My Advænturæs in Quantumland

Man-Duen Choi

choi@math.toronto.edu

September 19, 2023

MATHEMATICAL PICTURE LANGUAGE SEMINAR

Outline

- > What is a Quantum Computer?
 - -- Qubits
 - -- density matrices
- >The Taming of Shrews
 - -- tensor products
 - -- Quantum Entanglements
 - -- Completely positive linear maps
- Old and New Results

Units of Information -- Bits vs Qubits

- A bit (binary integer) is the base of conventional computer memory.
- 1-bit is read as either a zero or a one with probability in the real interval [0, 1].
- A 3-bit corresponds to an element in
 {0, 1} X {0, 1} X {0, 1} = 2³, as vertices of a cube;

but very WRONG to have a cube for probability!

• When n = 40, we get $2^{40} = \text{tera}$

 To get a setting of a possible non-commutative generalization, we associate each 1-bit with a rank-1 diagonal 2 x 2 projection matrix, i.e.,

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

 Each 3-bit corresponds to a rank-1 diagonal 8 X 8 projection matrix, as the tensor product of three 2 X 2 matrices where each is

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Thus there are eight 3-bits located in an 8-dimensional space.

 Apparently, nobody in computer science mentioned of diagonal matrices and tensor products.

- A qubit (quantum bit) is a unit of quantum computer memory.
- Mathematically, each 1-qubit is regarded as an element in

$$S^{2} \simeq \left\{ \frac{1}{2} \begin{pmatrix} 1 - x & y + iz \\ y - iz & 1 + x \end{pmatrix} \quad with \ x^{2} + y^{2} + z^{2} = 1 \right\}$$

- = {all 2 X 2 rank-1 projection matrices}
- = {all vector states acting on \mathbb{C}^2 }
- = {one-dimensional complex linear subspaces of C² }
- = { special two-dimensional real subspaces of \mathbb{R}^4 }

• Physically, a 1-qubit is a superposition of the spherical surface (called the Bloch sphere), because an "electron" can move freely to any direction from the origin of **R**³.

- •Thus, S² need not be a material surface.
- There are uncountably many 1-qubits, to make S² symmetry with continuity for approximation, while 1-bits are just the north pole and the south pole.

What on earth does S² mean?

- Think of geography and physics and philosophy, instead of set theory and computers.
- It means of measure theory (as length / area / volume) and continuity and dimension and analog. Always uncountably infinite points (beyond the capacity of any conventional computer memory).
- It goes along with human memory, which could be transcendental and sensible and sensational and sentimental.

- However, S^2 is a mathematical simple object. The combinatorial effect of S^2 symmetry is not comparable to 2^n when n > 30. So, a 1-qubit computer cannot replace the conventional computer, as used in digital photo and music.
- But, we should look further in n-qubit computers, with physical meanings and mathematical ideas.

Def. An *n*-qubit (= a vector state) is regarded as a 1-dimensional complex linear subspace of the dim 2ⁿ Hilbert space, which can also be identified as a rank-1 projection in the form as a 2ⁿ X 2ⁿ complex matrix.

Density Matrices

• In the formal setting of non-commutative probability, the random position of an n-qubit can be regarded as a density matrix, to be defined as a convex combination of rank-1 projections in M_2^n .

Def: A *density matrix* is a positive semidefinite matrix of trace 1.

•Thus, each 2 x 2 density matrix is expressed as

$$\frac{1}{2} \begin{bmatrix} 1-x & y+iz \\ y-iz & 1+x \end{bmatrix}$$

with $x^2 + y^2 + z^2 \le 1$; so all density matrices fill up the whole solid sphere with S^2 as boundary.

 Nevertheless, for the case n >2, there is no easy geometrical picture for the collection of all n x n density matrices.

Recap of the simplest Quantum Computer

- The setting of 1-qubit computer is a solid sphere in R³
- --- just like the solid Earth in space.

 To send out quantum information ----- to communicate between two 1-qubit computers, we consider a feasible affine transform (preserving the 3-dimensional convex structure) of the solid Earth.

