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> What is a Quantum Computer?

-- Qubits
-- density matrices

»The Taming of Shrews
-- tensor products

-- Quantum Entanglements
-- Completely positive linear maps

» Old and New Results



Units of Information - Bits vs Qubits

« A bit (binary integer) is the base of conventional
computer memory.

« 1-bit is read as either a zero or a one with probability In
the real interval [0, 1].

« A 3-bit corresponds to an element in
{0, 1} X {0, 1} X {0, 1} = 23, as vertices of a cube;

but very WRONG to have a cube for probability!

 When n =40, we get 240 = tera



 To get a setting of a possible non-commutative
generalization, we associate each 1-bit with a rank-1
diagonal 2 X 2 projection matrix, I.e.,

1 0 or 0 O
0 0 0 1
« Each 3-bit corresponds to a rank-1 diagonal 8 X 8

projection matrix, as the tensor product of three 2 X 2
matrices where each is

oo o o2

Thus there are eight 3-bits located in an 8-dimensional
space.

« Apparently, nobody in computer science mentioned of
diagonal matrices and tensor products.



- AQUDIT (quantum bit) is a unit of quantum

computer memory.

» Mathematically, each 1-qubit Is regarded as
an element In

. 1 /11— - = , . . . |
S~ { = .1 y T with r° + 3;‘2 + 22 =1
2\y —iz 14 =

={all 2 X 2 rank-1 projection matrices}

= {all vector states acting on C?}

= {one-dimensional complex linear subspaces
of C?}

= {yea’arf two-dimensional real subspaces of R4} -



- Physically, a 1-qubit is a superposition of
the spherical surface (called the Bloch

sphere), because an “electron” can move
freely to any direction from the origin of R3.

*Thus, S2 need not be a material surface.

- There are uncountably many 1-qubits,
to make S? symmetry with continuity for
approximation, while 1-bits are just the

north pole and the south pole.



What on earth does S2 mean?

* Think of geography and physics and
philosophy, instead of set theory and
computers.

* |t means of measure theory (as length / area /
volume) and continuity and dimension and
analog. Always uncountably infinite points
(beyond the capacity of any conventional
computer memory).

* |t goes along with human memory, which
could be transcendental and sensible and
sensational and sentimental.



» However, S2 is a mathematical simple object.
The combinatorial effect of S symmetry is not

comparable to 2" when n>30. So, a 1-qubit

computer cannot replace the conventional
computer, as used in digital photo and music.

 But, we should look further in n-qubit computers,
with physical meanings and mathematical ideas.

Def. An n-qubit (= a vector state) Is regarded as a
1-dimensional complex linear subspace of the dim
2" Hilbert space, which can also be identified as a
rank-1 projection in the form as a 2" X 2" complex
maitrix.



Density Matrices

* In the formal setting of non-commutative probabillity, the
random position of an n-qubit can be regarded as a
density matrix, to be defined as a convex combination of

rank-1 projections in M," .

Def: A density matrix is a positive semidefinite matrix of trace 1.

*Thus, each 2 x 2 density matrix is expressed as

1] 1-X y+1z
2| y—iz 1+x
with x2 +y2 + 72 < 1; so all density matrices fill up the

whole solid sphere with S2 as boundary.

®* Nevertheless, for the case n >2, there is no easy geometrical
picture for the collection of all n x n density matrices.



&cgy of the strnplest
Quantum Computer

* The setting of 1-qubit computer
IS a solid sphere in R3
--- Just like the solid Earth in space.

* To send out guantum information ----- to
communicate between two 1-qubit computers,
we consider a feasible affine transform
(preserving the 3-dimensional convex structure)
of the solid Earth.
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AFFINE TRANSFORMS induces
LINEAR MAPS
=M =M*-M* + iM*—iM*
= M "= R* x{density matrices}

» {affine transforms on density matrices}
~ {trace-preserving positive linear maps}.

