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Classical shadows with Pauli-invariant unitary ensembles
Kaifeng Bu 1✉, Dax Enshan Koh 2✉, Roy J. Garcia 1✉ and Arthur Jaffe 1✉

Classical shadows provide a noise-resilient and sample-efficient method for learning quantum system properties, relying on a user-
specified unitary ensemble. What is the weakest assumption on this ensemble that can still yield meaningful results? To address
this, we focus on Pauli-invariant unitary ensembles—those invariant under multiplication by Pauli operators. For these ensembles,
we present explicit formulas for the reconstruction map and sample complexity bounds and extend our results to the case when
noise impacts the protocol implementation. Two applications are explored: one for locally scrambled unitary ensembles, where we
present formulas for the reconstruction map and sample complexity bounds that circumvent the need to solve an exponential-
sized linear system, and another for the classical shadows of quantum channels. Our results establish a unified framework for
classical shadows with Pauli-invariant unitary ensembles, applicable to both noisy and noiseless scenarios for states and channels
and primed for implementation on near-term quantum devices.
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INTRODUCTION
Learning the properties of an unknown but physically accessible
quantum system is a fundamental task in quantum information
processing1–3. A standard tool for this task is quantum tomo-
graphy, a process by which one recovers a classical description of
a quantum system through performing measurements on it.
Unfortunately, finding the full description of a quantum system by
quantum tomography is computationally intensive; it requires an
exponential number of copies of the system4–6.
Recently, Huang, Kueng, and Preskill introduced a novel method

—the classical shadow paradigm1—to circumvent the above
limitation. A key insight behind classical shadows rests on the fact
that in many cases one does not need to learn a complete
description of a quantum system; one can learn its most useful
properties from a minimal sketch of the quantum system, the
classical shadow. The classical shadow paradigm, with the sample
efficiency it touts, has attracted considerable attention over the
last couple of years7. Several applications have been pro-
posed1,8–21, ranging from the estimation of properties of quantum
states and gates to quantum chaos in quantum evolution.
Moreover, several improved versions of this protocol have been
developed1,8,22–36, such as noise-resilient versions20,37.
The performance of the classical shadow protocol depends on

several factors. In particular, it depends on an ensemble of unitary
operators from which an operation is chosen randomly to be
applied to the unknown quantum state. A user must choose this
ensemble in advance, according to some desiderata, such as the
need for the shadow channel to be invertible and for one to have
an efficient algorithm for sampling a unitary from the ensemble.
Several unitary ensembles have been considered by previous
authors, including the local and global Clifford ensembles1,
fermionic Gaussian unitaries28, chaotic Hamiltonian evolutions27,
locally scrambled unitary ensembles26 and other short-depth
quantum circuits. One motivation for studying short-depth
quantum circuits is that random unitaries based on these random
circuits could be more powerful in predicting properties of
quantum systems38 than the original proposals.

One can ask: what is the weakest assumption on the unitary
ensemble that would still yield universal, meaningful and interest-
ing results? Our candidate solution to this question is the
assumption that the unitary ensemble is invariant under multi-
plication by a Pauli operator. Ensembles satisfying this assumption
—namely the Pauli-invariant unitary ensembles—include a wide
range of ensembles, including the Pauli group, the local and global
Clifford groups, locally scrambled unitary ensembles, and short-
depth 2-qubit Clifford circuits. The goal of this work is to provide a
unified framework for the classical shadow protocol with Pauli-
invariant unitary ensembles in both the noiseless and noisy settings.
The rest of our paper is structured as follows. In Section ("General

framework for Pauli-invariant unitary ensembles”), we introduce the
framework of classical shadows with Pauli-invariant unitary ensem-
bles and provide an explicit formula for the shadow channel and
reconstruction map, which are key elements in the classical shadow
protocol described in Section ("Preliminaries: Classical shadows”). In
addition, we establish a connection between the reconstruction
map and the entanglement features of the dynamics. We give upper
bounds on the sample complexity in terms of the average shadow
norm for the task of expectation estimation using the classical
shadow protocol. Considering the fact that noise is inevitable in the
noisy intermediate-scale quantum (NISQ) era, we consider classical
shadows for Pauli-invariant unitary ensembles in the presence of
noise in Section ("Classical shadows with noise”). This generalizes our
results from the noiseless case to the noisy case.
In Sections ("Application to locally scrambled unitary ensem-