AFFINE TRANSFORMS induces LINEAR MAPS

- $M_n = M_n^+ M_n^+ + i M_n^+ i M_n^+$
- M_n⁺ = R⁺ x { density matrices}
- > {affine transforms on density matrices}
- ≈ {trace-preserving positive linear maps}.
- > {affine transforms on density matrices, fixing the scalar matrix }
- ≈ {unital trace-preserving positive linear maps}.
- > {feasible affine transforms on density matrices}
- ≈ {trace-preserving completely positive linear maps}
- with deep unknown features of matrix analysis.

Shrew = Quantum Entanglements

of Positive Semi-Definite Matrices

Who's Afraid of

Quantum Entanglements?

Tensor - product setup for the Taming of the Shrew

➤ Consider a Hilbert space $H = H_1 \otimes H_2$.

➤ Some natural / simple / easy phenomena on H could be entangled in H₁ and H₂ separately.

➤ We wish to control the whole situation, bypassing / conquering /ignoring the entanglements.

Math Settings

- $L^2(XXY) = L^2(X) \otimes L^2(Y).$
- ❖ Often consider of finite-dimensional Hilbert spaces as Cⁿ with a positive integer n.
- Thus $C^n \otimes C^k = C^{nk}$. $M_n = \text{linear maps from } C^n \text{ to } C^n$ $M_n \otimes M_k = M_{nk} = M_n (M_k) = M_k (M_n)$.
 - --- no need to mention of anything as the universal property.
- In such an easy mathematical setting, who is afraid of quantum entanglements and local-global effects with respect to

Math Settings M_n

- $M_n \otimes M_k = M_{nk}$ (with n>1, k>1)
- > { the sums of $A_j \otimes B_j$ with A_j in M_n^+ , B_j in M_k^+ } is only a proper subset of $(M_n \otimes M_k)^+ = M_{nk}^+$.
- Reason: $M_n^+ = \{ \text{ positive linear combinations of rank-1 projections } \}$
- •There are many rank-1 projections in M_{nk} which are not tensor product of rank-1 projections.
- ➤ Along this line, completely positive linear maps can go through the quantum entanglements, while positive linear maps cannot.

Quantum Entanglements provide exciting features, for positive linear maps

Structure Theory

Notation: Each linear map $\varphi: M_n \to M_k$ can be extended to a linear map

$$\varphi \otimes id_p: M_n \otimes M_p \longrightarrow M_k \otimes M_p$$
 .

Def: φ is said to be p-positive when $\varphi \otimes id_p$ is a positive linear map.

Def: φ is said to be *completely positive* when φ is a p-positive linear map for each positive integer p.

Structure Theory

Thm (Choi) : All p-positive linear maps from M_n to M_k are completely positive when $n \le p$ or $k \le p$.

 Nevertheless, various p provide distinct classes of p-positive linear maps as elaborated in the following:

Example (Choi): The linear map $\varphi: M_n \to M_n$ defined as $\varphi(A) = (n-1)(trace A)I_n - A$ is (n-1)-positive but not n-positive.

Main Thm: (Choi, 1975) A linear map

- $\varphi: M_n \to M_k$ is **completely positive**
- iff $[\varphi(E_{ij})]_{i,j}$ is positive where $\{E_{ij}\}$ are the matrix units
- iff $\varphi(A) = \sum V_j *AV_j$ for all $A \in M_n$ with n x k matrices V_i
- This 1975 paper (6 pages) has been cited in nearly 3000 research papers, as of 2023 September Google Scholar
- More than 2000 citations in publications of Quantum Information.

CIRCUIT THEORY

Each transformer defines a

positive linear map $A \rightarrow V^*AV$.

Thus several transformers in series define a completely positive linear map.

• Main concern in circuit theory: General linear maps of mathematical expressions in terms of $[\varphi(E_{ij})]_{i,j}$ are not implementable.

