \in \mathcal{Z}$ commutes with any $B \in \mathcal{S}$.

Special cases of noncontextual sets:

(1) any commuting set.
(2) any anticommuting set.
(3) any set in which commutation is an equivalence relation (includes cases 1 and 2): for example, $\{(X I, X Z),(Y I, Y Z),(Z I, Z Z)\}$.

Definition. Hamiltonian H (VQE instance) is noncontextual iff its set \mathcal{S} of Pauli terms is noncontextual.

Does a VQE experiment admit a classical interpretation of measurement?

Citation:	System:	Contextual?	CD_{0}	$\|\mathcal{S}\|$
Dumitrescu et al. $[22]$	Deuteron	No	0	-
Kandala et al. $[17]$	H_{2}	No	0	4
O’Malley et al. $[13]$	H_{2}	No	0	5
Hempel et al. $[18]$	$\mathrm{H}_{2}(\mathrm{BK})$	No	0	5
Hempel et al. $[18]$	$\mathrm{H}_{2}(\mathrm{JW})$	No	0	14
Colless et al. $[19]$	H_{2}	No	0	5
Kokail et al. $[23]$	Schwinger Model	Yes	~ 0.16	231
Nam et al. $[20]$	$\mathrm{H}_{2} \mathrm{O}$	Yes	0.27	22
Hempel et al. $[18]$	LiH	Yes	0.33	12
Peruzzo et al. $[11]$	HeH			
Kandala et al. $[17]$	BeH	Yes	0.38	8
Kandala et al. $[17,21]$	LiH	Yes	~ 0.74	164

TABLE I. Evaluation of contextuality in VQE experiments. CD_{0} is the minimum number of terms we must remove from the Hamiltonian to reach a noncontextual set, as a fraction of the total number of terms $(|\mathcal{S}|)$. In $[22],|\mathcal{S}|$ varies.

Kirby, William M., and Peter J. Love. "Contextuality test of the nonclassicality of variational quantum eigensolvers." Physical Review Letters 123.20 (2019): 200501.

Outline

(2) Classical (quasi-quantized) model for noncontextual VQE

Classical simulation of noncontextual Hamiltonians

$\Rightarrow \quad$ can recover Hamiltonian terms by inference on

$$
G \cup\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup \cdots \cup\left\{A_{N}\right\},
$$

where G is independent generating set for \mathcal{Z}, and $A_{i} \in C_{i}$.
$\Rightarrow \quad$ every noncontextual Hamiltonian has the form:

$$
H=\sum_{B \in \bar{G}}\left(h_{B} B+\sum_{i=1}^{N} h_{B, i} B A_{i}\right) .
$$

Allowed probability distributions lead to following sets of expectation values:

$$
\left\langle G_{j}\right\rangle=q_{j}= \pm 1, \quad\left\langle A_{i}\right\rangle=r_{i}
$$

for $|\vec{r}|=1$. Can prove these are enough to generate all possible expectation values of Hamiltonian.

Classical simulation of noncontextual Hamiltonians

Given any noncontextual $H \ldots$

Result [KL20]. For parameters $q_{j}= \pm 1$ and $|\vec{r}|=1$.

$$
\langle H\rangle=\sum_{B \in \bar{G}}\left(h_{B}+\sum_{i=1}^{N} h_{B, i} r_{i}\right) \prod_{j \in \mathcal{J}_{B}} q_{j},
$$

for \mathcal{J}_{B} s.t. $B=\prod_{j \in \mathcal{J}_{B}} G_{j}$.
Classical objective function of at most $2 n+1$ real parameters.

Immediate consequences:
(1) "dequantization" of noncontextual VQE.
(2) noncontextual Hamiltonian problem is in NP.

2.4 Example

As an example, we construct a Hamiltonian for which most of the terms are included in the noncontextual part. Let $\mathcal{S}=\mathcal{S}_{\mathrm{nc}} \cup \mathcal{S}_{\mathrm{c}}$, where

$$
\begin{align*}
\mathcal{S}_{\mathrm{nc}}= & \{Z I I, I X I, I Y I, I Z X, I Z Y, I Z Z \\
& Z X I, Z Y I, Z Z X, Z Z Y, Z Z Z\} \\
\mathcal{S}_{\mathrm{c}}= & \{I I X, I I Y, I I Z\} \tag{13}
\end{align*}
$$

