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Global Gravitational Anomalies
WORLD-SHEET CORRECTIONS

Edward Witten* VIA D-INSTANTONS

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Abstract. A general formula for global gauge and gravitational anomalies is
derived. It is used to show that the anomaly free supergravity and superstring
theories in ten dimensions are all free of global anomalies that might have School of Natural , Institute for Advanced Study
ruined their consistency. However, it is shown that global anomalies lead to Olden Lane, Princeton

some restrictions on allowed compactifications of these theories. For example,

rd Witten

1) Such a relation means that there is a three-manifold U boundary is the

not obvious. Usually, the only simple way to study a dificomorphism 7 is to walon of the G (or more generally & three-manifold U with a map uch that

investigate the associated manifold (M x S*), discussed in Sect. II. The simplest the boundary of U is mapped diffeomorphically to the union of the C,). In this situation,
properties of (M x S'), are invariants of a manifold B which has it for boundary.
The only evident connection between (M x S*), and B in which spinors play a role
is the Atiyah-Patodi-Singer theorem concerning the n-invariant [29]. The n
invariant can be defined as

we can give a relation, which depe on the g nt H-ficld and not on the
mysterious B-field, for the product [T2_, F(C).
First of all, thoug X c,B) a sterious individually, for their

product we ean write an obvious c o epends Hand U:
n=Ilim Y (signE,)exp—¢|E
0 EA%0

where E,, are the eigenvalues of the Dirac operator on (M x S*),. The Atiyah-

Patodi-Singer theorem asserts (for the spin 1/2 case) that
fermion path integral
n

However, according to & theorem of Dai

whose boundary is the union of the

! — index,(ih) — | A(R), (23)
5

& canonical tr n
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Two myths

Just in case. ..

Anomalies are only caused by fermionic fields

Mythbuster 1: The flavor symmetry of QCD is anomalous—indeed, that anomaly
involves fermions—but the anomaly persists in the effective theory
of pions, which is a bosonic theory

Anomalies are only associated to symmetries

Mythbuster 2: The theory of a free spinor field has an anomaly
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Main thesis

QUANTUM THEORY IS PROJECTIVE. QUANTIZATION IS LINEAR.

The anomaly of a quantum theory expresses its projectivity
The anomaly is a feature, not a bug ('t Hooft)

The anomaly is an obstruction only when quantizing



Outline

Quantum mechanics as a projective system

Quantum field theory as a projective system

Invertible field theories

Anomalies as an obstruction to quantization

Anomaly of a spinor field



Projectivization of a linear space

w (complex) vector space
P(W) projective space of lines L < W
End(W) algebra of linear maps T': W — W
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P(W) — P(W ® K) End(W) — End(W ® K)
Lo b P T ®idg
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Projectivization of a linear space

w (complex) vector space
P(W) projective space of lines L < W
End(W) algebra of linear maps 7': W — W

If K is any line (1-dimensional vector space), then there are canonical isomorphisms

P(W) — P(W ® K) End(W) — End(W ® K)
Lo b P T ®idg

A linear symmetry of W induces a projective symmetry of P(1)

A projective symmetry of P(W) has a C*-torsor of lifts to a linear symmetry of W
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Projective symmetries

@% L PGL
A
|
H Ly \ T
CX* G @

Short exact sequence of Lie groups

Lie group G of projective symmetries

Pullback group extension; linear action of i

Lift to linear symmetries «— splitting of group extension

to lifting

BC*



Projective symmetries

BCx

&3 G G

BC* «—  group extension



Projective symmetries

Cx* GL PGL BCX
Cx % %

G BC* «—  group extension

Projective action of G with > linear action of G s.t. C* acts by scalar mult
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In QM one has analogs of the projective action

In QFT one has analogs of the and the linear action



Projective symmetries

(C* GL PGL BC*
Cx G G
G BC* «—  group extension
Projective action of G with > linear action of G s.t. C* acts by scalar mult
In QM one has analogs of the projective action
In QFT one has analogs of the and the linear action

The analog of the splitting is a linearization or trivialization of the
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Cohomological interpretation; splittings

BC*

Cx G
\/

G

The has an equivalence class in for some cohomology theory
The extension is a “cocycle” for this cohomology class

Splittings of the extension—trivializations of = —form a torsor over characters of G
Characters—invertible linear representations—are elements of /' (G; C*)

Summary: is a “suspended” invertible linear representation
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What is a projective space?

