

September 19, 2023

MATHEMATICAL PICTURE LANGUAGE SEMINAR

Outine

> What is a Quantum Computer?
-- Qubits
-- density matrices
$>$ The Taming of Shrews
-- tensor products
-- Quantum Entanglements
-- Completely positive linear maps
$>$ Old and New Results

Units of Information -- Bits vs Qubits

- A bit (binary integer) is the base of conventional computer memory.
- 1-bit is read as either a zero or a one with probability in the real interval $[0,1]$.
- A 3-bit corresponds to an element in
$\{0,1\} \times\{0,1\} \times\{0,1\}=2^{3}$, as vertices of a cube;
but very WRONG to have a cube for probability!
- When $\mathrm{n}=40$, we get $2^{40}=$ tera
- To get a setting of a possible non-commutative generalization, we associate each 1-bit with a rank-1 diagonal 2×2 projection matrix, i.e.,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]
$$

- Each 3-bit corresponds to a rank-1 diagonal 8 X 8 projection matrix, as the tensor product of three 2×2 matrices where each is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ll}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]
$$

Thus there are eight 3-bits located in an 8-dimensional space.

- Apparently, nobody in computer science mentioned of diagonal matrices and tensor products.
- A qubit (quantum bit) is a unit of quantum computer memory.
- Mathematically, each 1-qubit is regarded as an element in

$$
S^{2} \simeq\left\{\frac{1}{2}\left(\begin{array}{cc}
1-x & y+i z \\
y-i z & 1+x
\end{array}\right) \quad \text { with } x^{2}+y^{2}+z^{2}=1\right\}
$$

$=\{$ all 2×2 rank-1 projection matrices $\}$
$=\left\{\right.$ all vector states acting on $\left.\mathbf{C}^{2}\right\}$
$=\{$ one-dimensional complex linear subspaces
of $\left.\mathbf{C}^{2}\right\}$
$=\left\{\right.$ speciaf two-dimensional real subspaces of $\left.\mathbf{R}^{4}\right\}$

- Physically, a 1-qubit is a superposition of the spherical surface (called the Bloch sphere), because an "electron" can move freely to any direction from the origin of \mathbf{R}^{3}.
-Thus, S^{2} need not be a material surface.
- There are uncountably many 1-qubits, to make S^{2} symmetry with continuity for approximation, while 1-bits are just the north pole and the south pole.

What on earth does S^{2} mean?

- Think of geography and physics and philosophy, instead of set theory and computers.
- It means of measure theory (as length / area / volume) and continuity and dimension and analog. Always uncountably infinite points (beyond the capacity of any conventional computer memory).
- It goes along with human memory, which could be transcendental and sensible and sensational and sentimental.
- However, S^{2} is a mathematical simple object. The combinatorial effect of S^{2} symmetry is not comparable to 2^{n} when $n>30$. So, a 1-qubit computer cannot replace the conventional computer, as used in digital photo and music.
- But, we should look further in n-qubit computers, with physical meanings and mathematical ideas.

Def. An n-qubit (= a vector state) is regarded as a 1-dimensional complex linear subspace of the dim 2^{n} Hilbert space, which can also be identified as a rank-1 projection in the form as a $2^{n} \times 2^{n}$ complex matrix.

Density Matrices

- In the formal setting of non-commutative probability, the random position of an n-qubit can be regarded as a density matrix, to be defined as a convex combination of rank-1 projections in $M_{2}{ }^{n}$.
Def: A density matrix is a positive semidefinite matrix of trace 1 .
-Thus, each 2×2 density matrix is expressed as

$$
\frac{1}{2}\left[\begin{array}{cc}
1-x & y+i z \\
y-i z & 1+x
\end{array}\right]
$$

with $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 1$; so all density matrices fill up the whole solid sphere with S^{2} as boundary.

- Nevertheless, for the case $\mathrm{n}>2$, there is no easy geometrical picture for the collection of all $\mathrm{n} \times \mathrm{n}$ density matrices.

$\mathcal{S}_{\text {ecap }}$ of the simplest Quantum Computer

- The setting of 1 -qubit computer is a solid sphere in R^{3}
--- just like the solid Earth in space.
- To send out quantum information ----- to communicate between two 1-qubit computers, we consider a feasible affine transform
(preserving the 3-dimensional convex structure) of the solid Earth.

HFFINE TR ANSFORMS induces
 LINEAR MAPS

- $M_{n}=M_{n}{ }^{+}-M_{n}{ }^{+}+i M_{n}^{+}-i M_{n}{ }^{+}$
- $\mathrm{M}_{\mathrm{n}}{ }^{+}=\mathrm{R}^{+} \mathrm{x}\{$ density matrices $\}$
$>$ \{affine transforms on density matrices\} \approx \{trace-preserving positive linear maps\}.
$>$ \{affine transforms on density matrices, fixing the scalar matrix \}
₹ \{unital trace-preserving positive linear maps\}.
$>$ \{feasible affine transforms on density matrices\} \approx \{trace-preserving completely positive linear maps\} with deep unknown features of matrix analysis.

