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Outline

‚ Projective spaces, linearization, and symmetry

‚ Quantum mechanics as a projective system

‚ Quantum field theory as a projective system

‚ Invertible field theories

‚ Anomalies as an obstruction to quantization

‚ Anomaly of a spinor field



Projectivization of a linear space

W (complex) vector space

PpW q projective space of lines L Ä W

EndpW q algebra of linear maps T : W ›Ñ W

If K is any line (1-dimensional vector space), then there are canonical isomorphisms

PpW q ›Ñ PpW b Kq
L fi›Ñ L b K

EndpW q ›Ñ EndpW b Kq
T fi›Ñ T b idK

A linear symmetry of W induces a projective symmetry of PpW q

A projective symmetry of PpW q has a Cˆ-torsor of lifts to a linear symmetry of W
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G ›Ñ BCˆ –Ñ group extension

Projective action of G with projectivity ↵ –Ñ linear action of rG s.t. Cˆ acts by scalar mult

In QM one has analogs of the projective action

In QFT one has analogs of the anomaly ↵ and the linear action

The analog of the splitting is a linearization or trivialization of the anomaly ↵
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Cohomological interpretation; splittings

BCˆ

Cˆ // rG // G

↵

;;

oo
ii

The projectivity has an equivalence class in H
2pG;Cˆq for some cohomology theory

The extension is a “cocycle” for this cohomology class

Splittings of the extension—trivializations of ↵—form a torsor over characters of G

Characters—invertible linear representations—are elements of H1pG;Cˆq

Summary: Projectivity is a “suspended” invertible linear representation



What is a projective space?

Goal: Define a projective space P without committing to a linearization P –››Ñ PpW q

Geometric structure à la Klein-Cartan specified by a model geometry H ö X

An instance of that geometry is associated to a right H-torsor T by mixing: X
T
:“ T ˆ

H
X

Parametrized family: principal H-bundle P ›Ñ S symmetry: a groupoid/stack S “ ˚{{G

Model geometries for complex projective space: PGLn`1C ö CPn (complex manifold)

PUn`1 ö CPn (Kähler manifold)

zPGLn`1C ö CPn (` antiholomorphic)

PQn`1 ö CPn (` antiunitary)

(= Fubini-Study isoms)

There are infinite dimensional analogs
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Quantum mechanics as a linear system

H complex separable Hilbert space

PH space of pure states

H P EndpHq Hamiltonian

p : PH ˆ PH ›Ñ r0, 1s
L0 , L1 fi›Ñ |x 0, 1y|2

transition probability function ( i P Li unit norm)

Probability: p
`
Lf , e

´iptf´tnqH{~
An ¨ ¨ ¨ e´ipt2´t1qH{~

A1e
´ipt1´t0qH{~

L0

˘
P r0, 1s

t0 † t1 † ¨ ¨ ¨ † tn † tf real numbers, A1, . . . , An P EndH, L0, Lf P PH

Amplitude:
@
 f , e

´iptf´tnqH{~
An ¨ ¨ ¨ e´ipt2´t1qH{~

A1e
´ipt1´t0qH{~

 0

D
H

P C if we choose

vectors  0 P L0,  f P Lf ; as a function of L0, Lf the amplitude lies in the hermitian

line pL0 b Lf q˚
; the probability is the norm square: |Amplitude|2 “ Probability
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Quantum mechanics as a projective system

We only need a projective space, not a linear space:

P projective space

AP complex algebra

H P EndpAPq Hamiltonian

p : P ˆ P ›Ñ r0, 1s
�0 , �1 fi›Ñ |x 0, 1y|2

H

for any linearization P –››Ñ PH

Probability: p
`
�f , e

´iptf´tnqH{~
An ¨ ¨ ¨ e´ipt2´t1qH{~

A1e
´ipt1´t0qH{~

�0

˘
P r0, 1s

Amplitude:
@

´ , e
´iptf´tnqH{~

An ¨ ¨ ¨ e´ipt2´t1qH{~
A1e

´ipt1´t0qH{~ ´
D

P L�0,�f
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The symmetry/structure group of quantum mechanics

P projective space

p : P ˆ P ›Ñ r0, 1s transition probability function

Fix a linearization P –››Ñ PH; then the group AutpP, pq of maps P ›Ñ P preserving p is the

isometry group of the Fubini-Study metric d : PH ˆ PH ›Ñ R•0
cospdq “ 2p ´ 1

Example: dimH “ 2, P “ CP1 « S2
(round metric), AutpP, pq “ O3

T ›Ñ U2 ›Ñ SO3

T ›Ñ Q2 ›Ñ O3 “ PQ2

Theorem (von Neumann-Wigner): The group PQ of projective QM symmetries fits

into a group extension T ›Ñ Q ›Ñ PQ , where Q = group of unitaries and antiunitaries