The set of terms $\mathcal{S}_{\mathrm{nc}}$ is noncontextual, partitioning into $\mathcal{Z}=\{Z I I\}$ (recall that \mathcal{Z} is the set of terms that commute with all others), and five cliques, $\{I X I, Z X I\},\{I Y I, Z Y I\}$, $\{I Z X, Z Z X\},\{I Z Y, Z Z Y\}$, and $\{I Z Z, Z Z Z\}$. Thus we may choose

$$
\begin{align*}
& A_{1}=I X I, A_{2}=I Y I, A_{3}=I Z X, \\
& A_{4}=I Z Y, A_{5}=I Z Z \tag{14}
\end{align*}
$$

Inference on the NC Hamiltonian S

I assign a value to ZII, choosing a symmetry sector.
I assign each of $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5$
From the A's and ZII we can infer assignments to

震 all operators

Inference on the NC Hamiltonian S

ZII commutes with everything and so can be assigned +1 , -1 without contradicting the uncertainty principle.

The A's anticommute so the simultaneous assignment of these operators violates the uncertainty principle.

We must reimpose the uncertainty principle by specifying a probability distribution over assignments of the A's.

Epistemic states

Probability distribution over assignments of c_{i} to A_{i} and g_{i} to G_{i} given q_{j} and \mathbf{r}

Equivalent to specifying epistemic state by

$$
\left\langle G_{j}\right\rangle=q_{j}= \pm 1, \quad\left\langle A_{i}\right\rangle=r_{i}, \quad|\vec{r}|=1 .
$$

Noncontextual approximation

Returning to our example:

$$
\begin{aligned}
\mathcal{S}_{\mathrm{nc}}= & \{Z I I, I X I, I Y I, I Z X, I Z Y, I Z Z \\
& Z X I, Z Y I, Z Z X, Z Z Y, Z Z Z\} \\
\mathcal{S}_{\mathrm{c}}= & \{I I X, I I Y, I I Z\}
\end{aligned}
$$

Look at 10000 full Hamiltonians with coefficients uniformly random in $[-1,1]$
Plot fractional error of non-contextual approximation

Fractional error in ground state

Does a VQE experiment admit a noncontextual hidden variable theory that can achieve the same accuracy?

Citation	System	n	$\left\|\mathcal{S}_{\text {full }}\right\|$	$\left\|\mathcal{S}_{\text {noncon }}\right\|$	$\|\mathcal{R}\|$	$\epsilon_{\text {noncon }}$	$\epsilon_{\text {diag }}$	$\epsilon_{\text {expt }}$Expt. outperforms noncontextual?	
Peruzzo et al., $2014[2]$	HeH^{+}	2	9	5	3	0.21	4.1	4.1	No
Hempel et al., $2018[11]$	LiH	3	13	9	4	0.56	0.56	~ 80	No
Kandala et al., $2017[10]$	LiH	4	99	23	5	4.2	9.3	~ 30	No
Kandala et al., $2017[10]$	BeH_{2}	6	164	42	7	156	266	~ 90	Yes

TABLE I. Contextual VQE experiments, as approximated by noncontextual and diagonal Hamiltonians. n is the number of qubits. $\left|\mathcal{S}_{\text {full }}\right|$ is the number of terms in the full Hamiltonian, $\left|\mathcal{S}_{\text {noncon }}\right|$ is the number of terms in the noncontextual subHamiltonian, and $|\mathcal{R}|$ is the number of parameters in an epistemic state (which is upper bounded by $2 n+1$ for n qubits). $\epsilon_{\text {noncon }}$ is the error in the noncontextual approximation, $\epsilon_{\text {diag }}$ is the error obtained by only keeping the diagonal terms in the Hamiltonian, and $\epsilon_{\text {expt }}$ is the error in the VQE experiment. Errors are in units of chemical accuracy, 0.0016 Ha . Experimental errors preceded by \sim were estimated from figures.

Kirby, William M., and Peter J. Love. "Classical simulation of noncontextual Pauli Hamiltonians." Physical Review A 102.3 (2020): 032418.

Outline

(3) Contextual Subspace VQE

Hybrid simulation of contextual Hamiltonians

Given any arbitrary H, can partition:

$$
H=H_{\text {n.c. }}+H_{\text {c. }},
$$

where $H_{\text {n.c. }}$ is noncontextual and as large as possible.

Noncontextual ground state $(\vec{q}, \vec{r})_{0}$ of $H_{\text {n.c. }}$ corresponds to subspace of quantum states: common eigenspace of G_{j} (eigenvalues q_{j}) and

$$
\mathcal{A} \equiv \sum_{i=1}^{N} r_{i} A_{i} \quad(\text { eigenvalue }+1)
$$

On quantum computer, can minimize expectation value of H_{c}. within this subspace to obtain correction to noncontextual ground state energy.

