TTbar deformation of 2d quantum field theory and modular forms

John Cardy ${ }^{1,2}$

${ }^{1}$ University of California Berkeley ${ }^{2}$ All Souls College, Oxford

Harvard Math Picture Language Seminar April 4, 2023

Comm. Number Theory and Physics, 16 (2022) 435-457 JHEP 2022, 136; JHEP 2019, 160

We begin by describing the problem loosely from a theoretical physicist's point of view, at some point becoming
mathematically precise, hopefully while there is still something left to prove...

Outline

- what is the TTbar deformation and why is it interesting?
- TTbar deformed massive 2d QFTs
- geometric interpretation, S-matrix
- TTbar deformed CFTs
- rectangle partition function, example of a holomorphic modular form
- deformed version, proof of modular property
- examples, Mellin transform
- torus one-point function, example of a real modular form
- deformed version, proof of modular property
- example: Maass forms

What is TTbar? (Zamolodchikov-Smirnov, 2004, 2017)

- a 1-parameter family of (nonlocal) 2d field theories \mathcal{T}^{λ} with (on a flat euclidean manifold)

$$
S^{\lambda+\delta \lambda}=S^{\lambda}+\delta \lambda \int \operatorname{det} T^{\lambda} d^{2} x \quad\left(T^{\lambda}=\text { stress tensor }\right)
$$

\mathcal{T}^{0} a conventional local QFT. [For a CFT det $T^{0}=T_{z z} T_{\bar{z} \bar{z} .}$]

- many quantities UV finite and calculable given data of \mathcal{T}^{0}.
- correlation functions acquire only log divergences, removable by renormalization (JC, 2019)
- example of a nonlocal UV completion with a fundamental length scale $\lambda^{1 / 2}$
- $\lambda<0 \Leftrightarrow$ 'going into the bulk' in AdS/CFT.

TTbar in classical field theory

$$
\delta S^{\lambda}=\frac{1}{2} \delta \lambda \int \epsilon^{i k} \epsilon^{j l} T_{i j}^{\lambda} T_{k l}^{\lambda} d^{2} x
$$

Under a general infinitesimal change of metric

$$
\delta S=-\int \delta g^{i j} T_{i j}^{\lambda} d^{2} x
$$

- suggests $\delta g^{i j}=-\delta \lambda \epsilon^{i k} \epsilon^{i j} T_{k l}^{\lambda}$
- conservation of $T^{\lambda} \Rightarrow$ metric remains flat
- equivalent to a diffeomorphism $x_{i}^{\lambda} \rightarrow x_{i}^{\lambda}+\delta x_{i}^{\lambda}(x)$ where

$$
\partial_{\lambda} x_{i, j}^{\lambda}=\epsilon_{i k} \epsilon_{j l} T^{\lambda^{k l}}
$$

$$
\partial_{\lambda} x_{i}^{\lambda}=\epsilon_{i k} \int_{-\infty}^{x} \epsilon_{j l} T^{\lambda^{k l}}\left(x^{\prime}\right) d x^{\prime j}=-\epsilon_{i k}\left(\text { flux of } T^{k} \operatorname{across}(-\infty, x)\right)
$$

$$
\partial_{\lambda} x_{1}^{\lambda}=(\text { energy flux across }(-\infty, x))
$$

$$
\partial_{\lambda} x_{0}^{\lambda}=-(\text { momentum flux across }(-\infty, x))
$$

Particles at rest: shift \equiv width $=\lambda \times$ rest mass

Boosted version

Scattering

Multiple elastic scattering

- conservation of energy \Rightarrow conservation of width
- conservation of momentum \Rightarrow extra time delay (phase shift)

Inelastic processes

Each picture corresponds to a dissection of Minkowski space in which each tile is translated in a consistent manner

Quantum scattering

- how does this square with $[X, P] \neq 0$?
- denote position of left and right edges by X_{L}, X_{R}. Then

$$
\left[X_{R}-X_{L}, P_{R}+P_{L}\right]=0
$$

so we can simultaneously specify the width and the momentum

- amounts to modifying the asymptotic states
$\left|p_{1}, \ldots, p_{N}\right\rangle_{\text {in,out }}$ by phase factors

$$
\exp \left(i \lambda \sum_{1 \leq m<n \leq N}\left(p_{m}^{0} p_{n}^{1}-p_{n}^{0} p_{m}^{1}\right)\right)
$$

or the S-matrix by equivalent CDD factors (Dubovsky et al 2017)

- but this finite width has a much more dramatic effect in finite volume or finite temperature...