bles”) and ("Application to quantum channels”), we provide two
applications of our main results. First, we investigate locally
scrambled unitary ensembles, which are a special example of
Pauli-invariant unitary ensembles. We provide an explicit recon-
struction map, addressing a crucial gap in a previous approach
provided by26, which specifies the map only in terms of a solution
of an exponential-sized system of linear equations; by contrast,
using our explicit formula, ours circumvents the need to solve
such an exponential-sized linear system. Second, we apply our
results to the shadow process tomography of quantum channels
using the Choi-Jamiołkowski isomorphism, thereby generalizing
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the results of refs. 29,30 to the broad class of Pauli-invariant unitary
ensembles.

RESULTS
Preliminaries: classical shadows
Let us begin by describing the classical shadow protocol that was
introduced in ref. 1. A user will have to pre-decide on a unitary
ensemble E ¼ fðU; PðUÞÞgU2U , where U is a set of unitary
operators and P is a probability distribution on U . The first step
is choosing a random unitary U from the unitary ensemble E
according to the specified distribution P(U). The unitary U is then
applied to ρ and a computational basis measurement is
performed on the resultant state to obtain an n-bit string

b
!¼ b1b2 ¼ bn 2 f0; 1gn. We construct the state

σ̂
U; b
! ¼ Uy b

!��� E
b
!D ���U; (1)

which is stored in classical memory. Note that this produces an
ensemble of states

Eρ ¼ σ̂
U; b
!; PðU; b!Þ

� �� �
U; b
!; (2)

where PðU; b!Þ ¼ PðUÞPð b!jUÞ and Pð b!jUÞ ¼ Tr½σ̂
U; b
!ρ�. The

expected value of this ensemble is given by

σ ¼ Eσ̂2Eρ
σ̂ ¼ EU

P
b
!

σ̂
U; b
!Tr σ̂

U; b
!ρ

� �
:¼ M½ρ�; (3)

where M—called the shadow channel—is a completely positive
and trace-preserving map. To construct the classical shadow, the
shadow channel needs to be invertible. If the conditions for
invertibility are met, the inverse of the shadow channel M�1,
called the reconstruction map, is applied to the classically stored
σ̂
U; b
! to obtain the classical snapshot ρ̂ ¼ M�1½σ̂

U; b
!�, which is

called the classical shadow. As required, ρ̂ is an unbiased estimator
of ρ:

ρ ¼ M�1½σ� ¼ E
σ̂2Eρ

M�1½σ̂� ¼ E
U; b
!M�1ðσ̂

U; b
!Þ ¼ E

U; b
! ρ̂½ �:

(4)

As illustrated above, the reconstruction map M�1 plays a
pivotal role in the classical shadow protocol. However, for arbitrary
unitary ensembles, no general closed-form analytic formula is
known for M�1. Instead, prior to this study, it was only for a
handful of unitary ensembles (e.g., the local and global Clifford
ensembles) that analytic expressions have been derived. In this
study, we address this gap by presenting an explicit formula for
the reconstruction map for the large class of Pauli-invariant unitary
ensembles, thereby enlarging the class of ensembles for which
such expressions are known.