Shrew $=\mathcal{Q}_{\text {Luntum }}$ Entangfements

of Positive Semi-Definite Matrices

Who's Afraid of

Quartam Entanglements?

Tensor = product setup for the Taming of the Shrew

>Consider a Hilbert space

$$
\mathrm{H}=\mathrm{H}_{1} \otimes \mathrm{H}_{2} .
$$

> Some natural / simple / easy phenomena on H could be entangled in H_{1} and H_{2} separately.
> We wish to control the whole situation, bypassing / conquering /ignoring the entanglements.

Math Settings

$L^{2}(X x Y)=L^{2}(X) \otimes L^{2}(Y)$.
Often consider of finite-dimensional Hilbert spaces as \boldsymbol{C}^{n} with a positive integer n .
$>\quad$ Thus $\boldsymbol{C}^{n} \otimes \boldsymbol{C}^{k}=\boldsymbol{C}^{n k}$.

$$
\begin{aligned}
& M_{n}=\text { linear maps from } \boldsymbol{C}^{n} \text { to } \boldsymbol{C}^{n} \\
& M_{n} \otimes M_{k}=M_{n k}=M_{n}\left(M_{k}\right)=M_{k}\left(M_{n}\right)
\end{aligned}
$$

--- no need to mention of anything as the universal property.
$>$ In such an easy mathematical setting, who is afraid of quantum entanglements and local-global effects with respect to

Math Settings $M_{n} \otimes M_{k}=M_{n k}($ with $n>1, k>1)$
$>\left\{\right.$ the sums of $A_{j} \otimes B_{j}$ with A_{j} in $M_{n}{ }^{+}, B_{j}$ in $\left.M_{k}{ }^{+}\right\}$
is only a proper subset of $\left(M_{n} \otimes M_{k}\right)^{+}=M_{n k}{ }^{+}$.
Reason: $M_{n}^{+}=\{$positive linear combinations of rank1 projections \}
-There are many rank-1 projections in $M_{n k}$ which are not tensor product of rank-1 projections.
$>$ Along this line, completely positive linear maps can go through the quantum entanglements, while positive linear maps cannot.

Quantum Entanglements provide exciting features ${ }_{\text {Is }}$ for positive linear maps

Structure Theory

Notation: Each linear map $\varphi: M_{n} \rightarrow M_{k}$ can be extended to a linear map

$$
\varphi \otimes i d_{p}: M_{n} \otimes M_{p} \rightarrow M_{k} \otimes M_{p}
$$

Def: φ is said to be p-positive when $\Phi \otimes \mathrm{id}_{\mathrm{p}}$ is a positive linear map.
Def: φ is said to be completely positive when φ is a p-positive linear map for each positive integer p.

Structure Theory

Thm (Choi) : All p-positive linear maps from M_{n} to M_{k} are completely positive when $n \leq p$ or $k \leq p$.

- Nevertheless, various p provide distinct classes of p-positive linear maps as elaborated in the following:

Example (Choi): The linear map $\varphi: M_{n} \rightarrow M_{n}$ defined as $\varphi(A)=(n-1)($ trace $A) I_{n}-A$ is $(n-1)$-positve but not n-positive.

Main Thm: (Choi, 1975) A linear map

$\varphi: M_{n} \rightarrow M_{k}$ is completely positive
iff $\left[\varphi\left(E_{i j}\right)\right]_{\mathrm{i}, \mathrm{j}}$ is positive
where $\left\{E_{i j}\right\}$ are the matrix units
iff $\varphi(A)=\Sigma V_{j}^{*} A V_{j}$ for all $A \in M_{n}$ with $\mathrm{n} \times \mathrm{k}$ matrices V_{j}
$>$ This 1975 paper (6 pages) has been cited in nearly 3000 research papers, as of 2023 September Google Scholar
> More than 2000 citations in publications of Quantum Information.

- Each transformer defines a positive linear map $A \rightarrow V^{*} A V$.
Thus several transformers in series define a completely positive linear map.

