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Variational quantum eigensolver

Goal: find ground state energy of

H =
X

P2S
hPP ,

for Pauli operators P in some set S.

Method:
1 Main process: on classical computer, minimize

E (~✓) = h (~✓)|H| (~✓)i =
X

P2S
hPh (~✓)|P | (~✓)i

for ansatz | (~✓)i.
2 Iteration step: on quantum computer, estimate hPi for each P 2 S.
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Molecules Examined:
• HeH+ (2)
• Deuteron
• H2 (7) 
• H3

• H6

• H8

• H10

• H12
• LiH (3)
• BeH2
• NaH
• KH
• RbH
• H2O
• CO2
• Li
• Heisenberg Model

Experimental implementations  of VQE

2014 2015 2016 2017 2018 2019 2020 2021 2022

2

4

6

8

10

12

Year

   
   

 Q
ub

its
   

   
   

   



Outline

1 Testing contextuality of VQE

2 Classical (quasi-quantized) model for noncontextual VQE

3 Contextual Subspace VQE

Will Kirby Contextual Subspace VQE May 26, 2022 2 / 16



Variational quantum eigensolver

Want to understand where “quantumness” appears in this algorithm.

H =
X

P2S
hPP

) Focus on S.
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Contextuality of Pauli operators

Given S, suppose you want to construct a classical, realistic model (think
HVM). This consists of:

1 joint value assignments to S (the “classical, real” values).

2 probability distributions over the joint value assignments.

For example, suppose S = {X ,Y ,Z}:

value assignments = vertices,
prob. distributions = points in sphere.

Strong contextuality: when is it possible versus impossible to construct the
joint value assignments?
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Two Obstacles: 

1) Uncertainty principle: cannot assign definite values to non commuting operators 

2) Strong measurement contextuality: cannot pre-assign values to commuting 
operators without contradiction 

Solve 1) by imposing an uncertainty relation on the epistemic states (probability 
distributions) of the classical model (a “quasi-quantized model”)



Contextuality of Pauli operators

Focus on joint value assignments.

Any commuting subset of S is simultaneously measurable.

P ,Q 2 S and [P ,Q] = 0 ) by measuring P and Q infer value assigned
to PQ (since joint value assignment interpreted as “real” values for S).

Example. S = {XI , IX} ) for assignment {±1,±1} to S, can infer
assignment to XX :

-YY

ZZ XX

ZI IZ XI IX
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Contextuality of Pauli operators

Focus on joint value assignments.

Any commuting subset of S is simultaneously measurable.

P ,Q 2 S and [P ,Q] = 0 ) by measuring P and Q infer value assigned
to PQ (since joint value assignment interpreted as “real” values for S).

S is contextual if any joint values necessarily violate some such inference.
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Contextuality of Pauli operators

Example: S = {XI , IX ,ZI , IZ}.

-YY

ZZ XX

ZI IZ XI IX

YY

ZX XZ

ZI IX XI IZ

) 8 joint value assignments to S, we infer that YY and �YY have the
same value ) contradiction! ) S is contextual.
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Contextuality of Pauli operators

Result [KL19]. S is noncontextual i↵ it has the form

S = Z [ T = Z [ C1 [ C2 [ · · · [ CN ,

where commutation is an equivalence relation on T (Ci = equivalence
classes), and any A 2 Z commutes with any B 2 S.

Special cases of noncontextual sets:
1 any commuting set.

2 any anticommuting set.

3 any set in which commutation is an equivalence relation (includes
cases 1 and 2): for example, {(XI ,XZ ), (YI ,YZ ), (ZI ,ZZ )}.
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Contextuality of Pauli operators

Result [KL19]. S is noncontextual i↵ it has the form

S = Z [ T = Z [ C1 [ C2 [ · · · [ CN ,

where commutation is an equivalence relation on T (Ci = equivalence
classes), and any A 2 Z commutes with any B 2 S.

Definition. Hamiltonian H (VQE instance) is noncontextual i↵ its set S
of Pauli terms is noncontextual.
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The proof of Theorem 3 is given in [82]. That commuta-
tion is not transitive in general is a non-classical property.
Operators that commute with all others in the set cannot
contribute to contextuality (see Lemma 2.1, in [82]), so
it is satisfying that after removing these non-transitivity
of commutation is equivalent to contextuality.

Can we extend our evaluation procedure to a measure
of the amount of contextuality present in a contextual
set S? One natural measure of the contextuality of H
is obtained by evaluating the distance from H to any
noncontextual Hermitian operator, as suggested in [69].
Any choice of metric on observables will induce such a
measure. Let a decontextualizing set S 0 be any subset
of S such that S \ S 0 is noncontextual. Then we may
define another measure of contextuality as the minimum
of

P
j |h0

j | over all subsets {h0
j} of the coe�cients that

are associated to decontextualizing sets. This measure
provides an upper bound on the error in the energy es-
timate induced by “decontextualizing” the Hamiltonian.
We discuss generalizations of these measures, and their
relations with previously studied measures in [82].

III. EVALUATION OF CONTEXTUALITY IN

VQE EXPERIMENTS TO DATE

We now use the methods in Section II to assess con-
textuality in VQE experiments performed to date. The
results are summarized in Table I, in which we also give
CD0, a measure of contextuality given by the minimum
size of any decontextualizing set as a fraction of the to-
tal number of terms. For the larger Hamiltonians, we
use a heuristic approximation for CD0: see [82] for de-
tails about this method and about the experiments. Note
that each simulation of H2 in the STO-3G minimal basis
is noncontextual. This is not surprising if one considers
these simulations as encoding a two-dimensional Hilbert
space spanned by a bonding and antibonding state, i.e., a
single qubit, for which Bell gave a noncontextual hidden-
variable theory [83].

