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 What is a Quantum Computer? 

   -- Qubits  

   -- density matrices 

The  Taming  of  Shrews 

   -- tensor products 

   -- Quantum Entanglements 

   -- Completely positive linear maps  

  Old  and New Results 



 Units of Information -- Bits vs Qubits 
• A bit (binary integer) is the base of conventional 

computer memory. 

 

• 1-bit is read as either a zero or a one with probability in 
the real interval  [0, 1].  

  

• A 3-bit corresponds to an element in  

      {0, 1} X {0, 1} X {0, 1} = 23,  as vertices of a cube; 

 

      but very WRONG to have a cube for probability!  

 

• When n = 40, we get  240 = tera 
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• To get a setting of a possible non-commutative 

generalization, we associate each  1-bit with  a rank-1 

diagonal  2 X  2  projection matrix, i.e., 

• Each 3-bit corresponds to a rank-1 diagonal 8 X 8  

projection matrix, as the tensor product of three 2 X 2 

matrices where each is   










00

01

or 








00

01

or 








10

00










10

00

Thus there are eight 3-bits located in an 8-dimensional 

space. 

• Apparently, nobody in computer science mentioned of 

diagonal matrices and tensor products. 
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 A qubit (quantum bit) is a unit of quantum 

computer memory.   

 Mathematically, each 1-qubit is regarded as 

an element in 

 

 

 

 

= {all 2 X 2 rank-1 projection matrices} 

= {all vector states acting on C2 } 

= {one-dimensional complex linear subspaces 

     of  C2 } 
= {special   two-dimensional real subspaces of R4} 
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• Physically, a 1-qubit is a superposition of 

the spherical surface (called the Bloch 

sphere), because an “electron” can move 

freely to any direction from the origin of R3. 
 

•Thus, S2 need not be a material surface.   

• There are uncountably many 1-qubits, 

to make S2 symmetry with continuity for 

approximation, while 1-bits are just the 

north pole and the south pole. 



What on earth does  S2 mean? 

• Think of geography and physics and 

philosophy, instead of set theory and 

computers.  

• It means of measure theory (as length / area / 

volume) and continuity and dimension and 

analog.  Always uncountably infinite points 

(beyond the capacity of any conventional 

computer memory). 

• It goes along with human memory, which 

could be transcendental and sensible and 

sensational and sentimental.  



Def.  An n-qubit (= a vector state) is regarded as a 

1-dimensional complex linear subspace of the dim 

2n Hilbert space, which can also be identified as a 

rank-1 projection in the form as a  2n  X 2n  complex  

matrix. 

• However, S2 is a mathematical simple object.  

The combinatorial effect of S2 symmetry is not 

comparable to 2n when  n > 30 .  So, a 1-qubit 

computer cannot replace the conventional 

computer, as used in digital photo and music. 
  

• But, we should look further in n-qubit computers, 

with physical meanings and mathematical ideas.  



Density Matrices 

2
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Def: A density matrix is a positive semidefinite matrix of trace 1. 

•Thus, each 2 x 2 density matrix is expressed as 














xizy

izyx

1

1

with x2 +y2 + z2 < 1;  so all density matrices fill up the 

whole solid sphere with S2 as boundary. 

• In the formal setting of non-commutative probability, the 

random position of an n-qubit can be regarded as a 

density matrix, to be defined as a convex combination of 

rank-1 projections in  M2
n . 

• Nevertheless, for the case n >2, there is no easy geometrical 

picture for the collection of all n x n density matrices.   
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Recap of the simplest  
Quantum Computer 

• The setting of 1-qubit computer  

   is  a solid sphere in R3 

--- just like the solid Earth in space. 

 

• To send out quantum information ----- to 

communicate between two 1-qubit computers, 

we consider a feasible  affine transform 

(preserving the 3-dimensional convex structure) 

of the solid Earth. 
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Affine Transforms induces  
Linear Maps  

 Mn  = Mn
+

  - Mn
+

   +  i Mn
+ – i Mn

+
  

 Mn
+ =  R+ x { density matrices} 

 

 {affine transforms  on density matrices}  

 ≈ {trace-preserving positive linear maps}. 
 

 {affine transforms on density matrices, fixing the scalar matrix }  

 ≈ {unital trace-preserving positive linear maps}. 
 

 {feasible affine transforms  on density matrices}  

≈ {trace-preserving completely positive linear maps} 

with  deep unknown features of matrix analysis. 