Contextual Subspace VQE (CS-VQE)

Result [KTL21].

$$
H=H_{\text {n.c. }}+H_{c .}
$$

$\left\langle H_{\text {n.c. }}\right\rangle$ is determined classically, $\left\langle H_{\text {c. }}\right\rangle$ is determined quantumly.
Each "stabilizer" G_{j} and \mathcal{A} removes one qubit's worth of freedom from the quantum search space, so H_{c}. becomes Hamiltonian on $n-1-|G|$ qubits.

Can we use more quantum resources to improve accuracy?

Yes. Drop some of the $G_{j} s$ (and inferred terms) from noncontextual part, simulating them instead on the quantum computer.

2.4 Example

As an example, we construct a Hamiltonian for which most of the terms are included in the noncontextual part. Let $\mathcal{S}=\mathcal{S}_{\mathrm{nc}} \cup \mathcal{S}_{\mathrm{c}}$, where

$$
\begin{align*}
\mathcal{S}_{\mathrm{nc}}= & \{Z I I, I X I, I Y I, I Z X, I Z Y, I Z Z \\
& Z X I, Z Y I, Z Z X, Z Z Y, Z Z Z\} \\
\mathcal{S}_{\mathrm{c}}= & \{I I X, I I Y, I I Z\} \tag{13}
\end{align*}
$$

Noncontextual approximation

Returning to our example:

$$
\begin{aligned}
\mathcal{S}_{\mathrm{nc}}= & \{Z I I, I X I, I Y I, I Z X, I Z Y, I Z Z \\
& Z X I, Z Y I, Z Z X, Z Z Y, Z Z Z\} \\
\mathcal{S}_{\mathrm{c}}= & \{I I X, I I Y, I I Z\}
\end{aligned}
$$

Look at 10000 full Hamiltonians with coefficients uniformly random in $[-1,1]$
Plot fractional error of non-contextual approximation

Fractional error in ground state

Contextual correction

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{nc}}=\{Z I I, I X I, I Y I, I Z X, I Z Y, I Z Z, \\
&Z X I, Z Y I, Z Z X, Z Z Y, Z Z Z\} \\
& \mathcal{S}_{\mathrm{c}}=\{I I X, I I Y, I I Z\} \\
& H_{\mathrm{c}}^{\prime}= H_{\mathrm{c}}=h_{I I X} I I X+h_{I I Y} I I Y+h_{I I Z} I I Z
\end{aligned}
$$

Can remove one qubit per noncontextual generator

$$
\begin{equation*}
\left.H_{\mathrm{c}}^{\prime}\right|_{\mathcal{H}_{2}}=H_{\mathrm{c}}=h_{I I X} I X+h_{I I Y} I Y+h_{I I Z} I Z . \tag{16}
\end{equation*}
$$

We also have

$$
\begin{align*}
& \mathcal{A}^{\prime}=\mathcal{A}=r_{1} A_{1}+r_{2} A_{2}+r_{3} A_{3}+r_{4} A_{4}+r_{5} A_{5} \\
& \left.\mathcal{A}^{\prime}\right|_{\mathcal{H}_{2}}=r_{1} X I+r_{2} Y I+r_{3} Z X+r_{4} Z Y+r_{5} Z Z,
\end{align*} \quad D_{\mathcal{A}^{\prime} \mathcal{A}^{\prime} \mathcal{A}_{2} D_{\mathcal{A}^{\prime}}^{\dagger}=Z I ;}
$$

Figure 1: Comparison of fractional errors in the noncontextual approximation of the ground state energy (upper plot), and in the noncontextual approximation with quantum correction (lower plot). The histogram points were generated by 10000 Hamiltonians with terms (13) and uniformly random coefficients in $[-1,1]$. The mean fractional error without quantum correction is 0.257 , and the mean fractional error with quantum correction is 0.0268 .

Applying Contextual Subspace VQE to molecules

Figure: CS-VQE approximation errors versus number of qubits used on the quantum computer, for tapered Hamiltonians. Black line is chemical accuracy.

Applying CS-VQE to molecules [WRK+22]

Given arbitrary Pauli Hamiltonian H how do we split into $H_{n c}$ and H_{c} ?

Original H

Assume empty

Now remove some terms from S
H^{\prime}

New H could become
more symmetric
We want:
$H_{n c}$

Given arbitrary Pauli Hamiltonian H how do we split into Hnc and Hc ? $H_{n c}$

Easier to state problem in terms of compatibility graph of H : edges between terms that commute

Finding a subgraph with this structure is already hard - Max Clique cover is NP complete [JSW].