Citation: System: Contextual? CD0 |S|
Dumitrescu et al. [22] Deuteron No 0 —
Kandala et al. [17] H2 No 0 4
O’Malley et al. [13] H2 No 0 5
Hempel et al. [18] H2 (BK) No 0 5
Hempel et al. [18] H2 (JW) No 0 14
Colless et al. [19] H2 No 0 5
Kokail et al. [23] Schwinger Model Yes ⇠0.16 231
Nam et al. [20] H2O Yes 0.27 22
Hempel et al. [18] LiH Yes 0.33 12
Peruzzo et al. [11] HeH+ Yes 0.38 8
Kandala et al. [17] BeH Yes ⇠0.74 164
Kandala et al. [17, 21] LiH Yes ⇠0.77 99

TABLE I. Evaluation of contextuality in VQE experiments.
CD0 is the minimum number of terms we must remove from
the Hamiltonian to reach a noncontextual set, as a fraction of
the total number of terms (|S|). In [22], |S| varies.

IV. DISCUSSION

All VQE procedures that have been implemented to
date, whether noncontextual or contextual, have been
small enough to simulate classically. The purpose of such
experiments is not to demonstrate quantum advantage,
but to apply current hardware to small examples of real-
world applications. Such e↵orts have been instrumental
in developing both experimental and theoretical capa-
bilities; indeed, VQE itself was developed in this con-
text [11].
For these reasons, we should be clear that our classifi-

cation of these experiments as contextual or noncontex-
tual is not a judgement of the value of the experiments,
but rather a constructive categorization whose purpose is
to inform future experiments and theoretical work. Con-
textuality of a Hamiltonian according to our definition
is connected to ine�ciency of classical simulation [65].
Furthermore, as noted above, we may regard a noncon-
textual Hamiltonian as an instance of an essentially clas-
sical problem, akin to quantum algorithms for explicitly
classical problems as in QAOA [81] (note that QAOA’s
diagonal Hamiltonians are always noncontextual.)
In spite of this last point, however, a noncontextual

VQE procedure may still be hard to simulate classically,
since classical problems can be classically hard. How-
ever, contextuality in a VQE procedure provides a strict
separation between it and any classical algorithm, by rul-
ing out the existence of a description of the problem in
terms of joint probability distributions over a classical
phase space, and thus precluding any classical approach
either explicitly or implicitly based on such distributions.
We suggest therefore that future VQE implementations,
even at small scales, should focus on contextual Hamil-
tonians, according to the criteria we have developed.
Our criterion for contextuality of a set of Pauli oper-

ators S is that joint outcome assignments to S are nec-
essarily self-contradictory. In other words, we analyze
contextuality for the minimal closed subtheory contain-
ing S; this allows us to invoke the results of [65], which
show that e�cient simulation by sampling from the dis-
crete Wigner function is only possible in the absence of
contextuality. This is not the only choice: for example,
[52, 53, 66] do not require the measurements to form a
closed subtheory. The relationship of our criterion to
that of [52, 53, 66] is discussed further in [82].
The set of noncontextual Hamiltonians contains the set

of commuting Pauli Hamiltonians, but is distinct from
the set of frustration-free Hamiltonians, as may be seen
by taking A, B, C, and D in Fig. 2 to be four consecu-
tive projectors in the AKLT model (e.g., [84]). We leave
further consideration of the set of noncontextual Hamil-
tonians to future work.
Subsequent to the appearance of our work, the result

given in our Theorem 2 was independently discovered in
[76, §IV], which presents a Wigner function treatment
of qubit systems using a phase space constructed from
noncontextual closed subtheories.

Does a VQE experiment admit a classical interpretation of measurement?

Kirby, William M., and Peter J. Love. "Contextuality test of the nonclassicality of variational 
quantum eigensolvers." Physical Review Letters 123.20 (2019): 200501. 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Classical simulation of noncontextual Hamiltonians

) can recover Hamiltonian terms by inference on

G [ {A1} [ {A2} [ · · · [ {AN},

where G is independent generating set for Z, and Ai 2 Ci .

) every noncontextual Hamiltonian has the form:

H =
X

B2G

 
hBB +

NX

i=1

hB,iBAi

!
.

Allowed probability distributions lead to following sets of expectation
values:

hGji = qj = ±1, hAi i = ri

for |~r | = 1. Can prove these are enough to generate all possible
expectation values of Hamiltonian.
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Classical simulation of noncontextual Hamiltonians

Given any noncontextual H...

Result [KL20]. For parameters qj = ±1 and |~r | = 1.

hHi =
X

B2G

 
hB +

NX

i=1

hB,i ri

!
Y

j2JB

qj ,

for JB s.t. B =
Q

j2JB
Gj .

Classical objective function of at most 2n + 1 real parameters.

Immediate consequences:

1 “dequantization” of noncontextual VQE.

2 noncontextual Hamiltonian problem is in NP.
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2.4 Example
As an example, we construct a Hamiltonian for
which most of the terms are included in the non-
contextual part. Let S = Snc fi Sc, where

Snc = {ZII,IXI, IY I, IZX, IZY, IZZ,

ZXI, ZY I, ZZX, ZZY, ZZZ},

Sc = {IIX,IIY, IIZ}.

(13)

The set of terms Snc is noncontextual, par-
titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX, ZZX}, {IZY, ZZY }, and {IZZ, ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H Õ

c = Hc = hIIXIIX+hIIY IIY +hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H Õ

c|H2 = Hc = hIIXIX+hIIY IY +hIIZIZ. (16)

We also have

A
Õ
= A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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0.0268
w

hen
the

quantum
correc-

tion
is
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evaluating
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3
Contextualsubspace

VQ
E

T
he

quantum
correction

to
noncontextual

ap-
proxim

ations
discussed

in
Section

2
allow

s
us

to
use

lim
ited

quantum
resources

to
im

prove
a

clas-
sicalsim

ulation
result.

In
this

section
w

e
explain

how
w

e
can

system
atically

step
back

from
the

originalnoncontextualapproxim
ation

in
order

to
enlarge

the
contextualsubspace,thus

im
proving

the
overallaccuracy

ofthe
approxim

ation
by

us-
ing

m
ore

quantum
resources.