Rectangle partition function, a holomorphic modular form

In any CFT, with the same conformal bc on all sides,

$$
Z_{\text {rect }}^{0}\left(R_{1}, R_{2}\right)=R_{1}^{c / 4} \eta(q)^{-c / 2}
$$

where $q=e^{-2 \pi R_{2} / R_{1}}, \eta=q^{\frac{1}{24}} \prod_{m=1}^{\infty}\left(1-q^{m}\right)$.

- S-symmetry $Z_{\text {rect }}^{0}\left(R_{1}, R_{2}\right)=Z_{\text {rect }}^{0}\left(R_{2}, R_{1}\right)$ is guaranteed by

$$
\eta\left(e^{-2 \pi / \delta}\right)=\delta^{\frac{1}{2}} \eta\left(e^{-2 \pi \delta}\right) \quad\left(\eta \text { has weight } \frac{1}{2}\right)
$$

- q-expansion $=$ spectral decomposition

$$
Z_{\text {rect }}^{0}=\sum_{n}\left|b_{n}^{0}\left(R_{1}\right)\right|^{2} e^{-E_{n}^{0}\left(R_{1}\right) R_{2}} \equiv \int \rho^{0}\left(E, R_{1}\right) e^{-E R_{2}} d E
$$

- more generally can consider

$$
Z^{0}\left(R_{1}, R_{2}\right)=R_{1}^{-k} F^{0}\left(\delta=R_{2} / R_{1}\right)
$$

where $F^{0}(\delta)=\sum_{n=0}^{\infty} a_{n} q^{\Delta+n}$ is a "modular form" of weight k :

$$
F^{0}(1 / \delta)=\delta^{k} F^{0}(\delta), \quad F^{0}(\delta-i)=e^{2 \pi i \Delta} F^{0}(\delta)
$$

TTbar deformation

$$
\begin{gathered}
\partial_{\lambda} R_{1}=-\lambda E, \quad R_{1}^{\lambda}=R_{1}^{0}-\lambda E \quad(f i x e d E) \\
\text { so if } Z^{0}\left(R_{1}, R_{2}\right)=\int \rho^{0}\left(R_{1}, E\right) e^{-E R_{2}} d E \\
\text { then } Z^{\lambda}\left(R_{1}, R_{2}\right) ? \int \rho^{0}\left(R_{1}+\lambda E, E\right) e^{-E R_{2}} d E \\
\text { so formally get PDE } \quad \partial_{\lambda} Z=-\partial_{R_{1}} \partial_{R_{2}} Z
\end{gathered}
$$

- how to make sense of this?
- if we can, does $Z^{\lambda}\left(R_{1}, R_{2}\right)=Z^{\lambda}\left(R_{2}, R_{1}\right)$?

If $Z^{\lambda}\left(R_{1}, R_{2}\right)=R_{1}^{-k} F^{\lambda}\left(\delta=R_{2} / R_{1}\right), \quad$ does $F^{\lambda}(1 / \delta)=\delta^{k} F^{\lambda}(\delta)$?