Classical computer vs Quantum computer

A classical computers produces 0-1 sequences while a quantum computers produces psd matrices. Thus only completely positive maps are usable to connect *Quantum computers*

The Main Thm (Choi 1975) revisited

- Let $\varphi: M_n \to M_k$ be a linear map. TFAE:
- (1) φ is p-positive for all positive integer p.
- (2) $[\varphi(E_{ij})]_{i,j}$ is positive
- (3) $\varphi(A) = \Sigma V_j^* A V_j$ for all $A \in M_n$ with $n \times k$ matrices V_j
- (1) means to be the hardest nature to conquer all incredible quantum entanglements in $(M_n \otimes M_p)^+$ of various p.
 - (2) is intended for the simplest mathematical expression of a general linear map.
 - (3) turns to be the only possible connection in circuit theory.
- ❖ Stinespring Theorem (1955) covers the case (1) ⇔ (3).
- ❖ Theorem1975 says much about (2) ⇔ (3) and (2) ⇔ (1), which is most needed in theory of quantum information.

Taming of Shrews

- > NO way to describe so many incredible *entanglements* in $(M_n \otimes M_p)^+$ of various p.
- The most outstanding $T = \Sigma E_{ij} \otimes E_{ij} \in (M_n \otimes M_n)^+$, is a well behaved entanglement which serves as the representative for ALL wild entanglements.

> THEOREM says that to tame ALL shrews (= entanglements) is equivalent to tame a single LOVELY shrew (without worrying how nasty/dirty/undisciplined of other shrews). 21

of the **LOVELY** Shrew

Example
$$n = 3$$
, $T = \sum E_{ij} \otimes E_{ij} \in (M_3 \otimes M_3)^+ = M_9^+$

T is the NATURAL assemblage of matrix units

➤ Indeed, $T^2 = nT$, so $\frac{1}{n}T$ is a rank-1 projection, but T serves as the best witness to test all completely positive linear maps $M_3 \rightarrow M_3$.

Why Not Down to n=2?

The simplest example of quantum entanglement is

$$\begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$

as a positive 4 x 4 matrix, but not of the form as the sum of $A_j \otimes B_j$ with A_j in M_2^+ and B_j in M_2^+ .

Purpose: Wish to classify all linear maps

 $\varphi: M_2 \to M_2$ by means of the 4 x 4 Choi Matrix $C\varphi$

$$\begin{bmatrix} \varphi(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) & \varphi(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) \\ \varphi(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}) & \varphi(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}) \end{bmatrix}$$

Challenge: What sort of non-commutative geometry could be hidden/shown in the 4 x4 matrix $C\varphi$?

Newest Classification Theorem

(Joint work with C.K. Li, 2023, JQIC)

Consider all $\varphi: M_2 \to M_2$ as unital trace-preserving and hermitian- preserving linear maps.

Then the 4 real eigenvalues of the Choi Matrix C_{φ} determine the linear map φ up to unitary equivalence.

I.e., iff C_{φ} and C_{ψ} have the same eigenvalues, then there exist unitaries U and W such that $\varphi(A) = U^*\Psi$ (W*AW)U for all A in M_2 .

The Most Important Example:

By means of Pauli Matrices

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix},$$

and 4 real numbers λ_j with $\sum \lambda_j = 1$.

Define $\varphi: M_2 \rightarrow M_2$

as
$$\varphi(A) = \lambda_1 A + \lambda_2 ZAZ + \lambda_3 XAX + \lambda_4 YAY$$

- ightharpoonup Then ϕ is a unital linear map preserving traces and hermitian matrices.
- \succ The Choi Matrix $C\varphi$ has $\{2\lambda_i\}$ as four eigenvalues.

Newest Classification Theorem

Restated

Each unital qubit channel $\,arphi$

(unital trace preserving completely positive linear map $M_2 \rightarrow M_2$)

is unitarily equivalent to a **concrete** map of the form $A \rightarrow \lambda_1 A + \lambda_2 ZAZ + \lambda_3 XAX + \lambda_4 YAY$,

where X, Y and Z are Pauli Matrices;

 $\{2\lambda_j\}$ are eigenvalues of the Choi Matrix $oldsymbol{C}oldsymbol{arphi}$.

This provides the WHOLE picture of unital qubit channels.

OPEN QUESTION

What would be next Classification Theorems?

Want to study the case n=3.

 Need to understand the quantum entanglement of

Г1	0	0	0	1	0	0	0	1
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0	0	0	0	0	0	0	0
L_1	0	0	0	1	0	0	0	1-