T
his

provides
a

pa-

Accepted
in

Q
u
a
n
tu

m
2021-05-05,click

title
to

verify.Published
underCC-BY

4.0.
6



A1=IXI

ZXI

ZYI

A3=IZX

ZZX

A4=IZY

ZZY

A5=IZZ

ZZZ

Inference on the NC Hamiltonian S

ZII

ZII

ZII ZII ZII

2.4
Exam

ple
A

s
an

exam
ple,

w
e

construct
a

H
am

iltonian
for

w
hich

m
ost

ofthe
term

s
are

included
in

the
non-

contextualpart.
Let

S
=

S
nc

fi
S

c ,w
here

S
nc

=
{Z

II,IX
I,IY

I,IZ
X

,IZ
Y

,IZ
Z

,

Z
X

I,Z
Y

I,Z
Z

X
,Z

Z
Y

,Z
Z

Z
},

S
c

=
{IIX

,IIY
,IIZ

}.

(
1
3
)

T
he

set
of

term
s

S
nc

is
noncontextual,

par-
titioning

into
Z

=
{Z

II
}

(recall
that

Z
is

the
set

of
term

s
that

com
m

ute
w

ith
all

oth-
ers),and

five
cliques,

{IX
I,Z

X
I
},

{IY
I,Z

Y
I
},

{IZ
X

,Z
Z

X
},

{IZ
Y

,Z
Z

Y
},

and
{IZ

Z
,Z

Z
Z

}.
T

hus
w

e
m

ay
choose

A
1

=
IX

I,
A

2
=

IY
I,

A
3

=
IZ

X
,

A
4

=
IZ

Y
,

A
5

=
IZ

Z
.

(
1
4
)

T
he

extra
term

s
S

c
allcom

m
ute

w
ith

Z
.

In
this

case,
G

=
Z

since
Z

contains
only

one
opera-

tor,and
this

operator
is

already
a

single-qubit
Z

operator,so
D

is
the

identity.
T

hus
H

2
is

the
H

ilbert
space

ofthe
second

tw
o

qubits,so
for

H
Õc

=
H

c
=

h
I
I
X

IIX
+

h
I
I
Y

IIY
+

h
I
I
Z

IIZ
(
1
5
)

for
som

e
coeffi

cients
h

I
I
X

,h
I
I
Y

,h
I
I
Z ,the

restric-
tion

to
H

2
is

H
Õc
|
H

2
=

H
c

=
h

I
I
X

IX
+

h
I
I
Y

IY
+

h
I
I
Z

IZ
.

(
1
6
)

W
e

also
have

A
Õ
=

A
=

r1 A
1
+

r2 A
2
+

r3 A
3
+

r4 A
4
+

r5 A
5

(
1
7
)

for
som

e
unit

vector
r̨;the

restriction
of

A
Õto

H
2

is
thus

A
Õ|

H
2

=
r1 X

I
+

r2 Y
I

+
r3 Z

X
+

r4 Z
Y

+
r5 Z

Z
,

(
1
8
)

so
D

A
Õis

the
rotation

that
m

aps
this

to
a

single-
qubit

Z
operator,asdescribed

in
Section

2.1.
W

e
can

choose

D
A

ÕA
Õ|2 D

†A
Õ

=
Z

I
;

(
1
9
)

in
this

case,
for

an
ansatz

w
e

m
ay

prepare
any

state
w

hose
value

is
|0

Í
for

the
first

qubit
in

H
2 ,

and
then

apply
D

†A
Õ to

this
state.

T
hus,

w
e

reduce
an

initial
H

am
iltonian

on
three

qubits
to

a
noncontextual

approxim
ation

0.0
0.2

0.4
0

250

500

0.0
0.1

0.2
0.3

FractionalError

0

1000

2000

Counts

F
ig

u
re

1
:

C
o
m

p
a
ris

o
n

o
f

fra
c
t
io

n
a
l
e
rro

rs
in

t
h
e

n
o
n
c
o
n
-

t
e
x
t
u
a
l

a
p
p
ro

x
im

a
t
io

n
o
f

t
h
e

g
ro

u
n
d

s
t
a
t
e

e
n
e
rg

y
(
u
p
-

p
e
r

p
lo

t
)
,

a
n
d

in
t
h
e

n
o
n
c
o
n
t
e
x
t
u
a
l

a
p
p
ro

x
im

a
t
io

n
w

it
h

q
u
a
n
t
u
m

c
o
rre

c
t
io

n
(
lo

w
e
r

p
lo

t
)
.

T
h
e

h
is

t
o
g
ra

m
p
o
in

t
s

w
e
re

g
e
n
e
ra

t
e
d

b
y

1
0
0
0
0

H
a
m

ilt
o
n
ia

n
s

w
it

h
t
e
rm

s
(
1
3
)

a
n
d

u
n
ifo

rm
ly

ra
n
d
o
m

c
o
e
�

c
ie

n
t
s

in
[≠

1,
1
].

T
h
e

m
e
a
n

fra
c
t
io

n
a
l
e
rro

r
w

it
h
o
u
t

q
u
a
n
t
u
m

c
o
rre

c
t
io

n
is

0.2
5
7
,
a
n
d

t
h
e

m
e
a
n

fra
c
t
io

n
a
l

e
rro

r
w

it
h

q
u
a
n
t
u
m

c
o
rre

c
t
io

n
is

0.0
2
6
8
.

and
a

quantum
correction

that
m

ay
be

im
ple-

m
ented

on
a

tw
o-qubit

quantum
processor.

To
evaluate

the
perform

ance
of

the
resulting

approxim
ations,

w
e

generated
10000

H
am

iltoni-
ans

w
ith

the
term

s
(
1
3
)

by
choosing

coeffi
cients

for
them

uniform
ly

at
random

from
[≠

1,
1
].

T
he

resulting
fractionalerrors

in
the

ground
state

en-
ergies

are
plotted

in
Fig.1;the

average
fractional

error
is

0.257
for

the
noncontextual

approxim
a-

tion
alone,and

0.0268
w

hen
the

quantum
correc-

tion
is

included.
T

he
quantum

corrections
w

ere
sim

ulated
classically

by
directly

evaluating
the

low
est

eigenvalues
ofthe

H
am

iltonians
restricted

to
the

noncontextualground
states.