» {affine transforms on density matrices, fixing the scalar matrix }
~ {unital trace-preserving positive linear maps}.

» {feasible affine transforms on density matrices}
~ {trace-preserving completely positive linear maps}
with deep unknown features of matrix analysis. ~



3/;}91!/ = ‘ggumtum fnttm erment.r

of Positive Semi-Definite Matrices

Who & ﬂfm/c/ of

Quantan  Lxtanplements?



Tensor - product setup for
the Taming of the Shrew

» Consider a Hilbert space
H=H,® H,.

» Some natural / simple / easy phenomena
on H could be entangled in H; and H,
separately.

» We wish to control the whole situation,
bypassing / conquering /ignoring
the entanglements. p



Math Settings

% L2(XXY) = L%(X) ®L2(Y).
*» Often consider of finite-dimensional Hilbert spaces
as C" with a positive integer n.
» Thus Cn ®Ck=Cnk
M. = linear maps from C" to C"
I\/In & I\/Ik - I\/Ink - |\/In (Mk) = I\/Ik (Mn) -

--- N0 need to mention of anything as the universal property.

» In such an easy mathematical setting,
who Is afraid of quantum entanglements
and local-global effects with respect to



Math Settings Mn ®M =My (with n>1, k>1)

> { the sums of A, ®B; with A;in M,*, B; in Mk+}
IS only a proper subset of (M ® M )+ =M., "

Reason: M. " = { positive linear combinations of rank-
1 projections }

*There are many rank-1 projections in M, which are
not tensor product of rank-1 projections.

» Along this line, completely positive linear maps can
go through the quantum entanglements, while
positive linear maps cannot.
Quantum Entanglements provide exciting features ,
for positive linear maps



Structure Theory

Notation: Each linear map @ : M, — M, can be
extended to a linear map

P®idy: My ® My — M ® My .

Def: ¢ is said to be p-positive when @® idy
IS a positive linear map.

Def: ¢ Is said to be completely positive
when ¢ Is a p-positive linear map for each

positive integer p.



Structure Theory

Thm (Choi) : All p-positive linear maps from M,
to M, are completely positive when

n<pork<p.

* Nevertheless, various p provide distinct classes of
p-positive linear maps as elaborated in the following:

Example (Choi): The linear map ¢ : M, =M,

defined as @(A) = (n-1)(trace A)l,, — Ais (n-1)-positve
but not n-positive.



Main Thm (Choi, 1975) A linear map
»: M, — M, is completely positive
iff [¢(E;)];; is positive
where { Eij} are the matrix units
iff ©(A) = 2'V,*AV forall Ae M,

with n x kK matrices Vj

» This 1975 paper (6 pages) has been cited in nearly
3000 research papers, as of 2023 September

Google Scholar

» More than 2000 citations in publications of
Quantum Information. 18



Mnea T T T1Tin
CIRCUIT THEORY 771 T il
* Each transformer defines a E: l,j
1‘1‘.:‘“._\7"’—;—:::" T\:'z.'..';
positive linear map A — V*AV. kel el
Thus several transformers in series =01 55 0
define a completely positive linear map. =R ST
Pletely p P g B

* Main concern in circuit theory: General linear maps of
mathematical expressions in terms of [fgi:-(EU)]U are not
implementable.

» Classical computer vs Quantum computer

X A classical computers produces 0-1 sequences
while a quantum computers produces psd matrices.

Thus only completely positive maps are usable to connect
Quantum computers 19



The Main Thm (Choi 1975) revisited

Let @ : M,— M, be a linear map. TFAE:

(1) @ is p-positive for all positive integer p.

(2) [p(E;)];;is positive

(3) p(A) = 2V, *AV, for all A € M, with n x k matrices V,

» (1) means to be the hardest nature to conquer all incredible
quantum entanglements in (M,& M,)* of various p.

(2) is intended for the simplest mathematical expression of a
general linear map.

