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Google is building an error-corrected
quantum computer

Targeting a device with ~1M physical qubits 
that can execute billions, or trillions of gates

This is a challenging and expensive endeavor!

→ We hope these devices will solve important and otherwise intractable problems!

Y?
There are some use cases for 1M physical qubits, but fewer than we would hope

This talk is about research into the viability of promising quantum applications



Outline

1. Brief discussion of Google’s roadmap towards quantum error-correction

2. Review of fault-tolerant quantum algorithms for chemistry

3. Results on identifying and assessing viability of valuable chemical applications

4. The viability of quantum advantage in topological data analysis

5. Brief overview of some other interesting results and directions in applications



Part I: Google’s roadmap towards 
quantum error-correction



Google’s roadmap towards practical quantum computing
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Milestone 2: Logical qubit prototype (plan)
Run experiments to implement 
surface codes

d = 5 
surface code

Analyze data and see if failure 
probability is lower with larger code 
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Milestone 2: Logical qubit prototype (experimental data)
Nature 614, 676–681 (2023)

λ = error(d) / error(d + 2)



On the importance of super-quadratic speedups
PRX Quantum 2, 010103 (2021)

quantum
advantage

PRX Quantum 2, 010103 (2021) argues quadratic speedups will not enable 
error-corrected advantage until devices MUCH larger than 1MM physical qubits

classical NAND gate (CMOS)
<10-9 “transistorseconds”

“quantum NAND” gate (distillation of Toffoli state) >10 “qubitseconds”



Part II: review of fault-tolerant quantum 
algorithms for chemistry



25k-50k 50k - 250k 250k - 1MM 1MM - 5MM ???
physical 
qubits
required

application difficulty

Spectrum of quantum simulation difficulty



The molecular electronic structure problem
Solve for the energy of molecule under the  Born-Oppenheimer approximation

Energy surfaces allow us to understand reactions
Need chemical accuracy (1 kcal/mol) for rates

Such accuracy is often classically intractable
Especially for systems with strong correlation



Representing η electrons in N spin-orbitals
Second quantization requires N qubits First quantization requires η log N qubits

● Anti-symmetry is “encoded in the operators”
● Good near half filling or with compact basis

η registers of size log N index 
which orbital the particle occupies

● Anti-symmetry is “explicit in the state”
● Ideal for high precision calculations



Error-corrected quantum chemistry simulation
Science 309:5741 (2005), 1704-1707

1. Prepare an ansatz wavefunction 𝜓 with “reasonable” support on the ground state

2. Form quantum circuit U = e-i f (H) that encodes Hamiltonian spectrum in its eigenvalues

3. Application of U to 𝜓 accumulates phases f (E) encoding the spectrum 

4. Phase estimation gives E0 with error 𝝐 and probability |a0|2 using                         queries to U 

=  not-too-small

e.g., for
Trotter:



Linear combination of unitaries (LCU) simulation

H as an “LCU”:

Repeat this circuit                   times to estimate phase to within error

“qubitization” (arXiv:1610.06546) synthesizes a quantum walk unitary:                                  

with 1-norm



But how does the quantum walk scale?
SELECT can be implemented at O(η) cost in first quantization, O(N) cost in second quantization

PREPARE is the hard part
● Cost proportional to computation required to compute (or “load”) Hamiltonian coefficients

total cost = O(N4 / 𝛜) 
(1902.02134)

total cost = O(N7/2 / 𝛜) 
(1902.02134)

total cost = O(N3 / 𝛜) 
(2011.03494)

Coulomb operator Cholesky factorization Tensor hypercontraction



Simple basis sets like grids, plane 
waves lead to analytic integrals!

First quantization and simple basis sets

But molecules need 100X - 1,000X more plane waves than MOs to reach chemical accuracy

● In second quantization, space complexity is O(N)

● Would need 100k logical qubits instead of 100!

#particles with 300k plane waves
#T
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● 60 electrons in 100k PWs needs ~1k logical qubits

● 1807.09802 + 2105.12767 scale as low as O(η8/3 N1/3)

● Particularly attractive for non-BO dynamics



Compilation is tedious, often thankless work



Part III: searching for applications of 
these algorithms



FeMoCo is great but we need more

● Critical to flesh out more specifically what valuable technological problems might 
be practically solved with a few thousand logical qubits and < 1012 Toffoli gates

N2 + 3 H2 → 2 NH3 
2% of world energy



Assessing quantum/classical boundary for P450
PNAS 119, 2203533119 (2022)

P450 is strongly correlated 
iron-porphyrin / drug anti-target
(kind of like FeMoCo!)