3
Contextualsubspace

VQ
E

T
he

quantum
correction

to
noncontextual

ap-
proxim

ations
discussed

in
Section

2
allow

s
us

to
use

lim
ited

quantum
resources

to
im

prove
a

clas-
sicalsim

ulation
result.

In
this

section
w

e
explain

how
w

e
can

system
atically

step
back

from
the

originalnoncontextualapproxim
ation

in
order

to
enlarge

the
contextualsubspace,thus

im
proving

the
overallaccuracy

ofthe
approxim

ation
by

us-
ing

m
ore

quantum
resources.

T
his

provides
a

pa-

Accepted
in

Q
u
a
n
tu

m
2021-05-05,click

title
to

verify.Published
underCC-BY

4.0.
6

I assign a value to ZII, choosing a symmetry sector.


I assign each of A1, A2, A3, A4, A5
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ZII

ZII commutes with everything and so can be assigned +1, -1 without contradicting the 
uncertainty principle.


The A’s anticommute so the simultaneous assignment of these operators violates the 
uncertainty principle.


We must reimpose the uncertainty principle by specifying a probability distribution over 
assignments of the A’s. 
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2n + 1, which can be true only when G (and thus Z) is empty.
This will be important in Secs. III and IV.

Note that although R is not in general a subset of S , it is
a subset of S . Furthermore, since there is a bijection from the
set of ontic states for R to the set of ontic states for S , |R|
is unique for each S . Thus closure under inference permits
construction of the independent generating set R.

B. Epistemic states

Epistemic states are joint probability distributions over the
ontic states, which complete our quasiquantized model. We
write these joint probabilities as P(c1, . . . , cN , g1, g2, . . . ),
where each ci, gi is ±1 and denotes the value assigned to Ci1
or Gi, respectively.

First consider a commuting Hamiltonian. In this case, R =
G, and S = R is the Abelian group generated by R. The
observables may be simultaneously measured, so there is a
one-to-one mapping between the ontic states and the simulta-
neous eigenstates of S . Thus the only constraint on the joint
probabilities in this case is normalization.

Next consider the case where all observables pairwise an-
ticommute:

Lemma 1. Let !A = (A1, A2, . . . , AN ) be an anticommuting
set of Pauli operators. For any unit vector !a ∈ RN , the operator∑N

i=1 aiAi has eigenvalues ±1. From this it follows that for
any state,

∑N
i=1〈Ai〉2 ! 1.

We prove Lemma 1 in Appendix A.
For a general noncontextual set S , construct R as described

in Sec. II A. The set E = E (R) of epistemic states is then

E ≡
{
(!q, !r) ∈ {±1}|G| × RN | |!r| = 1

}
. (7)

The pairs (!q, !r) define the joint probabilities as follows:

P(!q,!r)(c1, . . . , cN , g1, g2, . . . ) =
( |G|∏

j=1

δg j ,q j

)
N∏

i=1

1
2
|ci + ri|.

(8)

We refer to both the joint probabilities and the vector pairs
(!q, !r) as epistemic states: they contain equivalent information.

In terms of (!q, !r), the expectation values for R are given by

〈Gj〉(!q,!r) = q j,

〈Ci1〉(!q,!r) = ri.
(9)

Theorem 1. For epistemic states (!q, !r) as defined in (7),
the joint probability distribution (8) is equivalent to the set
of expectation values (9).

We prove Theorem 1 in Appendix A.
The model (7) is epistricted in the following sense: as

in [49], a state is represented by joint knowledge of a set
of commuting observables. For a given ( !q, !r), this set is G
together with the observable

A(!r) ≡
N∑

i=1

riCi1 (10)

(which has eigenvalues ±1, by Lemma 1). Note that since the
Ci1 have expectation values ri as in (9), A(!r) has expectation
value 1, since !r is a unit vector. No probability distributions
are allowed that represent more knowledge of the state than

simultaneous values of G and A(!r). Note that our model
describes only pure states (as do the models in [49]).

From the expectation values (9) for R, we can obtain
expectation values for S as follows. For B ∈ Z , let JB be the
set of indices such that B =

∏
j∈JB

Gj ; then

〈B〉(!q,!r) =
〈

∏

j∈JB

Gj

〉

=
∏

j∈JB

q j, (11)

where the second equality follows because Gj '→ q j = ±1 for
all j (in other words, the state is a common eigenstate of the
Gj and of B). Similarly, for Ci1B ∈ T ,

〈Ci1B〉(!q,!r) = ri

∏

j∈JB

q j . (12)

Theorem 2. The epistemic states (7) give sets of expecta-
tion values that correspond to valid quantum states, and the set
of quantum states described by the epistemic states includes
an eigenbasis of any Hamiltonian whose Pauli terms are S .

The proof of Theorem 2 is given in Appendix A. Note that
for any (!q, !r), the expectation values (9) are produced by a
simultaneous eigenstate of G ∪ {A(!r)}. For the second claim
in Theorem 2, we show that there exists an eigenbasis for the
Hamiltonian composed of common eigenstates of G and A(!r)
for some !r. That A(!r) may be included is implied by:

Lemma 2. For |ψ〉 an eigenstate of the full Hamiltonian
(3), the expectation values of the Ci1 satisfy

∑N
i=1〈Ci1〉2 = 1.

The proof of Lemma 2 is given in Appendix A. In other
words, the 〈Ci1〉 saturate the bound given in Lemma 1, for any
energy eigenstate. This means that every energy eigenvalue
can be reproduced via the expectation values (11) and (12) for
some setting of (!q, !r).

We show in Appendix D how for any quantum state we
may construct a joint probability distribution that reproduces
the expectation values for S; however, to simulate noncon-
textual VQE it is only necessary to reproduce probabilities
corresponding to eigenstates.