Laplace transform

$$
\begin{gathered}
\Omega^{0}\left(R_{1}, s\right) \equiv \int_{0}^{\infty} e^{-s R_{2}} Z^{0}\left(R_{1}, R_{2}\right) d R_{2} \\
Z^{0}\left(R_{1}, R_{2}\right)=\int_{C} e^{s R_{2}} \Omega^{0}\left(R_{1}, s\right) \frac{d s}{2 \pi i}
\end{gathered}
$$

so that $\rho^{0}\left(R_{1}, E\right)=2 \operatorname{lm} \Omega^{0}\left(R_{1}, s=-E\right)$ and

$$
\begin{gathered}
\Omega^{\lambda}\left(R_{1}, s\right)=\Omega^{0}\left(R_{1}-\lambda s, s\right) \\
=\left(R_{1}-\lambda s\right)^{1-k} \phi\left(\left(R_{1}-\lambda s\right) s\right) \quad \text { well-defined in a CFT }
\end{gathered}
$$

After some algebra...

$$
F^{\alpha}(\delta)=\int_{-i \infty}^{i \infty} e^{s \delta} \int_{0}^{\infty}(1-\alpha \delta s)^{1-k} e^{-s \delta^{\prime}(1-\alpha \delta s)} F^{0}\left(\delta^{\prime}\right) d \delta^{\prime} \frac{d s}{2 \pi i}
$$

where $\alpha=\lambda /\left(R_{1} R_{2}\right)$.

- use this as the definition of $F^{\alpha}(\delta)$
- after some more algebra, completing the square in s,

$$
F^{\alpha}(\delta)=\int_{0}^{\infty} K^{\alpha}\left(\delta, \delta^{\prime}\right)\left(\delta^{\prime} / \delta\right)^{k / 2} F^{0}\left(\delta^{\prime}\right) \frac{d \delta^{\prime}}{\delta^{\prime}}
$$

where

$$
K^{\alpha}\left(\delta, \delta^{\prime}\right)=e^{-\frac{\left(\delta^{\prime}-\delta\right)^{2}}{4 \alpha \delta \delta^{\prime}}} \int_{-\infty}^{\infty}\left(\frac{\left(\delta+\delta^{\prime}\right)}{2\left(\delta \delta^{\prime}\right)^{1 / 2}}-i t\right)^{1-k} e^{-\alpha t^{2}} \frac{d t}{2 \pi}
$$

- gaussian smearing in moduli space
- invariance of K^{α} and the measure under
$\left(\delta, \delta^{\prime}\right) \rightarrow\left(\delta^{-1}, \delta^{\prime-1}\right) \Rightarrow$ if $\delta^{\prime k / 2} F^{0}\left(\delta^{\prime}\right)$ is invariant, so is $\delta^{k / 2} F^{\alpha}(\delta)$.

Deformed spectrum

$$
F^{\alpha}(\delta)=\int_{-i \infty}^{i \infty} e^{s \delta} \int_{0}^{\infty}(1-\alpha \delta s)^{1-k} e^{-s \delta^{\prime}(1-\alpha \delta s)} F^{0}\left(\delta^{\prime}\right) d \delta^{\prime} \frac{d s}{2 \pi i}
$$

If $F^{0}\left(\delta^{\prime}\right)=\sum_{n} a_{n} e^{-2 \pi(\Delta+n) \delta^{\prime}}$ we can integrate over δ^{\prime} in each term to get

$$
\int_{-i \infty}^{i \infty} \frac{e^{s \delta}(1-\alpha \delta s)^{1-k}}{2 \pi(\Delta+n)+s-\alpha \delta s^{2}} \frac{d s}{2 \pi i}
$$

which has poles at $s=s_{ \pm}=(1 / 2 \alpha \delta)(1 \pm \sqrt{1+8 \pi(\Delta+n) \alpha \delta})$.
Moving contour to L we pick up only the poles at s_{-}giving

$$
F^{\alpha}(\delta)=\sum_{n=0}^{\infty} a_{n} \frac{(1+\sqrt{1+8 \pi(\Delta+n) \alpha \delta})^{1-k}}{2^{1-k} \sqrt{1+8 \pi(\Delta+n) \alpha \delta}} e^{-(1 / 2 \alpha)(\sqrt{1+8 \pi(\Delta+n) \alpha \delta}-1)}
$$

- deformed spectrum and matrix elements

Example

$$
\vartheta_{3}(0, \delta) \equiv \sum_{n=-\infty}^{\infty} e^{-\pi n^{2} \delta}=\delta^{-1 / 2} \vartheta_{3}(0,1 / \delta)
$$

This is also true of

$$
\vartheta_{3}^{\alpha}(0, \delta) \equiv \sum_{n=-\infty}^{\infty} \frac{\left(1+\sqrt{1+4 \pi n^{2} \alpha \delta}\right)^{1 / 2}}{2^{1 / 2} \sqrt{1+4 \pi n^{2} \alpha \delta}} e^{-(1 / 2 \alpha)\left(\sqrt{1+4 \pi n^{2} \alpha \delta}-1\right)}
$$

Can be generalized to Jacobi forms, e.g. $\vartheta_{3}(z, \delta)$.