General framework for Pauli-invariant unitary ensembles
In this paper, we consider classical shadows with Pauli-invariant
unitary ensembles. We start by introducing these ensembles,
before deriving our main results characterizing the performance of
classical shadow protocols utilizing these ensembles.
We denote the set of Pauli operators on n qubits by

Pn ¼ fP a! ¼ �iPai : a!2 Vng, where V :¼ Z2 ´Z2 ¼ fð0; 0Þ;
ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, and P(x, z) = ixzXxZz, i.e., Pð0;0Þ ¼ I; Pð0;1Þ ¼ Z;
Pð1;0Þ ¼ X; Pð1;1Þ ¼ Y . A given unitary ensemble E ¼ fðU; PðUÞÞgU ,
is called Pauli-invariant, if the probability distribution P(U)
satisfies the following (right) Pauli-invariant condition:

PðUÞ ¼ PðUP
σ!Þ; 8P

σ! 2 Pn: (5)

This is a weak assumption, and many unitary ensembles satisfy
this condition, for example, (1) the Pauli group f± 1; ± ig ´Pn; (2)
D-dimensional local, random quantum circuits39; (3) local Clifford
unitaries; (4) global Clifford unitaries; and (5) short-depth 2-qubit
Clifford circuits.
For Pauli-invariant unitary ensembles, we will now provide an

explicit formula for the shadow channelM and the corresponding
reconstruction map M�1, if it exists. The key idea is to use the
Pauli coefficients in the decomposition in terms of Pauli operators,
noting that the Pauli operators form an orthonormal basis with
respect to the scaled Hilbert-Schmidt inner product hA; Bi ¼
1
2n Tr½A

yB� for an n-qubit system. These Pauli coefficients can be
thought of as quantum Fourier coefficients, which have found
extensive uses in a myriad of applications, including quantum
Boolean functions40, quantum circuit complexity41, quantum
scrambling42 and quantum convolutions43–45. For clarity of
presentation, the detailed proofs of all the results in this section
are provided in Supplementary Note 2. This follows Supplemen-
tary Note 1, which introduces the symplectic inner product used in
these proofs.

Theorem 1. (Shadow channel and reconstruction map) For a
Pauli-invariant unitary ensemble E, the shadow channel can be
written as

M½ρ� ¼ 1
2n

P
a!2Vn

WE½ a!�Tr½ρP a!�P a!; (6)

where WE½ a!� is the average squared Pauli coefficient of the
classical shadow, defined as

WE½ a!� ¼ E
b
!EUW σ̂

U; b
!½ a!�; (7)

where E
b
! :¼ 1

2n
P

b
! denotes the average with respect to the

uniform distribution over n-bit strings. For a state σ, we have used
the notation Wσ½ a!� :¼ jTr½σP a!�j2 to denote the square of the

a!-th Pauli coefficient of σ.
For Pauli-invariant unitary ensembles, the reconstruction map

M�1 exists if and only if WE½ a!�> 0 for all a!. If it exists, the
reconstruction map, which is diagonal in the Pauli basis, is
completely specified by its action on the Pauli basis elements as
follows:

M�1½P a!� ¼ WE ½ a!��1
P a!: (8)

Now, let us discuss the connection between the coefficients of
the reconstruction map WE and the 2nd entanglement fea-
ture46,47, which has been used to describe the entangling power
of unitary ensembles and is defined as follows:

Eð2ÞE ½A� ¼ EUE
b
!e

�Sð2ÞA ðσ̂
U; b
!Þ

; (9)

where A is a subset of ½n�; Sð2ÞA ðσÞ ¼ � log Tr½σ2
A� denotes the 2nd

Rényi entanglement entropy of the state σ on the subset A, and
σA ¼ TrAc ½σ�. For any subset S⊂ [n], let us define WE½S� as the sum
of the coefficients whose support is S, i.e.,

WE½S� ¼
P

a!:suppð a!Þ¼S

WE½ a!�;
(10)

where suppð a!Þ denotes the support of the vector a!. The
following proposition expresses WE½S� in terms of the 2nd
entanglement feature.

Proposition 2. (Connection with entanglement feature for
Pauli-invariant unitary ensemble) The coefficients of the
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reconstruction map can be expressed as follows:

WE½S� ¼ ð�1ÞjSj
P
A�½S�

ð�2ÞjAjEð2ÞE ½A�: (11)

Now, let us consider the sample complexity for the task of
expectation estimation using classical shadows with Pauli-
invariant unitary ensembles. We shall make use of the result from
ref. 1 that the sample complexity of classical shadows with the
input state ρ and an observable O is upper bounded by the
following (squared) shadow norm:

Ok k2Eρ ¼ EEρ ô½σ̂�
2; (12)

where the estimator ô of the observable O is given by
ô ¼ Tr½OM�1½σ̂��.