III. CLASSICAL SIMULATION
OF A NONCONTEXTUAL HAMILTONIAN

A. Classical objective function

Given the model described in Sec. II, we now define a
classical variational algorithm to simulate a noncontextual
Hamiltonian. In (3), each Ai j and each B is a product of
operators in G, i.e., is an element of G. Therefore, we may
replace Ai j by B and sum over all of G, obtaining

H =
∑

B∈G

(

hBB +
N∑

i=1

hB,iBCi1

)

, (13)

where the hB,i and hB are just relabelings of the coefficients in
(2). Thus we can use (11) and (12) to write:

〈H〉(!q,!r) =
∑

B∈G

(

hB +
N∑

i=1

hB,iri

)
∏

j∈JB

q j . (14)

We may now treat (14) as a classical objective function.
This classical optimization problem will in general be hard.

Although a convex special case of (14) is obtained when

032418-3

Probability distribution over assignments of ci to Ai and gi to Gi given qj and r

Selects correct symmetry sector

Enforces correct expectation values of A

Equivalent to specifying epistemic state by 

with an uncertainty relation imposed upon the al-
lowed probability distributions (sometimes called
epistemic states) on the phase space [16, 17]. We
refer the reader to [15] and Appendix C for fur-
ther general points about quasi-quantized mod-
els.

We now describe the states of the model, which
we call noncontextual states. We first identify
a set of observables that define the phase-space
points in the model:

G fi {A1, A2, ..., AN }. (2)

Each Ai is one element of the corresponding
clique Ci, so the Ai pairwise anticommute. G
is an independent generating set for the Abelian
group Z, which includes Z as well as all prod-
ucts of pairs of operators in the same clique. The
phase space points are all assignments of values
±1 to the observables in the set (2) [15].

The noncontextual states are probability dis-
tributions over the phase space points generated
by (2). Probability distributions corresponding
to valid quantum states must obey an uncer-
tainty relation [16, 17]. A sufficient condition is
that the commuting generators Gj œ G take def-
inite values, and that the expectation values of
the Ai form a unit vector [15]. This means that
each noncontextual state is defined by parameters
(q̨, r̨) such that

ÈGjÍ = qj = ±1, ÈAiÍ = ri, |r̨| = 1. (3)

In [15], we showed how these expectation values
for the set (2) induce expectation values for all
terms Snc in the noncontextual part Hnc of the
Hamiltonian; consequently, a noncontextual state
induces an expectation value for Hnc. We also
proved that all expectation values for Hnc can
be generated in this way. Minimizing this expec-
tation value by varying the noncontextual state
(q̨, r̨) thus provides a variational estimate of the
ground state energy of Hnc [15]. We refer to the
minimizing assignment (q̨, r̨) as the noncontextual
ground state.

The Ai are anticommuting Pauli operators and
r̨ is a real unit vector, so the observable

A ©

Nÿ

i=1
riAi, (4)

is a rotated Pauli operator, and thus has eigen-
values ±1. The unitary that maps A to a single

Pauli operator is a sequence of N ≠ 1 rotations
generated by Pauli operators, all of which pre-
serve the Gj . If each of the Ai has expectation
value ri then A has expectation value +1, and
vice versa [15]. Thus, the noncontextual state
with parameters (q̨, r̨) is equivalent to a joint
value assignment for the set of observables

G fi {A}, (5)

where the value assignments are Gj ‘æ qj = ±1

for each j and A ‘æ +1. We refer to the observ-
ables in (5) as the noncontextual generators.

The noncontextual states therefore correspond
to subspaces of quantum states that are stabilized
by the operators qjGj and by A. These are al-
most stabilizer subspaces in the usual sense (see
e.g. [37, Sec. 10.3]), except that A is not a single
Pauli operator, but is unitarily equivalent to one.
Therefore, a noncontextual state can be thought
of as a stabilizer subspace, one of whose stabiliz-
ers has been rotated by an efficiently-describable
unitary.

2 Quantum correction
Let (q̨, r̨) be the noncontextual ground state. If
we take the resulting energy of Hnc as a classi-
cal estimate of the ground state energy of the full
Hamiltonian H, we can obtain a quantum cor-
rection by minimizing the energy of the remain-
ing terms in the Hamiltonian over the quantum
states that are consistent with the noncontextual
ground state. As discussed above, this common
eigenspace is a stabilizer subspace up to a rota-
tion on one of the stabilizers. We refer to this
subspace as the contextual subspace.

Before we discuss how to find quantum cor-
rections, we establish when such corrections can
appear:

Theorem 1. Let S be a set of Pauli opera-

tors, and let Snc be a noncontextual subset that

is closed under inference within S (see Defini-

tion 1). Then for any noncontextual state (q̨, r̨)

as in (3) describing Snc, there exists a quan-

tum state consistent with (q̨, r̨) (i.e., that gives

the same expectation values for Snc as (q̨, r̨)) for

which the expectation value of every operator in

Sc © S \ Snc is zero.

The proof may be found in Appendix A, and fol-
lows from the fact that Snc is closed under in-
ference: no value of any operator in Sc can be
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Noncontextual approximation

Returning to our example:

2.4 Example
As an example, we construct a Hamiltonian for
which most of the terms are included in the non-
contextual part. Let S = Snc fi Sc, where

Snc = {ZII,IXI, IY I, IZX, IZY, IZZ,

ZXI, ZY I, ZZX, ZZY, ZZZ},

Sc = {IIX,IIY, IIZ}.

(13)

The set of terms Snc is noncontextual, par-
titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX, ZZX}, {IZY, ZZY }, and {IZZ, ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H Õ

c = Hc = hIIXIIX+hIIY IIY +hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H Õ

c|H2 = Hc = hIIXIX+hIIY IY +hIIZIZ. (16)

We also have

A
Õ
= A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
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in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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Citation System n |Sfull| |Snoncon| |R| εnoncon εdiag εexpt
Expt. outperforms
noncontextual?