- Main concern in circuit theory: General linear maps of mathematical expressions in terms of $\left[\varphi\left(E_{i j}\right)\right]_{i, j}$ are not implementable.
> Classical computer vs Quantum computer
A classical computers produces 0-1 sequences while a quantum computers produces psd matrices.
Thus only completely positive maps are usable to connect Quantum computers

Let $\varphi: M_{n} \rightarrow M_{k}$ be a linear map. TFAE:
(1) φ is p-positive for all positive integer p.
(2) $\left[\varphi\left(E_{i j}\right)\right]_{i, j}$ is positive
(3) $\varphi(A)=\Sigma V_{j}^{*} A V_{j}$ for all $A \in M_{n}$ with $n \times k$ matrices V_{j}
> (1) means to be the hardest nature to conquer all incredible quantum entanglements in $\left(M_{n} \otimes M_{p}\right)^{+}$of various p.
(2) is intended for the simplest mathematical expression of a general linear map.
(3) turns to be the only possible connection in circuit theory.

* Stinespring Theorem (1955) covers the case (1) $\Leftrightarrow(3)$.

Theorem 1975 says much about $(2) \Leftrightarrow(3)$ and $(2) \Leftrightarrow(1)$, which is most needed in theory of quantum information.

Taning of Shireuss

> NO way to describe so many incredible entanglements in $\left(M_{n} \otimes M_{p}\right)^{+}$of various p.
$>$ The most outstanding
$T=\Sigma E_{i j} \otimes E_{i j} \in\left(M_{n} \otimes M_{n}\right)^{+}$, is a well behaved entanglement which serves as the representative for ALL wild entanglements.
> THEOREM says that to tame ALL shrews (= entanglements) is equivalent to tame a single LOVELY shrew (without worrying how nasty/dirty/undisciplined of other shrews).

of the LOVELY ŞRrew

Example $n=3, \quad T=\Sigma E_{i j} \otimes E_{i j} \in\left(M_{3} \otimes M_{3}\right)^{+}=M_{9}{ }^{+}$

* T is the NATURAL assemblage of matrix units

$$
\left[\begin{array}{lll|lll|lll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$>$ Indeed, $T^{2}=n T$, so $\frac{1}{n} T$ is a rank-1 projection, but T serves as the best witness to test all completely positive linear maps $M_{3} \rightarrow M_{3}$.

Why Not Down to $n=2$?

> The simplest example of quantum entanglement is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

as a positive 4×4 matrix, but not of the form as the sum of $A_{j} \otimes B_{j}$ with A_{j} in $M_{2}{ }^{+}$and B_{j} in $M_{2}{ }^{+}$.

Purpose: Wish to classify all linear maps
$\varphi: M_{2} \rightarrow M_{2}$ by means of the 4×4 Choi Matrix $C \varphi$

$$
\left[\begin{array}{ll}
\varphi\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right) & \varphi\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right) \\
\varphi\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right) & \varphi\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
\end{array}\right] .
$$

Challenge: What sort of non-commutative geometry could be hidden/shown in the 4×4 matrix $C \varphi$?

Newest Cl@ssific@tion Theoren

(Joint work with C.K. Li, 2023, JQIC)

Consider all $\varphi: M_{2} \rightarrow M_{2}$ as unital trace-preserving and hermitian- preserving linear maps.

Then the 4 real eigenvalues of the Choi Matrix C_{φ} determine the linear $\operatorname{map} \varphi$ up to unitary equivalence.
I.e., iff C_{φ} and C_{ψ} have the same eigenvalues, then there exist unitaries U and W such that $\varphi(A)=U^{*} \Psi\left(W^{*} A W\right) U$ for all A in M_{2}.

The anost Innportont Exannple:

By means of Pauli Matrices
$Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \quad X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad Y=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$,
and 4 real numbers λ_{j} with $\sum \lambda_{j}=1$.
Define $\varphi: M_{2} \rightarrow M_{2}$
as $\varphi(A)=\lambda_{1} A+\lambda_{2} Z A Z+\lambda_{3} X A X+\lambda_{4} Y A Y$
$>$ Then φ is a unital linear map preserving traces and hermitian matrices.
$>$ The Choi Matrix $C \varphi$ has $\left\{2 \lambda_{j}\right\}$ as four eigenvalues.

Newest Classification Theorem

Restated

Each unital qubit channel φ
(unital trace preserving completely positive
linear map $M_{2} \rightarrow M_{2}$)
is unitarily equivalent to a concrete map of the
form $\quad A \rightarrow \lambda_{1} A+\lambda_{2} Z A Z+\lambda_{3} X A X+\lambda_{4} Y A Y$,
where X, Y and Z are Pauli Matrices;
$\left\{2 \lambda_{j}\right\}$ are eigenvalues of the Choi Matrix $C \varphi$.

This provides the WHOLE picture of unital qubit channels.

OPEN QUESTION

What would be next Classification Theorems ?
Want to study the
case $n=3$.

- Need to
understand the quantum
entanglement of
$\left[\begin{array}{lll|lll|lll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