Lemma 3. (Huang et al.1) The sample complexity S needed to
accurately predict a collection of N linear target functions
fTr½Oiρ�gNi¼1 with error ϵ and failure probability δ is

S ¼ O logðN=δÞ
ϵ2 max

1�i�N
Oi � 1

2n Tr½Oi�I
		 		2

Eρ

� �
:

In general, the shadow norm is hard to compute, though for
special cases, closed-form expressions for the shadow norm can be
derived. To this end, let us consider the widely used Pauli operators O
as observables. For this case, we provide a unified formula for the
shadow norm corresponding to all Pauli-invariant unitary ensembles.

Proposition 4. (Shadow norm for Pauli-invariant unitary
ensembles for Pauli observables) If the observable O is the
Pauli operator P a!, then the (squared) shadow norm for a Pauli-
invariant unitary ensemble is equal to

P a!
			 			2

Eρ
¼ WE½ a!��1

: (13)

Hence the sample complexity is bounded above by

O logðN=δÞ
ϵ2 WE½ a!��1


 �
: (14)

Note that the shadow norm Ok kE usually depends on the input
state ρ. If we are interested in the expectation of the shadow norm
over some unitary ensemble instead of some specific state, we will
need a notion of an average shadow norm. To this end, let us
consider the (squared) average shadow norm over the Pauli
group, defined as Ok k2E ¼ EV2Pn Ok k2EVρVy

: The following proposi-

tion gives an expression for the average shadow norm.

Proposition 5. (Average shadow norm for Pauli-invariant
unitary ensemble) The (squared) average shadow norm over
the Pauli group Ok k2E can be expressed as follows:

Ok k2E ¼ 1
4n

X
a!2Vn

WE½ a!��1
WO½ a!�; (15)

where WO½ a!� ¼ jTr½OP a!�j2. Therefore, given a set of N traceless

observables fOigNi¼1, the average shadow norm provides the
following lower bound for the sample complexity:

S � logðN=δÞ
ϵ2 max

1�i�N
hW!

�1

E ;W
!

Oi i; (16)

where the (normalized) inner product is defined as

hW!
�1

E ;W
!

Oi i :¼ 1
4n
P

a!2VnWE½ a!��1
WOi ½ a

!�.

Classical shadows with noise
Considering the fact that noise is unavoidable in real-world
experiments, it is necessary to employ error mitigation techniques
to make classical shadows useful in the presence of noise. In this
subsection, let us consider noisy classical shadows with a Pauli-
invariant unitary ensemble. Similar to the setting in20,37,48, we shall
assume that a noise channel Λ acts on the pre-measurement state
UρU† just before the measurement is performed. Such an
assumption is obeyed by gate-independent, time-stationary, and
Markovian noise20,49. Similar to the noiseless case (2), the

ensemble of states is given by EΛ;ρ ¼ σ̂
U; b
!; PðU; b!Þ

� �� �
U; b
!,

where PΛð b
!jUÞ ¼ Tr½ b

!��� E
b
!D ���Λ½UρUy��. Hence, by taking the

average of the post-measurement states, we have σ ¼

EU
P

b
!σ̂

U; b
!Tr½j b!ih b!jΛ½UρUy�� ¼ MΛ½ρ�; where MΛ is the noisy

shadow channel, and ρ ¼ M�1
Λ ½σ�, where M�1

Λ is the noisy
reconstruction map. We will now provide an explicit form for the
noisy reconstruction map M�1

Λ . For clarity of presentation, the
detailed proofs of all the results in this subsection are provided in
Supplementary Note 5.