Peruzzo et al., 2014 [2] HeH+ 2 9 5 3 0.21 4.1 4.1 No
Hempel et al., 2018 [11] LiH 3 13 9 4 0.56 0.56 ∼80 No
Kandala et al., 2017 [10] LiH 4 99 23 5 4.2 9.3 ∼30 No
Kandala et al., 2017 [10] BeH2 6 164 42 7 156 266 ∼90 Yes

TABLE I. Contextual VQE experiments, as approximated by noncontextual and diagonal Hamiltonians. n is the number of
qubits. |Sfull| is the number of terms in the full Hamiltonian, |Snoncon| is the number of terms in the noncontextual sub-
Hamiltonian, and |R| is the number of parameters in an epistemic state (which is upper bounded by 2n + 1 for n qubits).
εnoncon is the error in the noncontextual approximation, εdiag is the error obtained by only keeping the diagonal terms in the
Hamiltonian, and εexpt is the error in the VQE experiment. Errors are in units of chemical accuracy, 0.0016Ha. Experimental
errors preceded by ∼ were estimated from figures.

noncontextual approximation outperformed the approx-
imation obtained by keeping only the diagonal terms.
This is a natural point of comparison, since diagonal
Hamiltonians constitute another common notion of clas-
sicality, and any set of diagonal Pauli operators is non-
contextual.
Also, in all cases except for the BeH2 simulation in

[10], the noncontextual approximation reached better ac-
curacy than the corresponding experiment. We wish to
be clear that this is not a criticism of these experiments,
which were intended as demonstrations of methodology
rather than as precise estimations. However, what our
noncontextual approximations show is that these experi-
ments have not achieved sufficient accuracy to resolve in-
trinsically quantum behavior, i.e., the full-configuration
correction to the noncontextual ground state energy.
Finally, the fact that the BeH2 experiment does out-

perform our approximation indicates that, as we would
expect, more terms in the Hamiltonian means more room
for contextuality, and hence worse noncontextual approx-
imations. Thus, we may hope that future experiments
simulating larger Hamiltonians will reliably exceed this
minimum standard for quantum behavior. On the other
hand, better heuristics for identifying the noncontextual
set may improve the noncontextual approximation.

V. DISCUSSION

In the quantum approximate optimization algorithm
(QAOA) [69], the Hamiltonian is diagonal (and thus non-
contextual), because it encodes a classical problem, so
our method simply recovers the diagonal entries. We
have shown that the noncontextual Hamiltonian
problem is in NP. Thus, the potential for quantum ad-
vantage in noncontextual VQE reduces to the same ques-

tion that motivates QAOA: can we use cleverly-chosen
and/or physically-motivated ansatze to generate other-
wise hard-to-reach joint probability distributions, and
thus efficiently converge to solutions of classically hard
problems?
We demonstrated in Section IV that our model is appli-

cable as an approximation method for contextual Hamil-
tonians, such as general electronic-structure Hamiltoni-
ans. This technique provides a more stringent test for
nonclassicality than that given Table I in [17], by demon-
strating that some experiments with contextual Hamil-
tonians do not achieve sufficient accuracy to tell their re-
sults apart from those due to a noncontextual approxima-
tion. Again, we wish to stress that this is not a criticism
of these experiments, which have played seminal roles in
the development of quantum simulation techniques, but
only a means by which we may try to identify intrinsically
quantum behavior.
Finally, in addition to serving as a benchmark for quan-

tum experiments, our simulation technique may be useful
as a new approximation method in its own right. Also, it
may be possible to extend our criterion for noncontextu-
ality to other Hamiltonian decompositions besides Pauli
decomposition, thus improving the capacity of our sim-
ulation algorithm. We leave the full exploration of these
possibilities for future work.
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Hybrid simulation of contextual Hamiltonians

Given any arbitrary H, can partition:

H = Hn.c. + Hc.,

where Hn.c. is noncontextual and as large as possible.

Noncontextual ground state (~q,~r)0 of Hn.c. corresponds to subspace of
quantum states: common eigenspace of Gj (eigenvalues qj) and

A ⌘
NX

i=1

riAi (eigenvalue +1).

On quantum computer, can minimize expectation value of Hc. within this
subspace to obtain correction to noncontextual ground state energy.

Will Kirby Contextual Subspace VQE May 26, 2022 12 / 16



Contextual Subspace VQE (CS-VQE)

Result [KTL21].

H = Hn.c. + Hc.

hHn.c.i is determined classically, hHc.i is determined quantumly.

Each “stabilizer” Gj and A removes one qubit’s worth of freedom from the
quantum search space, so Hc. becomes Hamiltonian on n � 1� |G | qubits.

Can we use more quantum resources to improve accuracy?

Yes. Drop some of the Gjs (and inferred terms) from noncontextual part,
simulating them instead on the quantum computer.

Will Kirby Contextual Subspace VQE May 26, 2022 13 / 16



2.4 Example
As an example, we construct a Hamiltonian for
which most of the terms are included in the non-
contextual part. Let S = Snc fi Sc, where

Snc = {ZII,IXI, IY I, IZX, IZY, IZZ,

ZXI, ZY I, ZZX, ZZY, ZZZ},

Sc = {IIX,IIY, IIZ}.

(13)

The set of terms Snc is noncontextual, par-
titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX, ZZX}, {IZY, ZZY }, and {IZZ, ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H Õ

c = Hc = hIIXIIX+hIIY IIY +hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H Õ

c|H2 = Hc = hIIXIX+hIIY IY +hIIZIZ. (16)

We also have

A
Õ
= A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation

0.0 0.2 0.40

250

500

0.0 0.1 0.2 0.3
Fractional Error

0

1000

2000

Co
un

ts

Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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in this case, for an ansatz we may prepare any
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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Contextual correction

2.4 Example
As an example, we construct a Hamiltonian for
which most of the terms are included in the non-
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Sc = {IIX,IIY, IIZ}.