Goal: Define a projective space P without committing to a linearization P — P(W)
Geometric structure a la Klein-Cartan specified by a model geometry H G X
An instance of that geometry is associated to a right H-torsor T' by mixing: X, :=T x5 X

Parametrized family: principal H-bundle P — S symmetry: a groupoid/stack S = %//G

"?

N
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What is a projective space?

Goal: Define a projective space P without committing to a linearization P — P(W)
Geometric structure a la Klein-Cartan specified by a model geometry H C X
An instance of that geometry is associated to a right H-torsor T' by mixing: X, :=T x5 X

Parametrized family: principal H-bundle P — S symmetry: a groupoid/stack S = %//G

Model geometries for complex projective space: PGL,.;C & CP" (complex manifold)
PU,+1 C CP" (Kéhler manifold)
PGL,.1C ¢ CP" (+ antiholomorphic)

(

(=

PQ,.1 C CP" (+ antiunitary)

Fubini-Study isoms)



What is a projective space?

Goal: Define a projective space P without committing to a linearization P — P(W)
Geometric structure a la Klein-Cartan specified by a model geometry H C X
An instance of that geometry is associated to a right H-torsor T' by mixing: X, :=T x5 X

Parametrized family: principal H-bundle P — S symmetry: a groupoid/stack S = %//G

Model geometries for complex projective space: PGL,,;C & CP" (complex manifold)
PUp41 C CP”

E Kéhler manifold)
PGL,.1C ¢ CP" (+ antiholomorphic)

(

(=

PQ,.1 C CP" (+ antiunitary)

Fubini-Study isoms)

There are infinite dimensional analogs
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Projective spaces, linearization, and symmetry

Quantum field theory as a projective system

Invertible field theories

Anomalies as an obstruction to quantization

Anomaly of a spinor field



L
H complex separable Hilbert space S ST
PH space of pure states TAaiaid \
H € End(H) Hamiltonian L\ ol et
p: PH x PH — [0,1]

Quantum mechanics as a linear system

transition probability function (¢; € L; unit noﬂﬁ)
Lo, Ly — (o, ¥1)|?
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Quantum mechanics as a linear system

I complex separable Hilbert space
PH space of pure states
H € End(H) Hamiltonian

p: PH x PH — [0,1]

transition probability function (¢; € L; unit norm)
Lo, Ly — (Ko, )l

Probability: p (Lf e~ ttr—tn)Hih A 5. Sesi(test)HiR 4, o—ilti—to)H/A Lo) € [0,1]
to <1 <--- <t <ty realNEDEES Aq,..., A, € End K, Lo, Ly e PH

Lo AL An Lg

L

1 —+

L n ol
3 1
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Quantum mechanics as a linear system

I complex separable Hilbert space
PH space of pure states
H € End(H) Hamiltonian

p: PH x PH — [0,1]

transition probability function (¢; € L; unit norm)
Lo, Ly — (Ko, )l

Probability: p (Lf e~ ttr—tn)Hih A 5. Sesi(test)HiR 4, o—ilti—to)H/A Lo) € [0,1]
to <1 <--- <t <ty realNEDEES Aq,..., A, € End K, Lo, Ly e PH

Amplitude: (¢, e {Cs—tnH/AY, ... e=tt2—t)H/R 4, o=it1—to) H/R Yoys €C  if we choose
vectors Yo € Lo, 9y € Ly;  as a function of Lo, Ly the amplitude lies in the hermitian

line (Lo ® Ly)*; the probability is the norm square: [Amplitude|? = Probability



Quantum mechanics as a projective system

We only need a projective space, not a linear space:

P projective space
Ip complex algebra
H € End(ap) Hamiltonian

PxP— 0,1 ~
4 0, 1] 5 for anyIP’;]P’U'C
00, 01— (Yo, Y1)l
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Quantum mechanics as a projective system

We only need a projective space, not a linear space:

P projective space
Ip complex algebra
H € End(ap) Hamiltonian

p:PxP— [0,1]

g for any linearization P = PKH
00, 01— [Kto, ¥1)l3

Probability: p (Uf, e~ it —tn) Hih AeL SNt i Hy B A 00) € [0,1]

% A‘ AL e An (f

© 9
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Quantum mechanics as a projective system

We only need a projective space, not a linear space:

P projective space )
p complex algebra e
H € End(ap) Hamiltonian ‘}

3
p:PxP— [0,1] <

g for any linearization P = PKH
00, 01— [Kto, ¥1)l3

Probability: p (Uf, e~ it —tn) Hih AeL SNt i Hy B A 00) € [0,1]

Amplitude: <_ —i(ts=ta)H/h A ... o=ilt2—t1)H/h g o—i(tr—to)H/R _> S i
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The symmetry/structure group of quantum mechanics

P projective space

p: P x P—j0n transition probability function

Fix a linearization P —> PH; then the group Aut(P, p) of maps P — P preserving p is the
isometry group of the Fubini-Study metric d: PH x PH — R>Y cos(d) =2p—1

Al
S

2R @%{‘9@/‘@/


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


The symmetry/structure group of quantum mechanics

P projective space

p: P x P—j0n transition probability function

Fix a linearization P —> PH; then the group Aut(P, p) of maps P — P preserving p is the
isometry group of the Fubini-Study metric d: PH x PH —> R>0 cos(d) =2p—1

Example: dimH = 2, P = CP! ~ 52 (round metric), Aut(P, p) = O3

T — U; — SO3 S
T == Qo =~ OF=SFES
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The symmetry/structure group of quantum mechanics

P projective space

p: P x P—j0n transition probability function

Fix a linearization P —> PH; then the group Aut(P, p) of maps P — P preserving p is the
isometry group of the Fubini-Study metric d: PH x PH — R>Y cos(d) =2p—1

Example: dimH = 2, P = CP! ~ 52 (round metric), Aut(P, p) = O3

T — U; — SO3
T— Q— O03=PQ

Theorem (von Neumann-Wigner): The group PQ of projective QM symmetries fits
into a group extension T —> Q — PQ, where Q = group of unitaries and antiunitaries



The symmetry/structure group of quantum mechanics

P projective space

p: P x P—j0n transition probability function

Fix a linearization P —> PH; then the group Aut(P, p) of maps P — P preserving p is the
isometry group of the Fubini-Study metric d: PH x PH — R>Y cos(d) =2p—1

Example: dimH = 2, P = CP! ~ 52 (round metric), Aut(P, p) = O3

T — U; — SO3
T— Q— O03=PQ

Theorem (von Neumann-Wigner): The group PQ of projective QM symmetries fits
into a group extension T —> Q — PQ, where Q = group of unitaries and antiunitaries

Therefore, PQ,, C CP" or PQ,, CCP® is the model geometry for QM
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Linearization and anomalies

T —SQEe P BT

The extension of QM symmetry groups is classified by a twisted cocycle

A family X — S of QM systems over S is specified by a principal PQ-bundle P — S

¥
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Linearization and anomalies

T——Q——=PQ BT

The extension of QM symmetry groups is classified by a twisted cocycle

A family X — S of QM systems over S is specified by a principal PQ-bundle P — §

”

Associated “ over S is the —obstruction to a linearization—which is
a lift to a principal Q-bundle over S. Isomorphism class of lies in “H?(S;T)”
% i
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Linearization and anomalies

T——Q——=PQ BT

The extension of QM symmetry groups is classified by a twisted cocycle
A family X — S of QM systems over S is specified by a principal PQ-bundle P — §

”

Associated “ over S is the —obstruction to a linearization—which is
a lift to a principal Q-bundle over S. Isomorphism class of lies in “H?(S;T)”

Linearizations, if they exist, are a “categorical torsor” (gerbe) over principal T-bundles
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Linearization and anomalies

T S ST DG BT
A
[
e
T—G——=G
The extension of QM symmetry groups is classified by a twisted cocycle
A family X — S of QM systems over S is specified by a principal PQ-bundle P — §

”

Associated “ over S is the —obstruction to a linearization—which is
a lift to a principal Q-bundle over S. Isomorphism class of lies in “H?(S;T)”

Linearizations, if they exist, are a “categorical torsor” (gerbe) over principal T-bundles

For S = %//G (single QM system with G-symmetry), reduce to group extension discussion
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Projective spaces, linearization, and symmetry

Quantum mechanics as a projective system

Invertible field theories

Anomalies as an obstruction to quantization

Anomaly of a spinor field
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Wick-rotated QFT as a linear representation
Graeme Segal (mid 1980’s): Wick-rotated QFT is a representation of a bordism category
There are two “discrete parameters” that specify the species of bordism category: n,F
n is the dimension of “spacetime”

Man,, category of smooth n-manifolds and local diffeomorphisms

sSet category of simplicial sets
Definition: A Wick-rotated field is a sheaf
F: Man)P? — sSet

Examples: Riemannian metrics, G-connections, R-valued functions, M-valued
functions, orientations, spin structures, gerbes, ...