But we want more! Want H_{nc} ground state to well approximate H ground state.
First: discuss graph problem (gives us an idea of hardness)
Second discuss heuristics for Hamiltonian approximation
[JSW] K. Jansen, P. Scheffler, and G. Woeginger, Maximum Covering with D Cliques in FCT, Lecture Notes in Computer Science, Vol. 710 (1993) pp. 319-328.

Disjoint union of Cliques
$H_{n c}$

Finding a Hamiltonian with this structure is already hard - DISJOINT UNION OF CLIQUES is NP complete [JSW].

DISJOINT UNION OF CLIQUES (DUC) Given a finite undirected graph G=(V, E) and two positive integers $D, B<=/ V /$, decide whether there are D pairwise disjoint cliques C1....CD such that the cliques cover at least B vertices.

If $\mathrm{D}=1$, only one clique, this is the CLIQUE problem - NP-complete (Johnson)
If $\mathrm{B}=|\mathrm{V}|$ this is the PARTITION INTO CLIQUES problem - NP-complete (Johnson)
But let's look in a bit more detail.....

Given arbitrary Pauli Hamiltonian H how do we split into Hnc and Hc?

But we want more! Want $H_{n c}$ ground state to well approximate H ground state.

Done: Try various Heuristics and compare them numerically
To do: try to prove some performance bounds on the heuristics (would be nice)
To do: try to prove restrictions on complexity for various classes of graphs (would be nice)

Heuristics

Want to keep terms that contribute a lot to ground state energy (large expectation values) and discard terms that do not. Two kinds of approximation:

1) Use magnitude of coefficient as a proxy for contribution (done)
2) Use classical methods to estimate magnitudes (not done)

Results on 38 electronic structure Hamiltonians

Why is DFS best?

Hartree-Fock is pretty good - small correlation energy means diagonal terms dominate in terms of coefficient magnitude.

DFS always includes all the diagonal terms.
How many off diagonal terms can you add and still be noncontextual?
Start with the highest coefficient off diagonal term C21

Diagonal terms C21 commutes with

Clique \{C21\}

Clique of terms C21 anticommutes with

Why is DFS best?

Clique $\{\mathrm{C} 21\}$

C1

Clique of terms C21 anticommutes with

Now try growing C21. Add another off-diagonal term that commutes with C21. It must have even numbers of X or Y or Z where $\mathbf{C 2 1}$ has distinct even numbers of X or Y or Z, or it may have Pauli operators in places where C21 has identity.
E.g C12 = IXX, C22 = YY, or C22 = YII.

In the first case C22 acts on the same orbitals as C21, and so arises from the same electronic structure term.

In the second case we break the non-contextual structure

Clique
\{C21, C22\}

Clique of terms

C21, C22
anticommute with

B, B' break the noncontextual structure.
Note, we could fix this by removing diagonal terms, but when HF dominates this gives worse approximation in the examples we have looked at.

What kind of classical quantum chemistry method is NC VQE?

Don't expect miracles: NC condition is quite strict.

HF is a noncontextual approximation.
Because NC VQE is careful about symmetry in the Hamiltonian, it can outperform HF in settings where multi reference character arises from symmetries alone.

Future work: Different choices of partition into C and NC parts can give an NC Hamiltonian that is NOT HF. Future work!

FIG. 3. The difference in error in ground state energy between using the noncontextual approximation and restricted openshell Hartree Fock, for the H3 potential energy surface. The noncontextual approximation does not suffer from the poor performance of Hartree-Fock at large bond lengths.

To do:

1) Provide good approximate classical methods (and performance bounds) for dividing a Hamiltonian into Contextual and Non-Contextual parts
2) Provide good approximate classical methods (and performance bounds) for solving non-contextual Hamiltonian problems.
3) Apply to LARGE instances

嗇 William M．Kirby and Peter J．Love．Contextuality test of the nonclassicality of variational quantum eigensolvers．Phys．Rev．Lett．， 123：200501，Nov 2019.

䍰 William M．Kirby and Peter J．Love．Classical simulation of noncontextual pauli hamiltonians．Phys．Rev．A，102：032418，Sep 2020.

围 William M．Kirby，Andrew Tranter，and Peter J．Love．Contextual Subspace Variational Quantum Eigensolver．Quantum，5：456，May 2021.

Tim J．Weaving，Alexis Ralli，William M．Kirby，Andrew Tranter， Peter J．Love，and Peter V．Coveney．A stabilizer framework for contextual subspace vqe and the noncontextual projection ansatz． arXiv preprint，arXiv：2204．02150， 2022.

Funding：NSF Grants No．PHY－1818914，DGE－1842474，PHY－1720395．