Therefore, PQn ö CPn
or PQ8 ö CP8

is the model geometry for QM
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Linearization and anomalies

T // Q // PQ ↵ //ÅBT

The extension of QM symmetry groups is classified by a twisted cocycle ↵

A family X ›Ñ S of QM systems over S is specified by a principal PQ-bundle P ›Ñ S

Associated “twisted gerbe” over S is the anomaly—obstruction to a linearization—which is
a lift to a principal Q-bundle over S. Isomorphism class of projectivity lies in “H2pS; rTq”
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Linearization and anomalies

T // Q // PQ ↵ //ÅBT

The extension of QM symmetry groups is classified by a twisted cocycle ↵

A family X ›Ñ S of QM systems over S is specified by a principal PQ-bundle P ›Ñ S

Associated “twisted gerbe” over S is the anomaly—obstruction to a linearization—which is
a lift to a principal Q-bundle over S. Isomorphism class of projectivity lies in “H2pS; rTq”

Linearizations, if they exist, are a “categorical torsor” (gerbe) over principal rT-bundles
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Linearization and anomalies

T // Q // PQ ↵
//ÅBT

T // rG

OO

// G

OO

>>

oo

gg

__

The extension of QM symmetry groups is classified by a twisted cocycle ↵

A family X ›Ñ S of QM systems over S is specified by a principal PQ-bundle P ›Ñ S

Associated “twisted gerbe” over S is the anomaly—obstruction to a linearization—which is
a lift to a principal Q-bundle over S. Isomorphism class of projectivity lies in “H2pS; rTq”

Linearizations, if they exist, are a “categorical torsor” (gerbe) over principal rT-bundles

For S “ ˚{{G (single QM system with G-symmetry), reduce to group extension discussion



Outline

‚ Projective spaces, linearization, and symmetry

‚ Quantum mechanics as a projective system

‚ Quantum field theory as a projective system

‚ Invertible field theories

‚ Anomalies as an obstruction to quantization

‚ Anomaly of a spinor field



Wick-rotated QFT as a linear representation

Graeme Segal (mid 1980’s): Wick-rotated QFT is a representation of a bordism category

There are two “discrete parameters” that specify the species of bordism category: n,F

n is the dimension of “spacetime”

Mann category of smooth n-manifolds and local di↵eomorphisms

sSet category of simplicial sets

Definition: A Wick-rotated field is a sheaf

F : Manopn ›Ñ sSet

Examples: Riemannian metrics, G-connections, R-valued functions, M -valued
functions, orientations, spin structures, gerbes, . . .

F can be a collection of fields; FpMq is the simplicial set of fields on an n-manifold M
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Axiom System: BordnpFq bordism category

n dimension of spacetime

F background fields (orientation, Riemannian metric, . . . )

Vect linear category of topological vector spaces and linear maps

F : BordnpFq ›Ñ Vect linear representation of bordism category

Fully local for topological theories; full locality in principle for general theories

Unitarity is encoded via an additional reflection positivity structure

Kontsevich-Segal: recent paper with these axioms for nontopological theories
geometric form of Wick rotation via admissible complex metrics
theorem constructing theory on globally hyperbolic Lorentz manifolds
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Wick-rotated QFT as a projective representation; the anomaly

Proj category of “(holomorphic) projective spaces and holomorphic maps”

Vect category of topological vector spaces and linear maps

Line category of complex lines and invertible linear maps

Line // Vect // Proj // ⌃pLineq

Line //
ÉBordnpFq

rF

OO

// BordnpFq
F

OO

↵

99

oo

F

ff

kk

Projective theory F

Its anomaly = projectivity ↵ and resulting extension of the bordism category

Trivialization of ↵ = linearization of F to F

Ratio of trivializations: an invertible n-dimensional theory
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Projective theory F

Its anomaly = projectivity ↵ and resulting extension of the bordism category

Trivialization of ↵ = linearization of F to F

Ratio of trivializations: an invertible n-dimensional theory



Segal: 1980s paper on 2d conformal field theory

Line // Vect // Proj

Line //
ÉBordnpFq

rF

OO

// BordnpFq
F

OO
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Anomaly as an invertible field theory

⌃pLineq

⌃pLineq is a groupoid of gerbes, a categorification of Line
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The anomaly theory ↵ is a once-categorified n-dimensional invertible field theory