F can be a collection of fields; F(M) is the simplicial set of fields on an n-manifold M



Axiom System: Bord,(F) bordism category

n  dimension of spacetime

F  background fields (orientation, Riemannian metric, ..
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Axiom System: Bord,(F) bordism category

n  dimension of spacetime

F  background fields (orientation, Riemannian metric, . ..)

Vect  linear category of topological vector spaces and linear maps



Axiom System: Bord,(¥)

n

I3

Vect

F: Bord,, () — Vect

bordism category

dimension of spacetime

background fields (orientation, Riemannian metric, .. .)

linear category of topological vector spaces and linear maps

linear representation of bordism category
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n  dimension of spacetime

F  background fields (orientation, Riemannian metric, ...)
Vect

linear category of topological vector spaces and linear maps

F: Bord,(F) — Vect linear representation of bordism category

Fully local for topological theories; full locality in principle for general theories
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Axiom System: Bord,(¥F) bordism category

n  dimension of spacetime

F  background fields (orientation, Riemannian metric, ...)

Vect  linear category of topological vector spaces and linear maps

F: Bord,(F) — Vect linear representation of bordism category

Fully local for topological theories; full locality in principle for general theories
Unitarity is encoded via an additional reflection positivity structure

Kontsevich-Segal: recent paper with these axioms for nontopological theories
geometric form of Wick rotation via admissible complex metrics
theorem constructing theory on globally hyperbolic Lorentz manifolds



Wick-rotated QFT as a projective representation; the anomaly

Proj category of “(holomorphic) projective spaces and holomorphic maps”
Vect category of topological vector spaces and linear maps

Line category of complex lines and invertible linear maps
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Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Line Vect Proj ¥ (Line)
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Projective theory F
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Wick-rotated QFT as a projective representation; the anomaly

Proj category of (holomorphic) projective spaces and holomorphic maps
Vect category of topological vector spaces and linear maps
Line category of complex lines and invertible linear maps

Line Vect Proj ¥ (Line)

e

Line —— Bord, (¥) —— Bord,,(¥)
\—/

Projective theory F
Its = and resulting extension of the bordism category
Trivialization of o = linearization of F to F'

Ratio of trivializations: an invertible n-dimensional theory



: 1980s paper on 2d conformal field theory

Line Vect Proj
A
‘ ~
|

F

Line —— Bord, (¥) —— Bord,, (%)

For any modular functor E we have a map E(X) ® E(Y) - E(XoY) when

X and Y are composable morphisms in\é with their boundaries compatibly

labelled. So E defines an extension 8'5 of the category @ . An object

of 8“3 is a collection of circles each with a label from &, and a

morphism is a pair (X,¢), where X is an morphism in ‘g and ¢ ¢ E(X).

Definition (5.2). A weakly conformal field theory is a representation

of@E for some modular functor E, satisfying conditions as in (4.4).
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Anomaly as an invertible field theory
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Anomaly as an invertible field theory

Vect Proj Y(Line)

A
lﬁ TF

Line —— Bord,, () —— Bord,,(¥)

Line

Y (Line) is a groupoid of gerbes, a categorification of Line

The is a once-categorified n-dimensional invertible field theory

An n-dimensional | theory F' relative to | assigns F(X"): C — for X" closed

(Note: Relative field theories are called twisted theories by Stolz-Teichner)



Anomaly as an invertible field theory

Line Vect Proj Y (Line)

A
:ﬁ TF

Line —— Bord,,(¥) —— Bord, (%)

Y (Line) is a groupoid of gerbes, a categorification of Line

The is a once-categorified n-dimensional invertible field theory

An n-dimensional | theory F relative to | assigns F'(X"): C —> for X™ closed

To Y™ ! closed, F assigns a projective space with projectivity



Line

Anomaly as an invertible field theory

Vect

A

J F

Proj ¥ (Line)