Mellin transform

Associates a modular form to a Dirichlet series: if $F^{0}=\sum_{n=0}^{\infty} a_{n} q^{\Delta+n}$ with $q=e^{-2 \pi \delta}$

$$
R^{0}(s)=\int_{0}^{\infty} \delta^{s-1} F^{0}(\delta) d \delta=(2 \pi)^{-s} \Gamma(s) \sum_{n=0}^{\infty} \frac{a_{n}}{(\Delta+n)^{s}}
$$

where $R^{0}(s)$ is analytic in Res>k and $R^{0}(k-s)=R^{0}(s)$.
Defining $R^{\alpha}(s)=\int_{0}^{\infty} \delta^{s-1} F^{\alpha}(\delta) d \delta$ we find

$$
R^{\alpha}(s)=I^{\alpha}(k ; s) R^{0}(s)
$$

where $I^{\alpha}(k ; s)$ is an entire function of s satisfying $I^{\alpha}(k-s ; s)=I^{\alpha}(k ; s)$.

- Mellin transform diagonalizes the TTbar flow
- $R^{\alpha}(s)$ inherits the reflection property and zeroes of $R^{0}(s)$.

Torus: 1-point function, example of a real modular form

We can play the same game thinking about the 1 -point functions on the torus

$$
\mathbb{T}_{2}=\mathbb{C} /\left(\mathbb{Z} R_{1}+\mathbb{Z} R_{2}\right) .
$$

$$
\begin{gathered}
\langle\Phi\rangle^{0}\left(R_{1}, R_{2}\right)=\int \rho^{0}\left(\left|R_{1}\right|, E\right) e^{-R e\left(E R_{2}^{*}\right)} d^{2} E \\
=\left|R_{1}\right|^{-k} F^{0}\left(\delta=-i R_{2} / R_{1}\right)=\left|R_{1}\right|^{-k} \sum_{m, n=0}^{\infty} a_{m, n} q^{\Delta+m} q^{* \Delta+n}
\end{gathered}
$$

F^{0} is a real modular form satisfying $F^{0}\left(\delta^{-1}\right)=|\delta|^{k} F^{0}(\delta)$,

$$
\left.F^{0}(\delta-i)=F^{0}(\delta) . \quad \text { (Note the usual } \tau=i \delta .\right)
$$

TTbar evolution is simple at fixed E in a fixed frame:

$$
R_{1}^{\lambda}=R_{1}^{0}+i \lambda N_{2}
$$

formally leading to the PDE

$$
\partial_{\lambda}\langle\Phi\rangle^{\lambda}\left(R_{1}, R_{2}\right)=-\left(\partial_{R_{1}} \wedge \partial_{R_{2}}\right)\langle\Phi\rangle^{\lambda}\left(R_{1}, R_{2}\right)
$$

Using Laplace transforms as before

$$
\begin{gathered}
F^{\alpha}(\delta)= \\
\left.\iint\left(1-\alpha \delta_{1} s_{1}\right)^{2}+\alpha^{2} \delta_{1}^{2} s_{2}^{2}\right]^{-k / 2+1} e^{\alpha \delta_{1} \delta_{1}^{\prime}|s|^{2}+\operatorname{Re}\left(s^{*}\left(\delta-\delta^{\prime}\right)\right)} F^{0}\left(\delta^{\prime}\right) d^{2} \delta^{\prime} \frac{d^{2} s}{(2 \pi i)^{2}} \\
=\int_{\mathbb{H}} K^{\alpha}\left(\delta, \delta^{\prime}\right)\left(\delta_{1}^{\prime} / \delta_{1}\right)^{k / 4} F_{2}^{0}(\delta) \frac{d^{2} \delta^{\prime}}{\delta_{1}^{\prime 2}}
\end{gathered}
$$