Anomaly as an invertible field theory

Line // Vect // Proj // ⌃pLineq

Line //
ÉBordnpFq

rF

OO

// BordnpFq
F

OO

↵

99

⌃pLineq is a groupoid of gerbes, a categorification of Line

The anomaly theory ↵ is a once-categorified n-dimensional invertible field theory

An n-dimensional theory F relative to ↵ assigns F pXnq : C ›Ñ ↵pXnq for Xn closed

(Note: Relative field theories are called twisted theories by Stolz-Teichner)
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The anomaly theory ↵ is a once-categorified n-dimensional invertible field theory
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To Y n´1 closed, F assigns a projective space with projectivity ↵pY n´1q



Anomaly as an invertible field theory

Line // Vect // Proj // ⌃pLineq

Line //
ÉBordnpFq

rF

OO

// BordnpFq
F

OO

↵
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⌃pLineq is a groupoid of gerbes, a categorification of Line

The anomaly theory ↵ is a once-categorified n-dimensional invertible field theory

An n-dimensional theory F relative to ↵ assigns F pXnq : C ›Ñ ↵pXnq for Xn closed

To Y n´1 closed, F assigns a projective space with projectivity ↵pY n´1q

Ratios of trivializations of ↵: a standard type of n-dimensional invertible theory



Extension of anomaly theory; relative theory ›Ñ boundary theory

⌃pLineq

BordnpFq

↵

77

� �
// Bordn`1prFq

↵̃

OO

In many cases the once-categorified n-dimensional anomaly theory ↵ has an extension to
an pn ` 1q-dimensional theory ↵̃

In that case a theory relative to ↵ is promoted to a boundary theory for ↵̃

The extended anomaly theory ↵̃ assigns a nonzero number to a closed pn ` 1q-manifold
which, though not part of an n-dimensional anomalous theory, is a useful quantity

Anomaly theories ↵, ↵̃ are not in general topological; if so, topological tools are available
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‚ Projective spaces, linearization, and symmetry

‚ Quantum mechanics as a projective system

‚ Quantum field theory as a projective system

‚ Invertible field theories

‚ Anomalies as an obstruction to quantization

‚ Anomaly of a spinor field



Preliminary: di↵erential cohomology

h
‚ cohomology theory (on CW complexes)

qh‚ ›Ñ h
‚ di↵erential refinement (on smooth manifolds)

}HZ1pMq // HZ1pMq “ H
1pM ;Zq

 
� : M ›Ñ R{Z

(  
� : M ›Ñ R{Z

( L
homotopy

}HZ2pMq // HZ2pMq “ H
2pM ;Zq

 
R{Z-connections on M

( L
–

 
principal R{Z-bundles on M

( L
–
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}HZ2pMq curvature //

Chern class

✏✏

⌦2
closedpMq

de Rham

✏✏

HZ2pMq // H2
dRpMq – HR2pMq

M “ S
1 :

R{Z //

✏✏

0

✏✏
0 // 0
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Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Generalized di↵erential cocycles on bordism, values in Anderson dual IZ to sphere; based

on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (B is a di↵erential bordism spectrum)

|IZn`2pBq curvature //

deformation class

✏✏

⌦
n`2
closedpBq

“de Rham”

✏✏

IZn`2pBq // IRn`2pBq

The curvature, or “anomaly polynomial”, encodes the local anomaly

The deformation class is accessible via homotopical methods



Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Generalized di↵erential cocycles on bordism, values in Anderson dual IZ to sphere; based

on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (B is a di↵erential bordism spectrum)

|IZn`2pBq curvature //

deformation class

✏✏

⌦
n`2
closedpBq

“de Rham”

✏✏

IZn`2pBq // IRn`2pBq

The curvature, or “anomaly polynomial”, encodes the local anomaly

The deformation class is accessible via homotopical methods



Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Generalized di↵erential cocycles on bordism, values in Anderson dual IZ to sphere; based

on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (B is a di↵erential bordism spectrum)

|IZn`2pBq curvature //

deformation class

✏✏

⌦
n`2
closedpBq

“de Rham”

✏✏

IZn`2pBq // IRn`2pBq

The curvature, or “anomaly polynomial”, encodes the local anomaly

The deformation class is accessible via homotopical methods



Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Generalized di↵erential cocycles on bordism, values in Anderson dual IZ to sphere; based

on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (B is a di↵erential bordism spectrum)

|IZn`2pBq curvature //

deformation class

✏✏

⌦
n`2
closedpBq

“de Rham”