Ir

Line —— Bord,,(¥) —— Bord,(%)
\/

Y (Line) is a groupoid of gerbes, a categorification of Line

The

An n-dimensional

is a once-categorified n-dimensional invertible field theory

theory F relative to

assigns F(X"): C — for X" closed

To Y™ ! closed, F assigns a projective space with projectivity

Ratios of trivializations of

: a standard type of n-dimensional invertible theory
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an (n + 1)-dimensional theory



Extension of anomaly theory; relative theory — boundary theory

Y (Line)

~

Bord, (F)~—— Bord,+1(F)

In many cases the once-categorified n-dimensional anomaly theory  has an extension to
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In many cases the once-categorified n-dimensional anomaly theory  has an extension to
an (n + 1)-dimensional theory

In that case a theory relative to  is promoted to a boundary theory for

The extended anomaly theory  assigns a nonzero number to a closed (n + 1)-manifold
which, though not part of an n-dimensional anomalous theory, is a useful quantity



Extension of anomaly theory; relative theory — boundary theory

Y (Line)

~

Bord, (F)~—— Bord,+1(F)

In many cases the once-categorified n-dimensional anomaly theory  has an extension to
an (n + 1)-dimensional theory

In that case a theory relative to  is promoted to a boundary theory for

The extended anomaly theory  assigns a nonzero number to a closed (n + 1)-manifold
which, though not part of an n-dimensional anomalous theory, is a useful quantity

Anomaly theories are not in general topological; if so, topological tools are available
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Projective spaces, linearization, and symmetry

Quantum mechanics as a projective system

Quantum field theory as a projective system

Anomalies as an obstruction to quantization

Anomaly of a spinor field



Preliminary: differential cohomology

I cohomology theory (on CW complexes)

e = differential refinement (on smooth manifolds)



Preliminary: differential cohomology

I cohomology theory (on CW complexes)
e = differential refinement (on smooth manifolds)
HZY(M) HZYMM) = HY(M;Z)

H |

{¢: M — R/Z} {¢: M — R/Z} / homotopy



Preliminary: differential cohomology

e cohomology theory (on CW complexes)
e = differential refinement (on smooth manifolds)
HZY(M) HZYMM) = HY(M;Z)
{(;5: M L R/Z} {(;6: M — R/L} / homotopy
H72(M) HZ2:(M) = H%(M;Z)

H H

{R/Z-connections on M} /= {principal R/Z-bundles on M} /=~



1\{22 (M) curvature QQ

closed (M )
Chern classl |de Rham

H7*(M) ——— H3; (M) = HR?*(M)




I\{/Z2 (M) curvature QQ

closed (M )
Chern classl |de Rham

H7*(M) ——— H3; (M) = HR?*(M)

M=25":

z, Qurv«“\//l&/

(e |
®—> H2 (M) —
€

de
4
Rha m <
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Invertible field theories

Introduced by F-Moore, homotopical approach developed by F-Hopkins-Teleman

Generalized differential cocycles on bordism, values in Anderson dual /7Z to sphere; based
on ideas of Hopkins-Singer

Here is the diagram for an extended anomaly theory (B is a differential bordism spectrum)

I\zn+2 (,B) curvature Qn+2 (B)

closed

deformation class “de Rham”

IZTL+2('B) ]Rn+2(:B)

The curvature, or “anomaly polynomial”, encodes the local anomaly

The deformation class is accessible via homotopical methods
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Projective spaces, linearization, and symmetry

Quantum mechanics as a projective system

Quantum field theory as a projective system

Invertible field theories

Anomaly of a spinor field



QUANTUM THEORY IS PROJECTIVE. QUANTIZATION IS LINEAR.

mF—F fiber bundle of collection of fields

fibers of 7 fluctuating fields . RN
G background fields 7 \ ) >
L :
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mF—F fiber bundle of collection of fields
fibers of 7 fluctuating fields

< background fields

Quantization: passage from a theory F on JF to a theory F on JF via integration over
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QUANTUM THEORY IS PROJECTIVE. QUANTIZATION IS LINEAR.

mF—F fiber bundle of collection of fields
fibers of 7 fluctuating fields

G background fields

Quantization: passage from a theory F on JF to a theory F on JF via integration over
d(X)

Closed n-manifold X: Feynman path integral
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QUANTUM THEORY IS PROJECTIVE. QUANTIZATION IS LINEAR.

mF—F fiber bundle of collection of fields
fibers of 7 fluctuating fields

< background fields

Quantization: passage from a theory F on JF to a theory F on JF via integration over
d(Y)