Theorem 6. (Shadow channel and reconstruction map in noisy
case) Given a Pauli-invariant unitary ensemble E and a noise
channel Λ, the noisy shadow channel is given by

MΛ½ρ� ¼ 1
2n
P
a!
WEΛ ½ a

!�Tr½ρP a!�P a!; (17)

whereWEΛ ½ a
!� is the average Pauli coefficient of the noisy classical

shadow, and is defined as

WEΛ
½ a!� ¼ E

b
!EUTr½σ̂

U; b
!P a!�Tr½UyΛy½ b

!��� E
b
!D ����UP a!�: (18)

For the Pauli-invariant unitary ensemble, M�1
Λ exists if and only if

WEΛ ½ a
!�> 0 for all a!. If it exists, the reconstruction map is defined by

M�1
Λ ½P a!� ¼ WEΛ ½ a

!��1
P a!: (19)

Now, let us consider the sample complexity of the noisy
classical shadow protocol. Similar to the noiseless case, the sample
complexity of the noisy classical shadow with the input state ρ
and observable O is upper bounded by the (squared) noisy
shadow norm Ok k2EΛ ;ρ ¼ Eσ̂2EΛ ô½σ̂�

2; where the estimator of the
observable is taken to be ô ¼ Tr½OM�1

Λ ½σ̂��. Let us also define the
(squared) average shadow norm over the Pauli group for the noisy
classical shadow to be Ok k2EΛ

¼ EV2Pn Ok k2E
Λ;VρVy

.

Proposition 7. If the observable O is taken to be the Pauli
operator P a!, the shadow norm is equal to

P a!
			 			2

EΛ;ρ
¼ WEΛ ½ a

!��2
Wu

EΛ ½ a
!�; (20)

where Wu
EΛ ½ a

!� is defined as

Wu
EΛ ½ a

!� ¼ EUE
b
! Tr½P a!σ̂

U; b
!�

����
����
2

Tr½ b
!��� E

b
!D ���Λ½I��: (21)

Hence, if Λ is unital, thenWu
EΛ
½ a!� ¼ WE½ a!�. Moreover, the average

shadow norm in the noisy classical shadow protocol with the
noise channel Λ can be expressed as follows

Ok k2EΛ ¼ 1
4n
P
a!
WEΛ ½ a

!��2
Wu

E½ a
!�WO½ a!�: (22)

K. Bu et al.
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Let us now provide an example of noisy classical shadows and
demonstrate how the performance of the protocol depends on
the noise rate.

Example 1. Let us consider the case where the noise channel is the
global depolarizing channel, defined as Dp½�� ¼ ð1� pÞ½�� þ p Tr½��I

2n :
The coefficients of the shadow channel can be expressed as

WEDp ½ a
!� ¼ ð1� pÞ

1�δ
a!; 0
!

WE½ a!�; (23)

and the shadow norm for a Pauli operator P a! obeys the following
identity

P a!
			 			2

EDp ;ρ
¼ ð1� pÞ

2δ
a!; 0
!�2

P a!
			 			2

E;ρ
; (24)

where δ
a!; 0
! denotes the Kronecker delta function. Hence the

sample complexity for any non-identity Pauli operator is bounded
by

O 1
ð1�pÞ2

logðN=δÞ
ϵ2 WE½ a!��1


 �
: (25)

From the above equation, we see that depolarizing noise
increases the number of samples needed for expectation
estimation, with an increase that is proportional to the noise rate.

Application to locally scrambled unitary ensembles
First, let us apply our results to locally scrambled unitary ensembles,
which are a special case of Pauli-invariant unitary ensembles. A
unitary ensemble is said to be locally scrambled26 if the probability
distribution P(U) satisfies local basis invariance, that is,

PðUÞ ¼ PðUVÞ; 8 unitaries V ¼ V1 � � � � � Vn: (26)

It is easy to see that the Pauli-invariance assumption is weaker
than the locally scrambled assumption, as locally scrambled
unitary ensembles are Pauli-invariant. Not all Pauli-invariant
unitary ensembles are locally scrambled though—a counter-
example is the Pauli group.
Classical shadows with locally scrambled unitary ensembles

were previously considered in ref. 26. However, a crucial limitation
of the results presented therein is that the reconstruction map was
left specified in terms of the solution of a linear system of size
O(2n) without any explicit formula given for the map. By contrast,
for our study, since locally scrambled unitary ensembles are a
special case of the Pauli-invariant unitary ensembles, we get as a
consequence of Theorem 1 an explicit formula for the reconstruc-
tion map that circumvents the need to solve an exponential-sized
linear system. Our next proposition makes this explicit. For clarity
of presentation, the detailed proofs of all the results in this
subsection are provided in Supplementary Note 3.