(13)
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titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX, ZZX}, {IZY, ZZY }, and {IZZ, ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H Õ

c = Hc = hIIXIIX+hIIY IIY +hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H Õ

c|H2 = Hc = hIIXIX+hIIY IY +hIIZIZ. (16)

We also have

A
Õ
= A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)
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the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-

Accepted in Quantum 2021-05-05, click title to verify. Published under CC-BY 4.0. 6

2.4 Example
As an example, we construct a Hamiltonian for
which most of the terms are included in the non-
contextual part. Let S = Snc fi Sc, where

Snc = {ZII,IXI, IY I, IZX, IZY, IZZ,

ZXI, ZY I, ZZX, ZZY, ZZZ},

Sc = {IIX,IIY, IIZ}.

(13)

The set of terms Snc is noncontextual, par-
titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX, ZZX}, {IZY, ZZY }, and {IZZ, ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H Õ

c = Hc = hIIXIIX+hIIY IIY +hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H Õ

c|H2 = Hc = hIIXIX+hIIY IY +hIIZIZ. (16)

We also have

A
Õ
= A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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case, G = Z since Z contains only one opera-
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Õ to H2

is thus
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Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
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operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
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H Õ
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for some coefficients hIIX , hIIY , hIIZ , the restric-
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for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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Figure 1: Comparison of fractional errors in the noncon-

textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with

quantum correction (lower plot). The histogram points

were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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Sc = {IIX,IIY, IIZ}.

(13)
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titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX, ZZX}, {IZY, ZZY }, and {IZZ, ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H Õ

c = Hc = hIIXIIX+hIIY IIY +hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H Õ

c|H2 = Hc = hIIXIX+hIIY IY +hIIZIZ. (16)

We also have

A
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= A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector r̨; the restriction of A
Õ to H2

is thus

A
Õ
|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,

(18)

so DAÕ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DAÕA
Õ
|2D†

AÕ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0Í for the first qubit in H2,
and then apply D†

AÕ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation
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textual approximation of the ground state energy (up-

per plot), and in the noncontextual approximation with
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were generated by 10000 Hamiltonians with terms (13)

and uniformly random coe�cients in [≠1, 1]. The mean

fractional error without quantum correction is 0.257, and

the mean fractional error with quantum correction is

0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [≠1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.
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The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-

Accepted in Quantum 2021-05-05, click title to verify. Published under CC-BY 4.0. 6



Applying Contextual Subspace VQE to molecules
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Figure: CS-VQE approximation errors versus number of qubits used on the
quantum computer, for tapered Hamiltonians. Black line is chemical accuracy.
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Applying CS-VQE to molecules [WRK+22]

Figure:
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Given arbitrary Pauli Hamiltonian H how do we split into Hnc and Hc?

Original H Z0 S

Assume  
empty

Now remove some terms from S

H’ Z1 S’

New H could become  
more symmetric

We want:

Hnc Znc

Symmetries  
of Hnc

C1 C2 CD………..

A disjoint Clique cover



Given arbitrary Pauli Hamiltonian H how do we split into Hnc and Hc?

Easier to state problem in terms of compatibility graph of H: edges between 
terms that commute 

Finding a subgraph with this structure is already hard - Max Clique cover is NP 
complete [JSW].

Hnc

Symmetries  
of Hnc

A disjoint Clique cover

[JSW] K. Jansen, P. Scheffler, and G. Woeginger, Maximum Covering with D Cliques  
in FCT, Lecture Notes in Computer Science, Vol. 710 (1993) pp. 319–328. 

But we want more! Want Hnc ground state to well approximate H ground state.

First: discuss graph problem (gives us an idea of hardness) 

Second discuss heuristics for Hamiltonian approximation

Znc C1 C2 CD………..



Disjoint union of Cliques

Finding a Hamiltonian with this structure is already hard - DISJOINT UNION OF 
CLIQUES is NP complete [JSW]. 

DISJOINT UNION OF CLIQUES (DUC) Given a finite undirected graph G=(V, E) and 
two positive integers D, B<=|V|, decide whether there are D pairwise disjoint 
cliques C1….CD such that the cliques cover at least B vertices. 

If D=1, only one clique, this is the CLIQUE problem - NP-complete (Johnson) 

If B=|V| this is the PARTITION INTO CLIQUES problem - NP-complete (Johnson) 

But let’s look in a bit more detail…..

Symmetries  
of Hnc A disjoint Clique cover

Hnc Znc C1 C2 CD………..



Given arbitrary Pauli Hamiltonian H how do we split into Hnc and Hc?

Symmetries  
of Hnc A disjoint Clique cover

But we want more! Want Hnc ground state to well approximate H ground state.

Done: Try various Heuristics and compare them numerically 

To do: try to prove some performance bounds on the heuristics (would be nice) 

To do: try to prove restrictions on complexity for various classes of graphs (would be 
nice)

Hnc Znc C1 C2 CD………..



Heuristics

Want to keep terms that contribute a lot to ground state energy (large expectation 
values) and discard terms that do not. Two kinds of approximation: 

1) Use magnitude of coefficient as a proxy for contribution (done) 
2) Use classical methods to estimate magnitudes (not done)
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FIG. 1. Comparison of heuristics for generating noncontextual sub-Hamiltonians. Each column shows the errors in ground

state energy obtained by applying the heuristics to a particular Hamiltonian. Errors below the axis break represent cases where

the noncontextual approximation is exact up to the accuracy of the classical optimizer. In cases with nonnegligible quantum

corrections, the errors including the quantum corrections are shown in red. Not all of the heuristics were run on all of the

largest Hamiltonians, due to memory constraints in our classical simulations.

II. HEURISTICS FOR NONCONTEXTUAL
APPROXIMATION

Given a Hamiltonian specified as a linear combination
of Pauli operators, we wish to find a noncontextual sub-
set of the terms such that the ground state energy of the
resulting sub-Hamiltonian is a good approximation to the
ground state energy of the original Hamiltonian. How-
ever, finding an optimal noncontextual sub-Hamiltonian
is an NP-complete problem, as discussed in [3], since it
is a variant of the disjoint cliques problem [5]. There-
fore, we develop heuristics that find noncontextual sub-
Hamiltonians. In order to approximate the ground state
energy as well as possible, we will want to drop terms
whose expectation values in the ground state are as small
in magnitude as possible. However, we cannot a priori

know the values of the terms, since this would be equiv-
alent to already knowing the full ground state energy.