where

$$
K^{\alpha}\left(\delta, \delta^{\prime}\right)=K^{\alpha}\left(\delta^{-1}, \delta^{\prime-1}\right)=\overbrace{e^{-\left|\delta-\delta^{\prime}\right|^{2} / 4 \alpha \delta \delta^{\prime}}}^{\text {Selberg kernel }} \times \text { stuff }
$$

which ensures F^{α} transforms the same way as F^{0}.

On the other hand, integrating over δ^{\prime} gives

$$
\begin{aligned}
F_{2}^{\alpha}(\delta)=\sum_{n=0}^{\infty} \sum_{p \in \mathbb{Z}} b_{n, p} & \frac{\left(1+\sqrt{1+8 \pi(\Delta+n) \alpha \delta_{1}+\left(4 \pi p \alpha \delta_{1}\right)^{2}}\right)^{1-k}}{\sqrt{1+8 \pi(\Delta+n) \alpha \delta_{1}+\left(4 \pi p \alpha \delta_{1}\right)^{2}}} \\
& \times e^{-(1 / 2 \alpha)\left(\sqrt{1+8 \pi(\Delta+n) \alpha \delta_{1}+\left(4 \pi p \alpha \delta_{1}\right)^{2}}-1\right)+2 \pi i p \delta_{2}}
\end{aligned}
$$

which exhibits the deformed matrix elements as well as
Zamolodchikov deformed spectrum.
$F_{2}^{\alpha}(\delta)$ has the same modular properties as $F_{2}^{0}(\delta)$.

Maass forms

Maass forms are smooth real functions of δ in $\mathbb{H}: \operatorname{Re} \delta>0$ which are $\operatorname{SL}(2, \mathbb{Z})$ invariant, polynomially bounded as $\operatorname{Re} \delta \rightarrow \infty$, and are eigenfunctions of the invariant Laplacian

$$
\Delta_{\mathbb{H}}=-\delta_{1}^{2}\left(\partial_{\delta_{1}}^{2}+\partial_{\delta_{2}}^{2}\right)
$$

Recall the PDE

$$
\partial_{\lambda} Z^{\lambda}\left(R_{1}, R_{2}\right)=-\left(\partial_{R_{1}} \wedge \partial_{R_{2}}\right) Z^{\lambda}\left(R_{1}, R_{2}\right)
$$

A scaling solution $Z^{\lambda}\left(R_{1}, R_{2}\right)=F^{\alpha=\lambda /\left(R_{1} \wedge R_{2}\right)}(\delta)$ then satisfies

$$
\partial_{\alpha} F=-\frac{1}{4} \Delta_{\mathbb{H}} F
$$

So if F is a Maass form with eigenvalue Λ,

$$
F^{\alpha}(\delta)=e^{-\frac{1}{4} \wedge \alpha} F^{0}(\delta)
$$

- Maass forms are eigenfunctions of the TTbar deformation

Remarks

- the above has assumed that $\lambda>0$ and $\Delta>0$, so that $F^{0}(q) \rightarrow 0$ as $q \rightarrow 0$, but this means $c<0$ in a CFT
- for $\lambda>0$ and $\Delta<0$, as for a unitary CFT, the treatment is still valid in regions of moduli space away from $q=0,1$, bounded by Hagedorn-type transitions.
- for $\lambda<0$ solution near $q=0$ is not continuously connected to that near $q=1$: modular invariance is "broken"
- it is possible to choose the contours so as to give a convergent modular invariant expression, but it is no longer equal to a sum over a discrete spectrum

Discussion

- the nice properties of the TTbar deformation of CFTs extend to more general mathematical objects
- this deformation is unique in some sense
- what is the significance for physics of Maass forms and Mellin transforms with respect to the modulus?