Proposition 8. Given a locally scrambled unitary ensemble E, the
shadow channel is

M½ρ� ¼ 1
2n

X
S�½n�

WE½S�
X

a!:suppð a!Þ¼S

Tr½ρP a!�P a!;

where WE½S� is defined as WE½S� ¼ E a!:suppð a!Þ¼S
WE½ a!�; and the

reconstruction map is given by

M�1½P a!� ¼ WE½suppð a!Þ��1
P a!:

Our expression for the reconstruction map above may be
compared with that given in ref. 26, which expressed the
reconstruction map as M�1½σ� ¼

P
S�½n�rSD

S½σ�, where DS denotes
the ∣S∣-fold Kronecker product of the single-qubit erasure channel
D½�� ¼ Tr½��I=2 with itself acting on all the qubits indexed by S, and

the coefficients rs are given as the solution of a linear system
whose coefficients are the entanglement features. In the next
proposition, we find an explicit formula for rS in terms of the
coefficients WE½S�.

Proposition 9. Given a reconstruction map written as
M�1½σ� ¼

P
SrSD

S½σ�, the coefficients rS can be expressed in
terms of WE½A� as follows

rS ¼
P
A�S

ð�1ÞjSj�jAjWE½Ac��1; (27)

where Ac denotes the complement of A in [n].

Using Proposition 2 and the fact that WE½S� ¼ 3jSjWE½S�, our
next corollary shows how the coefficients rS can be expressed in
terms of the entanglement feature.

Corollary 10. Given a reconstruction map written as
M�1½σ� ¼

P
SrSD

S½σ�, the coefficients rS can be expressed as
follows

rS ¼ ð�1ÞnþjSj P
A�S

3jA
c j P

B�Ac
ð�2ÞjBjEð2ÞE ½B�

" #�1

: (28)

For the locally scrambled unitary ensembles, the average
(squared) shadow norm is defined in ref. 26 as
Ok k2E ¼ EV2Uð2Þn Ok k2EVρVy

, which provides a typical lower bound

for the sample complexity of expectation estimation using
classical shadows with locally scrambled unitary ensembles.
Just as we have provided an explicit formula for the

reconstruction map in terms of the entanglement feature, so
too can we provide an explicit formula for the shadow norm using
the entanglement feature.

Proposition 11. Given a locally scrambled unitary ensemble E, the
(squared) average shadow norm is

Ok k2E ¼ 1
4n

X
S�½n�

WE½S��1WO½S�; (29)

where WO½S� ¼
P

a!:suppð a!Þ¼S
WO½ a!�.

Based on Propositions 2 and 11, we can express the (squared)
average shadow norm in terms of the entanglement feature as
follows:

Ok k2E ¼ 1
4n

X
S�½n�

ð�3ÞjSjWO½S�
X
A�½S�

ð�2ÞjAjEð2ÞE ½A�

2
4

3
5
�1

: (30)

In summary, this section saw an application of our results to
classical shadows with locally scrambled unitary ensembles, where
we obtained an explicit formula for the reconstruction map and
the average shadow norm in terms of the entanglement features,
thus circumventing the need to solve the exponential-sized system
of linear equations in ref. 26. These explicit formulae may be helpful
for the further analysis of the role of entanglement in the classical
shadow protocol, which we shall leave for future work.

Application to quantum channels
The classical shadow paradigm was recently extended to the shadow
tomography of quantum channels29,30. In these works, the unitary
ensembles considered were the local and global Clifford ensembles.
In this study, we extend their results to the case of Pauli-invariant
unitary ensembles. For clarity of presentation, the detailed proofs of all
the results in this subsection are provided in Supplementary Note 4.
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Next, we shall outline the procedure proposed in refs. 29,30 for
constructing the classical shadows for quantum channels. The
unitary ensembles used will be assumed to be Pauli-invariant.