Instead, as a first approximation we can weight the
terms by the magnitudes of their coe�cients, ignoring
the expectation values of the Pauli operators, which we
cannot yet know. This will be a good approximation as
long as the terms with large coe�cients also tend to have
large expectation values in the ground state, and there
is not significant cancellation among these terms. Given
this weighting scheme, we can try a variety of heuristics

for finding noncontextual sub-Hamiltonians, and com-
pare their performance. When we refer to weight going
forward, we will mean in this sense of coe�cient magni-
tude, unless explicitly stated otherwise. However, note
that a classical method for estimating the expectation
values of the terms in the ground state could in principle
give a better starting point for our heuristics. We discuss
this possibility further in Section IV.

We focus on finding noncontextual sub-Hamiltonians
of electronic structure Hamiltonians for a set of small
molecules in their equilibrium configurations. In these
Hamiltonians, the total weight is dominated by the set
of diagonal Pauli terms, whose operators are tensor prod-
ucts of I and Z. We can check the extent to which
this holds by finding the actual ground states for our
set of Hamiltonians, since they are small enough to be
classically tractable. Doing so reveals that out of all
these examples, the maximum contribution of the o↵-
diagonal terms is to provide 7.2% of the expectation value
in the ground state. This is unsurprising because the
Hartree-Fock method amounts to keeping only the diag-
onal terms, and performs reasonably well for these sys-
tems. However, in many cases we can improve on this
using the noncontextual approximation.

The first heuristic we try is a greedy depth-first search
(DFS) for noncontextual subsets:

Results on 38 electronic structure Hamiltonians



Why is DFS best?

Hartree-Fock is pretty good - small correlation energy means diagonal terms dominate in 
terms of coefficient magnitude.


DFS always includes all the diagonal terms. 


How many off diagonal terms can you add and still be noncontextual?


Start with the highest coefficient off diagonal term C21

Z C21 C1

Diagonal terms C21  
commutes with Clique {C21} Clique of terms C21  

anticommutes with



Why is DFS best?

Z C21 C1

Diagonal terms C21  
commutes with Clique {C21} Clique of terms C21  

anticommutes with

Now try growing C21. Add another off-diagonal term that commutes with C21. It must 
have even numbers of X or Y or Z where C21 has distinct even numbers of X or Y or Z, 
or it may have Pauli operators in places where C21 has identity. 

E.g C12 = IXX, C22 = YY, or C22 = YII. 

In the first case C22 acts on the same orbitals as C21, and so arises from the same 
electronic structure term.  

In the second case we break the non-contextual structure



Z’

C21

C1’

Diagonal terms  
C21, C22  

commute with

Clique  
{C21, C22}

Clique of terms  
C21, C22  

anticommute with

B, B’ break the noncontextual structure. 

Note, we could fix this by removing diagonal terms, but when HF dominates 
this gives worse approximation in the examples we have looked at.

C22B

Commute with one  
but not the other

B’

Anticommute  
with one but  
not the other



What kind of classical quantum chemistry method is NC VQE? 5

FIG. 3. The di↵erence in error in ground state energy between

using the noncontextual approximation and restricted open-

shell Hartree Fock, for the H3 potential energy surface. The

noncontextual approximation does not su↵er from the poor

performance of Hartree-Fock at large bond lengths.

atomic centers, the system is specified by a single pa-
rameter, allowing for a simple generalization of the H3

system above.
As the quasi-quantized model

IV. DISCUSSION

One feature of the heuristics for finding noncontex-
tual approximations is that they can take as a starting
point any classical simulation method that can estimate
the expectation values of the Hamiltonian terms in the
ground state. All of the heuristics take as input some
weighting of the terms and choose terms to include in the
noncontextual sub-Hamiltonian at least partially on the
basis of these weights; the Greedy-DFS heuristic notably
optimizes exclusively based on weights. In this paper,
we weighted the terms by the magnitudes of their coef-
ficients, which one might consider to be the zeroth-order
approach to the problem. This performed well for the
electronic-structure Hamiltonians we considered in Sec-
tion II, since in these the magnitudes of the coe�cients

of the diagonal terms were su�ciently dominant that the
di↵erence between their coe�cients and their expectation
values in the ground state was only minor.

However, in Hamiltonians for molecules far from their
equilibrium configurations (obtained when calculating
potential energy landscapes), or for molecules with a
strong multi-reference character, we can expect that

FIG. 4. The di↵erence in error in ground state energy be-

tween using the noncontextual approximation and Hartree-

Fock, for varying lengths of hydrogen atom chains. The error

obtained with the noncontextual approximation consistently

peaks around !number!, whereas it consistently increases for

Hartree-Fock due to the size inconsistency of the method.

weighting instead by the terms’ expectation values in a
classically-estimated ground state could give better ap-
proximations. In combination with the contextual sub-
space VQE algorithm discussed in [4], this provides an
opportunity to use best-known classical results to inform
optimal design of a quantum-classical hybrid algorithm
whose quantum component can be tailored to match the
available quantum resources.
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Don’t expect miracles: NC condition is 
quite strict.


HF is a noncontextual approximation.


Because NC VQE is careful about 
symmetry in the Hamiltonian, it can 
outperform HF in settings where multi 
reference character arises from  
symmetries alone. 
 
Future work: Different choices of 
partition into C and NC parts can give 
an NC Hamiltonian that is NOT HF. 
Future work!



To do:  

1) Provide good approximate classical methods (and performance bounds) for 
dividing a Hamiltonian into Contextual and Non-Contextual parts 

2) Provide good approximate classical methods (and performance bounds) for 
solving non-contextual Hamiltonian problems. 

3) Apply to LARGE instances 

 



Thank you! Any questions?
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