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We begin by describing the problem loosely from a theoretical
physicist’s point of view, at some point becoming

mathematically precise, hopefully while there is still something
left to prove...



Outline

what is the TTbar deformation and why is it interesting?

TTbar deformed massive 2d QFTs
geometric interpretation, S-matrix

TTbar deformed CFTs
rectangle partition function, example of a holomorphic
modular form
deformed version, proof of modular property
examples, Mellin transform
torus one-point function, example of a real modular form
deformed version, proof of modular property
example: Maass forms



What is TTbar? (Zamolodchikov-Smirnov, 2004, 2017)

a 1-parameter family of (nonlocal) 2d field theories T λ with
(on a flat euclidean manifold)

Sλ+δλ = Sλ + δλ

∫
det T λ d2x (T λ = stress tensor)

T 0 a conventional local QFT. [For a CFT det T 0 = TzzTz̄z̄ .]

many quantities UV finite and calculable given data of T 0.

correlation functions acquire only log divergences,
removable by renormalization (JC, 2019)

example of a nonlocal UV completion with a fundamental
length scale λ1/2

λ < 0⇔ ‘going into the bulk’ in AdS/CFT.



TTbar in classical field theory

δSλ = 1
2δλ

∫
εikεjlT λ

ij T λ
kld

2x

Under a general infinitesimal change of metric

δS = −
∫
δg ijT λ

ij d2x

suggests δg ij = −δλεikεjlT λ
kl

conservation of T λ ⇒ metric remains flat

equivalent to a diffeomorphism xλi → xλi + δxλi (x) where

∂λxλi,j = εikεjlT λkl



∂λxλi = εik

∫ x

−∞
εjlT λkl

(x ′)dx ′j = −εik (flux of T k across (−∞, x))

∂λxλ1 = (energy flux across (−∞, x))

∂λxλ0 = −(momentum flux across (−∞, x))

Particles at rest: shift ≡ width = λ× rest mass



Boosted version
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Scattering
Multiple elastic scattering

conservation of energy⇒ conservation of width

conservation of momentum⇒ extra time delay (phase
shift)



Inelastic processes

Each picture corresponds to a dissection of Minkowski space in
which each tile is translated in a consistent manner



Quantum scattering
how does this square with [X ,P] 6= 0?

denote position of left and right edges by XL,XR. Then

[XR − XL,PR + PL] = 0

so we can simultaneously specify the width and the
momentum

amounts to modifying the asymptotic states
|p1, . . . ,pN〉in,out by phase factors

exp
(

iλ
∑

1≤m<n≤N

(p0
mp1

n − p0
np1

m)
)

or the S-matrix by equivalent CDD factors (Dubovsky et al
2017)

but this finite width has a much more dramatic effect in
finite volume or finite temperature...



Rectangle partition function, a holomorphic modular form

R1

R

E

2

C

In any CFT, with the same conformal bc on all
sides,

Z 0
rect (R1,R2) = Rc/4

1 η(q)−c/2

where q = e−2πR2/R1 , η = q
1
24
∏∞

m=1(1− qm).

S-symmetry Z 0
rect (R1,R2) = Z 0

rect (R2,R1) is guaranteed by

η(e−2π/δ) = δ
1
2 η(e−2πδ) (η has weight 1

2)

q-expansion = spectral decomposition

Z 0
rect =

∑
n

|b0
n(R1)|2e−E0

n (R1)R2 ≡
∫
ρ0(E ,R1)e−ER2dE



more generally can consider

Z 0(R1,R2) = R−k
1 F 0(δ = R2/R1)

where F 0(δ) =
∑∞

n=0 anq∆+n is a “modular form” of weight
k :

F 0(1/δ) = δkF 0(δ) , F 0(δ − i) = e2πi∆F 0(δ)



TTbar deformation

R1

R

E

2

C

∂λR1 = −λE , Rλ
1 = R0

1 − λE (fixedE)

so if Z 0(R1,R2) =

∫
ρ0(R1,E)e−ER2dE

then Zλ(R1,R2)
?
=

∫
ρ0(R1 + λE ,E)e−ER2dE

so formally get PDE ∂λZ = −∂R1∂R2Z

how to make sense of this?

if we can, does Zλ(R1,R2) = Zλ(R2,R1)?

If Zλ(R1,R2) = R−k
1 Fλ(δ = R2/R1) , does Fλ(1/δ) = δkFλ(δ)?



Laplace transform

Ω0(R1, s) ≡
∫ ∞

0
e−sR2Z 0(R1,R2)dR2

Z 0(R1,R2) =

∫
C

esR2Ω0(R1, s)
ds
2πi

so that ρ0(R1,E) = 2 Im Ω0(R1, s = −E) and

Ωλ(R1, s) = Ω0(R1 − λs, s)

= (R1 − λs)1−kφ
(
(R1 − λs)s

)
well-defined in a CFT

After some algebra. . .



Fα(δ) =

∫ i∞

−i∞
esδ
∫ ∞

0
(1− αδs)1−ke−sδ′(1−αδs)F 0(δ′)dδ′

ds
2πi

where α = λ/(R1R2).

use this as the definition of Fα(δ)

after some more algebra, completing the square in s,

Fα(δ) =

∫ ∞
0

Kα(δ, δ′)(δ′/δ)k/2F 0(δ′)
dδ′

δ′

where

Kα(δ, δ′) = e−
(δ′−δ)2

4αδδ′

∫ ∞
−∞

(
(δ + δ′)

2(δδ′)1/2 − it
)1−k

e−αt2 dt
2π

gaussian smearing in moduli space

invariance of Kα and the measure under
(δ, δ′)→ (δ−1, δ′−1)⇒ if δ′k/2F 0(δ′) is invariant, so is
δk/2Fα(δ). �



Deformed spectrum

Fα(δ) =

∫ i∞

−i∞
esδ
∫ ∞

0
(1− αδs)1−ke−sδ′(1−αδs)F 0(δ′)dδ′

ds
2πi

If F 0(δ′) =
∑

n ane−2π(∆+n)δ′ we can integrate over δ′ in each
term to get ∫ i∞

−i∞

esδ(1− αδs)1−k

2π(∆ + n) + s − αδs2
ds
2πi

which has poles at s = s± = (1/2αδ)(1±
√

1 + 8π(∆ + n)αδ).
Moving contour to L we pick up only the poles at s− giving

Fα(δ) =
∞∑

n=0

an
(1 +

√
1 + 8π(∆ + n)αδ)1−k

21−k
√

1 + 8π(∆ + n)αδ
e−(1/2α)(

√
1+8π(∆+n)αδ−1)

deformed spectrum and matrix elements



Example

ϑ3(0, δ) ≡
∞∑

n=−∞
e−πn2δ = δ−1/2ϑ3(0,1/δ)

This is also true of

ϑα3 (0, δ) ≡
∞∑

n=−∞

(1 +
√

1 + 4πn2αδ)1/2

21/2
√

1 + 4πn2αδ
e−(1/2α)(

√
1+4πn2αδ−1)

Can be generalized to Jacobi forms, e.g. ϑ3(z, δ).



Mellin transform
Associates a modular form to a Dirichlet series: if
F 0 =

∑∞
n=0 anq∆+n with q = e−2πδ

R0(s) =

∫ ∞
0

δs−1F 0(δ)dδ = (2π)−sΓ(s)
∞∑

n=0

an

(∆ + n)s

where R0(s) is analytic in Re s > k and R0(k − s) = R0(s).
Defining Rα(s) =

∫∞
0 δs−1Fα(δ)dδ we find

Rα(s) = Iα(k ; s) R0(s)

where Iα(k ; s) is an entire function of s satisfying
Iα(k − s; s) = Iα(k ; s).

Mellin transform diagonalizes the TTbar flow

Rα(s) inherits the reflection property and zeroes of R0(s).



Torus: 1-point function, example of a real modular form

E

R

R2

1

C

We can play the same game
thinking about the 1-point
functions on the torus
T2 = C/(ZR1 + ZR2).

〈Φ〉0(R1,R2) =

∫
ρ0(|R1|,E)e−Re (ER∗2 )d2E

= |R1|−kF 0(δ = −iR2/R1) = |R1|−k
∞∑

m,n=0

am,nq∆+mq∗∆+n

F 0 is a real modular form satisfying F 0(δ−1) = |δ|kF 0(δ),
F 0(δ − i) = F 0(δ). (Note the usual τ = iδ.)



TTbar evolution is simple at fixed E in a fixed frame:

Rλ
1 = R0

1 + iλN2

formally leading to the PDE

∂λ〈Φ〉λ(R1,R2) = −
(
∂R1 ∧ ∂R2

)
〈Φ〉λ(R1,R2)



Using Laplace transforms as before

Fα(δ) =∫∫
(1−αδ1s1)2+α2δ2

1s2
2]−k/2+1eαδ1δ

′
1|s|

2+Re (s∗(δ−δ′))F 0(δ′)d2δ′
d2s

(2πi)2

=

∫
H

Kα(δ, δ′)(δ′1/δ1)k/4F 0
2 (δ)

d2δ′

δ′1
2

where

Kα(δ, δ′) = Kα(δ−1, δ′−1) =

Selberg kernel︷ ︸︸ ︷
e−|δ−δ

′|2/4αδδ′ × stuff

which ensures Fα transforms the same way as F 0.



On the other hand, integrating over δ′ gives

Fα
2 (δ) =

∞∑
n=0

∑
p∈Z

bn,p
(1 +

√
1 + 8π(∆ + n)αδ1 + (4πpαδ1)2)1−k√
1 + 8π(∆ + n)αδ1 + (4πpαδ1)2

×e−(1/2α)(
√

1+8π(∆+n)αδ1+(4πpαδ1)2−1)+2πipδ2

which exhibits the deformed matrix elements as well as
Zamolodchikov deformed spectrum.

Fα
2 (δ) has the same modular properties as F 0

2 (δ).



Maass forms
Maass forms are smooth real functions of δ in H: Re δ > 0
which are SL(2,Z) invariant, polynomially bounded as
Re δ →∞, and are eigenfunctions of the invariant Laplacian

∆H = −δ2
1

(
∂2
δ1

+ ∂2
δ2

)
Recall the PDE

∂λZλ(R1,R2) = −
(
∂R1 ∧ ∂R2

)
Zλ(R1,R2)

A scaling solution Zλ(R1,R2) = Fα=λ/(R1∧R2)(δ) then satisfies

∂αF = −1
4∆H F

So if F is a Maass form with eigenvalue Λ,

Fα(δ) = e−
1
4 Λα F 0(δ)

Maass forms are eigenfunctions of the TTbar deformation



Remarks

the above has assumed that λ > 0 and ∆ > 0, so that
F 0(q)→ 0 as q → 0, but this means c < 0 in a CFT

for λ > 0 and ∆ < 0, as for a unitary CFT, the treatment is
still valid in regions of moduli space away from q = 0,1,
bounded by Hagedorn-type transitions.

for λ < 0 solution near q = 0 is not continuously connected
to that near q = 1: modular invariance is “broken”

it is possible to choose the contours so as to give a
convergent modular invariant expression, but it is no longer
equal to a sum over a discrete spectrum



Discussion

the nice properties of the TTbar deformation of CFTs
extend to more general mathematical objects

this deformation is unique in some sense

what is the significance for physics of Maass forms and
Mellin transforms with respect to the modulus?