(1) Prepare b
!

i

��� E
with b

!
i 2 f0; 1gn chosen uniformly randomly.

(2) Apply a unitary Ui chosen from the locally Pauli-invariant
ensemble E i .

(3) Apply the quantum channel T .
(4) Apply a unitary U chosen form the locally Pauli-invariant

ensemble Eo , where the unitary ensemble Eo may be
different from E i .

(5) Measure in the Pauli Z basis to get the output b
!

o 2 f0; 1gn.

The post-measurement state is given by σ̂i;o ¼ UT
i j b
!

ii
h b!i jU	

i � Uy
oj b
!

oih b
!

ojUo. Hence, given b
!

i ;Ui ;Uo , the probability

of getting the outcome b
!

o is given by Pð b!oj b
!

i ;Ui ;UoÞ ¼
2nTr½σ̂i;oJ ðT Þ�; where J ðT Þ ¼ I� T ð Ψj i Ψh jÞ is the Choi-

Jamiolkowski state of T , where Ψj i ¼ 1ffiffiffiffi
2n

p
P

i
! i

!��� E
i
!��� E

is the

Bell state. It is easy to verify that
P

b
!

o

Pð b!oj b
!

i;Ui;UoÞ ¼ 1. Also,

the probability of obtaining b
!

i;Ui;Uo is equal to Pð b!i ;Ui ;UoÞ ¼
Pð b!iÞPðUiÞPðUoÞ. Hence, the ensemble of states is described by

E i;o ¼ fðσ̂i;o; Pð b
!

i ;Ui ;Uo; b
!

oÞÞg; (31)

where Pð b!i ;Ui;Uo; b
!

oÞ :¼ Pð b!i;Ui;UoÞPð b
!

oj b
!

i;Ui;UoÞ. Taking
the average of the classical shadow, we obtain σ ¼ Eσ̂2E i;o

σ̂ ¼
Mi;o½J ðT Þ�: To implement classical shadow tomography, the
inverse of the shadow channel M�1

i;o would need to be
implemented. If the inverse exists, then J ðT Þ ¼ M�1

i;o ½σ� ¼
Eσ̂2E i;oM�1

i;o ½σ̂�: Given a quantum state ρ and an observable O,
the estimator ô is defined as ô ¼ Tr½M�1

i;o ½σ̂i;o�ρT � O�: Therefore,
E½ô� ¼ Tr½T ½ρ�O�:

Proposition 12. Given two Pauli-invariant unitary ensembles E i
and Eo, the shadow channel Mi;o is

Mi;o½P a!i
� P a!o

� ¼ WE i ½P a!i
�WEo ½P a!o

�P a!i
� P a!o

; (32)

where WE i ½P a!i
� ¼ EbiEUi jTr½σ̂iP a!i

�j2 and WEo ½P a!o
� ¼ EboEUo

jTr½σ̂oP a!o
�j2. Hence, for the Pauli-invariant unitary ensemble,

M�1
i;o exists iff WE i ½ a

!
i�> 0;WEo ½ a

!
o�> 0 for all a!, and the

reconstruction map is defined by

M�1
i;o ½P a!i

� P a!o
� ¼ WE i ½ a

!
i�
�1
WEo ½ a

!
o�
�1
P a!i

� P a!o
: (33)

Now, for the classical shadow tomography for a quantum
channel, the sample complexity is upper bounded by the
following shadow norm:

ρT � O
		 		2

ET ¼ EET ô½σ̂i;o�2:

Next, let us consider the shadow norm in the case where the
observable is some Pauli operator and apply this result to the
problem of estimating Pauli channels.

Proposition 13. If the observable is taken to be a Pauli operator
P a!, then the (squared) shadow norm is equal to

ρT � P a!
			 			2

ET
¼ WEo ½ a

!��1 1
22n

P
a!i

WE i ½ a
!

i �
�1
Wρ½ a!i �: (34)

Now, we provide an example of a class of channels for which
our results on the classical shadow tomography for quantum
channels can be applied.