✏✏

IZn`2pBq // IRn`2pBq

The curvature, or “anomaly polynomial”, encodes the local anomaly

The deformation class is accessible via homotopical methods



Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Generalized di↵erential cocycles on bordism, values in Anderson dual IZ to sphere; based

on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (B is a di↵erential bordism spectrum)

|IZn`2pBq curvature //

deformation class

✏✏

⌦
n`2
closedpBq

“de Rham”

✏✏

IZn`2pBq // IRn`2pBq

The curvature, or “anomaly polynomial”, encodes the local anomaly

The deformation class is accessible via homotopical methods



Outline

‚ Projective spaces, linearization, and symmetry

‚ Quantum mechanics as a projective system

‚ Quantum field theory as a projective system

‚ Invertible field theories

‚ Anomalies as an obstruction to quantization

‚ Anomaly of a spinor field



Quantum theory is projective. Quantization is linear.

⇡ : F ›Ñ F fiber bundle of collection of fields

fibers of ⇡ fluctuating fields

F background fields

Quantization: passage from a theory F on F to a theory F on F via integration over ⇡

Closed n-manifold X: Feynman path integral

Closed pn ´ 1q-manifold Y : canonical quantization

To carry out quantization we must descend the projectivity/anomaly ↵:

BordnpFq
↵

**

✏✏

⌃n`1ICˆ

BordnpFq
↵̄

44
anomaly is obstruction to existence

descents form a torsor over n-dimensional theories
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Anomalies: summary

‚ Quantum theory is projective—the ’t Hooft anomaly is the projectivity

‚ Quantization is linear—the anomaly obstructs quantization

‚ If the obstruction vanishes, one must specify descent data, which is a torsor over an
abelian group of invertible field theories

‚ There is a well-developed theory of invertible field theories, so the projectivity of
quantum field theory is accessible using geometric and topological tools

‚ The anomaly of a QFT is itself a field theory, so obeys locality and, typically, unitarity
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Outline

‚ Projective spaces, linearization, and symmetry

‚ Quantum mechanics as a projective system

‚ Quantum field theory as a projective system

‚ Invertible field theories

‚ Anomalies as an obstruction to quantization

‚ Anomaly of a spinor field



Free spinor field data on Mn

Mn Minkowski spacetime (a�ne space, Lorentz metric)

C Ä R1,n´1 component of timelike vectors (time-orientation)

Spin1,n´1 Ä Cli↵0
n´1,1 Lorentz group

‚ If S is irreducible, � exists and is unique up to scale

‚ Given a pairing � there is a unique compatible Cli↵n´1,1-module structure on S ‘ S˚

‚ Every finite dimensional Cli↵n´1,1-module is of this form

Lemma (F–Hopkins): Nondegenerate mass terms for S –Ñ Cli↵n´1,2-module struc-
tures on S ‘ S˚ that extend the Cli↵n´1,1-module structure
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Problem: For pS,�q (with m “ 0), deduce the pn ` 1q-dimensional anomaly theory ↵pS,�q

‚ ↵pS,�q is an invertible field theory with F “ Riem ˆ Spin

‚ We implicitly take a universal target for invertible field theories

‚ The “curvature” of the theory (local anomaly) is a degree pn ` 2q di↵erential form
on Riem, a component of the Chern-Weil form for Â; it vanishes if n ı 2 pmod 4q, in
which case ↵pS,�q is a topological theory; it factors through F “ Spin

‚ Let MpSq denote the vector space of mass pairings. (It may be the zero vector space.)
We can take F “ Riem ˆ Spin ˆ MpSq and deduce the anomaly; see
arXiv:1905.09315 with Córdova-Lam-Seiberg

‚ There is a related formula for the low energy e↵ective theory in case m P MpSq is
nondegenerate; see arXiv:1604.06527 with Hopkins
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Free fermion anomaly theory (F–Hopkins)

S real (ungraded) Cli↵0
n´1,1-module

� : S ˆ S ›Ñ R1,n´1 symmetric Spin1,n´1-invariant form; �ps, sq P C for all s P S

Lemma: Nondegenerate mass terms for S –Ñ Cli↵n´1,2-module structures on S‘S˚

that extend the Cli↵n´1,1-module structure

rSs P ⇡2´nKO – rS0
,⌃n´2

KOs (Atiyah–Bott–Shapiro)

Claim: The isomorphism class of ↵pS,�q is the di↵erential lift of the composition

MSpin
�^rSs›››››Ñ KO ^ ⌃n´2

KO
µ››Ñ ⌃n´2

KO
Pfa↵››››Ñ ⌃n`2

IZ

Partition function on a Riemannian spin pn ` 1q-manifold is an exponentiated ⌘-invariant
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