We observe onset of quantum advantage for 
active space sizes near 80 qubits

Chemically relevant (and classically intractable) 
calculations would require ~3k qubits, ~1010 Toffolis



Ab initio materials simulation is still very costly
PRX Quantum 4, 040303 (2023)

Want to get Co out of batteries, LNO is good candidate, why not Jahn-Teller distorted?

● Classical many-body methods unreliable for metals
● Embedding difficult to converge finite size
● DFT disagrees between functionals

Q algorithms must further improve for viability

recent work symmetry adapts qubitization

Gives linearly reduced scaling in number of k-points



Are only the most highly entangled systems 
promising applications of quantum simulation?

FeMoCo (fertilizer catalyst)
PRX Quantum 2, 030305 (2021)

P450 (drug anti-target)
PNAS 119, 2203533119 (2022)

LiNiO2 (battery cathode)
PRX Quantum 4, 040303 (2023)

most chemical computations do not require accurate treatment of strong correlation

● “classical competition” is highly efficient/approximate classical methods (e.g. mean-field, DFT)

● “classical competition” is only the most costly/accurate methods (e.g. AFQMC, DMRG)

● super-quadratic quantum advantage over mean-field would dramatically broaden applications



Super-quadratic quantum advantage over classical 
mean-field methods possible for electron dynamics
Nat. Comm 14, 4058 (2023)

Usual quantum sim. advantage is resolution of entanglement
● storing wavefunction with η particles, N orbitals classically requires O(N choose η) bits
● mean-field has no particle correlation, only requires O(N η) bits and gate complexity:

quantum simulations need only O(η log N) qubits
and gate complexity:

or, for high temperature:



Quantum simulating heating of pre-ignition ICF
“The essence of controlled laboratory thermonuclear fusion is to use the fusion product’s 
kinetic energy to self-heat the plasma, accelerating and perpetuating the burn”
Phys. Plasmas 26, 062701 (2019)

Stopping power = rate at which a 
material absorbs kinetic energy of 
charged particle passing through it

Multiscale ICF modeling depends 
sensitively on “stopping power” as 
a function of temperature, velocity

DOE spends billions of CPU hours 
per year running inaccurate TDDFT 
for stopping power

https://docs.google.com/file/d/1ZlnjlSdxkn36jgoTMZ4j7O63_yZ3PZrx/preview


Resource estimates for stopping power
arXiv:2308.12352

t = 10
ε=0.001
N ~ 260k
rs ~ 0.8

reference benchmarks

● FeMoCO: 2100 Qubits, 3.2 x 1010 Toffoli
● P450: 1500 Qubits, 7.0 x 109 Toffoli



Part IV: case study on the viability of 
quantum topological data analysis



What is topological data analysis?
● Given n data points, make a graph G with data points as nodes, with edges between points 

wherever the points are within some distance (“filtration”) 𝝐

● The kth order Betti number (𝛽k) is the number of k-dimensional holes in the simplicial complex

● Topological features are somewhat fundamental global properties, often robust to noise in data

● Real world applications of this in neuroscience, epidemiology, genetics, finance, even physics





The quantum approach to TDA
Nat. Comms. 7: 10138 (2016)

● Every data point (node) is represented by a qubit, with every computational 
basis state representing a clique; e.g., |01101> is a clique between nodes 2,3,5

1. Prepare the equal mixed state over Clk(G), all k-cliques in the simplicial complex
→ can be accomplished via amplitude amplification from Dicke state of order k

2. Apply phase estimation to the combinatorial Laplacian associated with the data graph G

3. Estimate 𝛽k as the dimension of the kernel of that combinatorial Laplacian

● The most natural thing to estimate from this procedure is actually an approximate 
Betti number normalized by the number of k-cliques, i.e. 𝛽k / |Clk(G)|

https://www.nature.com/articles/ncomms10138


Algorithm improvements from our work
see arXiv:2209.13581

● New method based on threshold testing to prepare a mixture of fixed Hamming-weight 
states with garbage information that has significantly lower fault-tolerant cost