(3) turns to be the only possible connection in circuit theory.

/

% Stinespring Theorem (1955) covers the case (1) < (3).

% Theorem1975 says much about (2) <& (3) and (2) <& (1),

which is most needed in theory of quantum information.20



72/1(/2@// oft 5]11‘81}55

» NO way to describe so many incredible
entanglements In (M, ® M;)* of various p.

» The most outstanding
I = 2E;®E; €(M,®M,)*, 1s a well behaved
entanglement which serves as the

representative for ALLwild entanglements.

» THEOREM says that to tame ALL shrews
(= entanglements) Is equivalent to tame a
single LOVELY shrew (without worrying how
nasty/dirty/undisciplined of other shrews). =



ao.f['ljp of the LOVELY “Sfirew

Examplen=3, T=2E;&E;€ (M;&M;)*" = My

» Tis the NATURAL assemblage of matrix units

1 0 0,0 1 00 O 17
o 0 0/0 O OO0 O O
0O 0 0/0 O O|O0O O O
0O 0 0[O0 O OO0 O O
1 0 00 1 0|0 O 1
0O 0 0/]O O O0J]O O O
o 0 0/0 O OO0 O O
o 0 00 O O|O0O O O
1 0 000 1 0'0 O 1-

» Indeed, T2 =nT, so %T Is a rank-1 projection, but

T serves as the best witness to test all completely
positive linear maps M;—> M, .

=z



005214 Why Not Down to n=2?

» The simplest example of quantum entanglement is

0"

11

Ny Y=

as a positive 4 x 4 matrix, but not of the form as the sum
of A, ®B;with A, in M,™ and B; in M,™.

o oo
535
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=
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CLosEUpP

Purpose: Wish to classify all linear maps

@ : M,— M, by means of the 4 x 4 Choi Matrix C¢p
- ([1 0 0 1},
olly o) @g ol

0 O 0 O],|
oy o) g 1))

Chal Ienge.- What sort of non-commutative geometry
could be hidden/shown in the 4 x4 matrix C¢ ?



Newest Classification Theorem

(Joint work with C.K. Li, 2023, JQIC)

Consider all ¢ : M,— M, as unital trace-preserving
and hermitian- preserving linear maps.

Then the 4 real eigenvalues of the Choi Matrix Ccp
determine the linear map @ up to

unitary equivalence.

l.e., iff C 0 and C w have the same eigenvalues, then
there exist unitaries U and W such that

@(A) =U*WY (W*AW)U for all A in M,,. .



The Miost lmportant Example:

By means of Pauli Matrices

10 _[0 1 [0 —i
2=ly Zi-x=l0 ol v=[} )
and 4 real numbers A; with A, = 1.
Define ¢ : M,— M,

as @(A) =1 A+ A,ZAZ + 1, XAX + 1, YAY

» Then ¢ is a unital linear map preserving traces and
hermitian matrices.

» The Choi Matrix C¢ has {2/1j } as four eigenvalues.

P



Newest Classijication Theorem [-Peesse

Each unital qubit channel ®

(unital trace preserving completely positive
linear map M,— M, )

is unitarily equivalent to a concrete map of the
form  A— 1A+ A,ZAZ + A1, XAX + A, YAY,

where X,Y and Z are Pauli Matrices;

{21)- } are eigenvalues of the Choi Matrix C(p :

> This provides the WHOLE picture of unital qubit channels.



OPEN QUESTION

What would be next Classification Theorems ?

Want to study the

case n=3.

1 0 010 1 010 O 17
* Need to 00 0[O0 0 O0O/0 0 0
understandthe |00 010 0 010 0 0
guantum O 0 0,0 O OO0 O O

1 0 00 1 O 1|0 O 1
entanglementof |90 o0 olo o0 olo o0 o

O 0 00 O OO0 O O

O 0 0,0 O OO0 O O

1 0 0/'0 1 O 1|0 O 14 |