 



Shrew   = Quantum Entanglements  
 

 
 

   

of   Positive Semi-Definite Matrices 

Who’s  Afraid  of  

             Quantum  Entanglements?  
12 



Tensor - product  setup for  

the Taming of the Shrew 

Consider a Hilbert space  

           H = H1       H2 .   

  

Some natural / simple / easy phenomena 

on H could be entangled in H1 and H2 

separately.   

 

We wish to control the whole situation, 

bypassing / conquering /ignoring  

    the entanglements. 


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 L2(XxY)  = L2(X)  L2(Y). 

 Often consider of finite-dimensional Hilbert spaces 

     as  Cn with a positive integer n.  

      Thus   Cn  Ck = Cnk. 

             Mn =  linear maps from Cn to Cn  

            Mn  Mk = Mnk = Mn (Mk) = Mk (Mn) .  

  In such an easy mathematical setting,  

who is afraid of quantum entanglements 

and local-global effects with respect to  

--- no need to mention of anything as the universal property. 
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                                    Mn    Mk = Mnk  (with n>1, k>1) 

 

 { the sums of Aj    Bj  with Aj in Mn
+, Bj in Mk

+} 

 is  only a proper subset of (Mn     Mk )
+ = Mnk

+. 

 

Reason:  Mn
+ = { positive linear combinations of rank-

1 projections } 

 

•There are many rank-1 projections in Mnk which are 

not tensor product of rank-1 projections. 

 

 Along this line,  completely positive linear maps can 

go through the quantum entanglements, while 

positive linear maps cannot.  

Quantum Entanglements provide exciting features 

for positive linear maps 






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

Notation: Each linear map φ : Mn → Mk can be 

extended to a linear map  

φ    idp: Mn       Mp → Mk    Mp .  

Def: φ  is said to be p-positive when Φ   idp 

is  a positive linear map.  

Def: φ  is said to be completely positive 

when φ  is a p-positive linear map for each 

positive integer p.  
16 



Thm (Choi) : All p-positive linear maps from Mn 
to Mk are completely positive when  

    n < p or k < p. 

• Nevertheless, various p provide distinct classes of 

p-positive linear maps as elaborated  in the following: 

Example (Choi):  The linear map φ : Mn  Mn 

defined as φ(A) = (n-1)(trace A)In – A is (n-1)-positve 

but not n-positive. 

17 
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 This 1975  paper (6 pages) has been cited in nearly 

3000  research papers, as of 2023  September    

 More than 2000 citations in publications of 

Quantum Information. 
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 Classical computer vs Quantum computer 

      A classical computers produces  0-1 sequences 

     while a quantum computers produces psd matrices. 

     Thus only completely positive maps are usable to connect                                          
Quantum computers 
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 Stinespring Theorem (1955) covers the case (1)   (3). 

 Theorem1975 says much about  (2)  (3) and (2)  (1), 

which is  most needed  in theory of quantum  information.  
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 NO way to describe so many incredible 

entanglements  in (Mn     Mp )
+ of various p.  



 THEOREM says that to tame ALL shrews  

   (= entanglements) is equivalent to tame a  

   single LOVELY shrew (without  worrying how 

   nasty/dirty/undisciplined of other shrews).  





Taming  of  Shrews 



of the LOVELY  Shrew  
Example n =3,   T =  EijEij  

 T is the NATURAL assemblage of  matrix units 
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                   Why Not Down to n=2?  

 The simplest example of quantum entanglement is  

as a positive 4 x 4 matrix, but not of the form as the sum 

of Aj    Bj with Aj in M2
+ and Bj in M2

+. 
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Purpose:   Wish to classify all linear maps   

φ : M2  M2  by means of  the 4 x 4 Choi Matrix  Cφ 

Challenge:  What sort of non-commutative geometry 

could be hidden/shown  in the  4 x4 matrix  Cφ ? 
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(Joint work with C.K. Li, 2023, JQIC) 

Consider all  φ : M2  M2 as unital trace-preserving  
and hermitian- preserving   linear maps.  

Then the 4 real eigenvalues  of the Choi Matrix   Cφ    

determine the linear map φ up to  

unitary equivalence.  

I.e., iff  Cφ and CΨ have the same eigenvalues, then 

there exist unitaries U and W such that  

φ(A) =U*Ψ (W*AW)U  for all A in M2.  25 



 
 By means of  Pauli Matrices 

Define φ : M2  M2  
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Restated 

  This provides  the WHOLE picture of unital qubit channels. 
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What would be next Classification Theorems ? 
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