● Directly perform phase estimation on the quantum walk operator

● Use Kaiser windows functions to reduce the number of amplitude estimation steps

● Project onto the kernel of the boundary map by implementing a Chebyshev polynomial 
to optimally filter zero eigenvalues from phase estimation

● Use overlap estimation to estimate kernel dimension of block-encoded combinatorial 
Laplacian, leading to a quadratic improvement in precision over prior work



Quantum resource analysis
see arXiv:2209.13581

n = number of nodes/qubits
|E| = number of edges

Classical cost: O((n choose k)

Cost in terms of ɑ, the additive error in 𝛽k
G:

Cost in terms of r, the multiplicative (e.g. percent) error in 𝛽k
G:

𝛽k
G

 = kth order Betti number of graph G
𝛿 = success probability



n = number of nodes/qubits
|E| = number of edges

Classical cost: O((n choose k)

Cost in terms of ɑ, the additive error in 𝛽k
G:

Cost in terms of r, the multiplicative (e.g. percent) error in 𝛽k
G:

𝛽k
G

 = kth order Betti number of graph G
𝛿 = success probability

● Never more than quadratic quantum speedup

● Implies practical advantage is unlikely

● Quantum speedup only when 𝛽k
G  is large

● Exponential iff 𝛽k
G = 𝛺((n choose k) / poly(n k))

Quantum resource analysis
see arXiv:2209.13581



● We construct graphs with Betti 
number large enough for 
superpolynomial speedup

● Do real applications have speedup?

● Erdos-Renyi graphs with edge with 
probability p have mean Betti 
number (n choose k+1) / p(k+1 choose 2)

● Optimal p gives quartic speedup

Problem instances with speedup
see arXiv:2209.13581

(n choose k)
upper-bound
(classical)

number of cliques 
“lower-bound”
(classical)

quantum Toffoli cost



Part III: other interesting places to 
look for viable quantum applications



Exponential speedup in simulating classical oscillators
PRX 13, 041041 (2023) + FOCS 2023

Hooke’s Law for coupled oscillators can be expressed as: 

Adding                       to both sides gives Schrodinger equation:

● If spring constants/masses efficiently computable, can simulate N oscillators in O(polylog(N))

● Many potential applications: modeling electrical grids, mechanical engineering, classical 

wave equation, molecular vibrations, statistical mechanics of fields, etc.



Exponential speedup in simulating classical oscillators
PRX 13, 041041 (2023) + FOCS 2023

● We prove that measuring kinetic energy of an oscillator is BQP-Complete

Even when all masses are the same and there are two spring constants

● We also show relativized exponential speedup in an oracle model, leveraging glued trees



Searching for applications of quantum linear algebra

● Quantum computers can solve systems of N linear equations (A x = b)
“querying” A only O(polylog(N)) times 😃

● But sometimes each queries to A or b take time O(poly(N)) 😒

● Focus on problems where linear system has underlying structure,
e.g., physically inspired linear differential equations

● Should avoid situations where sampling the output is efficient via 
Monte Carlo (e.g. options pricing, Fokker-Planck, heat equation, etc.)

● Promising directions include acoustic or electromagnetic scattering, 
fluid dynamics with certain constraints, plasma physics, etc.



Classical Data Quantum Data

Whether starlight or molecular spectra, thus far science has only used “classical data”

If data is collected by quantum sensor (rapidly progressing technology) and transduced to an 
error-corrected quantum memory, we can do amazing things with that data

Quantum states output from a quantum simulation (e.g. of chemistry) also constitute quantum data



Quantum enhanced experiments

By entangling two copies of N qubit state (e.g. from a sensor), we can learn properties 
with 2N fewer queries vs single copy

With limited data, one can achieve quantum advantage with very few qubits

Science 376, 1182-1186 (2022)



How will a modest error-corrected quantum 
computer impact the world?

● We have a responsibility to answer this question with more clarity

● Simulations of molecules and materials remain promising
○ Molecular ground states in scope if strongly correlated
○ Many initio solid-state applications but resource requirements very high
○ Can outperform classical mean-field when goal is dynamics

● Computing stopping power of pre-ignition fusion fuels has decisive quantum advantage, 
corresponds to relevant real-world experiments for 1012 - 1013 Toffoli gates

● Interesting other applications include topological data analysis, simulating certain classical 
differential equations, analysis of data from quantum sensors or simulations
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