Closed n-manifold X: Feynman path integral

Closed (n — 1)-manifold Y: canonical quantization
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QUANTUM THEORY IS PROJECTIVE. QUANTIZATION IS LINEAR.

mF—F fiber bundle of collection of fields
fibers of 7 fluctuating fields

< background fields

Quantization: passage from a theory F on F to a theory F on J via integration over m
Closed n-manifold X: Feynman path integral

Closed (n — 1)-manifold Y: canonical quantization

To carry out quantization we must descend the projectivity /anomaly o:

Bord, ()

anomaly is obstruction to existence

EnJrIIC %

descents form a torsor over n-dimensional theories

Bord,, (%)
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There is a well-developed theory of invertible field theories, so the projectivity of
quantum field theory is accessible using geometric and topological tools



Anomalies: summary
Quantum theory is projective—the t Hooft anomaly is the projectivity
Quantization is linear—the anomaly obstructs quantization

If the obstruction vanishes, one must specify descent data, which is a torsor over an
abelian group of invertible field theories

There is a well-developed theory of invertible field theories, so the projectivity of
quantum field theory is accessible using geometric and topological tools

The anomaly of a QFT is itself a field theory, so obeys locality and, typically, unitarity
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Projective spaces, linearization, and symmetry

Quantum mechanics as a projective system

Quantum field theory as a projective system

Invertible field theories

Anomalies as an obstruction to quantization



Free spinor field data on M"

M" Minkowski spacetime (affine space, Lorentz metric)
G E component of timelike vectors (time-orientation)
Sping , & Cliff?l_l’l Lorentz group
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Free spinor field data on M"

M" Minkowski spacetime (affine space, Lorentz metric)

G, R component of timelike vectors (time-orientation)

Sping , & Cliff%_lﬁl Lorentz group

N real (ungraded) Cliff%,l,l—module

TAS xS —>RLE symmetric Spin; ,,_;-invariant form; I'(s, s) € CforalseS

m:SxS—R skew-symmetric Spin, ,,_;-invariant (mass) form
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Free spinor field data on M"

M" Minkowski spacetime (affine space, Lorentz metric)

G, R component of timelike vectors (time-orientation)

Sping , & Cliff%_lﬁl Lorentz group

N real (ungraded) Cliff%,l,l—module

TAS xS —>RLE symmetric Spin; ,,_;-invariant form; I'(s, s) € CforalseS
m:SxS—R skew-symmetric Spin, ,,_;-invariant (mass) form

e If S is irreducible, I' exists and is unique up to scale
* Given a pairing I' there is a unique compatible Cliff,,_; j-module structure on S ® S*
® Every finite dimensional Cliff,,_; ;-module is of this form

Lemma (F-Hopkins): Nondegenerate mass terms for S «— Cliff,,_; 9-module struc-
tures on S @ S* that extend the Cliff,,_; ;-module structure
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Problem: For (S,T") (with m = 0), deduce the (n + 1)-dimensional anomaly theory a(s )

® a(sr) is an invertible field theory with ¥ = Riem x Spin
e We implicitly take a universal target for invertible field theories

® The “curvature” of the theory (local anomaly) is a degree (n + 2) differential form
on Riem, a component of the Chern-Weil form for A; it vanishes if n # 2 (mod 4), in
which case a(sr) is a topological theory; it factors through F = Spin

* Let M (S) denote the vector space of mass pairings. (It may be the zero vector space.)
We can take F = Riem x Spin x M (S) and deduce the anomaly; see
arXiv:1905.09315 with Cordova-Lam-Seiberg
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Free fermion anomaly theory (F—Hopkins)

S real (ungraded) Cliﬁ’g_l’l—module

T S xS 2R symmetric Spin; ,,_;-invariant form; I'(s,s) € C for all s € S

Lemma: Nondegenerate mass terms for S «— Cliff,,_; o-module structures on S@S*
that extend the Cliff,,_; ;-module structure

[S] € m—n KO = [S%, 372K O] (Atiyah—-Bott—Shapiro)
Claim: The isomorphism class of o (s r) is the differential lift of the composition

P [S]

MSpin KO AT 2K0 £ yr2g0 2EE, ymi2py

Partition function on a Riemannian spin (n + 1)-manifold is an exponentiated 7-invariant