Example 2. (Estimation of Pauli channels) A quantum channel T
is called a Pauli channel if it can be written as T ½�� ¼P

a!2Vnp a!P a!½��Py
a! with

P
a!p a! ¼ 1. Equivalently, Pauli chan-

nels T can be written as T ½�� ¼ 1=2n
P

b
!λ

b
!Tr½�P

b
!�P

b
!. The task

of estimating the coefficients fλ
b
!g

b
! of the Pauli channel has

been investigated in ref. 49–57. Here, we consider the classical
shadow protocol for estimating coefficients λ

b
! with Pauli-

invariant unitary ensembles E i and Eo. The classical shadow is
taken to be fM�1

i;o ½σ̂i;o�g, and the reconstruction map is given in
Proposition 12. To estimate the coefficients λ

b
!, let us consider the

observable P
b
!� P

b
!, and take the estimator of the observable to

be ô
b
! ¼ Tr½M�1

i;o ½σ̂i;o�P b!
� P

b
!�, where it is easy to verify that

E½ô
b
!� ¼ Tr½J ½T �P

b
!� P

b
!� ¼ λ

b
!. Then the sample complexity

S needed to accurately predict a collection of 4n linear target

functions λ
b
! ¼ Tr½J ½T �P

b
!� P

b
!��

� �
b
!

2Vn

with error ϵ and

failure probability δ is

S ¼ O nþlogð1=δÞ
ϵ2 max

b
! WEo ½ b

!�
�1
WE i ½ b

!�
�1

0
@

1
A:

DISCUSSION
In this study, we investigated the classical shadow protocol with
Pauli-invariant unitary ensembles. First, we provided an explicit
formula for the reconstruction map corresponding to the shadow
channel and established a connection between the coefficients of
the reconstruction map and the entanglement features of the
dynamics. Using the shadow norm, we gave explicit sample
complexity upper bounds for the estimation task that the classical
shadow protocol solves. Finally, we presented two applications of
our results. First, we applied our results to locally scrambled unitary
ensembles, where we presented explicit formulas for the recon-
struction map and the sample complexity bounds. Second, we
applied our results to the shadow process tomography of quantum
channels with Pauli-invariant unitary ensembles and provided an
example where we considered the task of estimating Pauli channels.
Our results provide a general framework for classical shadows with a
weak assumption on the unitary ensemble in both the noiseless and
noisy cases, which can be utilized to predict pertinent properties of
quantum states in NISQ devices, including their fidelity, entangle-
ment entropy, and quantum Fisher information.
There are still several interesting unresolved problems: (1) Can

one generalize our results to ensembles beyond the Pauli-invariant
unitary ensembles? We anticipate that this would be challenging,
as a crucial ingredient that we utilize in our proof is that the Pauli
ensemble forms a 1-design. This is a very weak assumption, and a
more general unitary ensemble may fail to satisfy the 1-design
property. That will likely impede a straightforward generalization of
our methods. (2) How can one utilize the entanglement feature of
the unitary ensemble to improve the performance of the classical
shadow across various tasks, such as fidelity estimation?
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METHODS
Diagonalization of the shadow channel in the Pauli basis
This section provides a bird’s-eye view of the proof of our main
result, which centers on the shadow channel Mð�Þ being diagonal
in the Pauli basis. A comprehensive description of our proof is
available in Supplementary Note 2. The primary method
employed in our proof relies on Fourier analysis with respect to
the Pauli basis. The crucial point to establish is as follows:

EUσ̂
U; b
!Tr½σ̂

U; b
!ρ� ¼ 1

22n
X
a!2Vn

EUTr½σ̂
U; b
!P a!�2Tr½P a!ρ�P a!:

(35)

This equation is derived using the following two facts: (i) the set of
Pauli operators forms an orthonormal basis for the space of n-
qubit linear operators, (ii) the Pauli operators obey the following

commutation property: P
b
!P a!P

b
! ¼ ð�1Þh a

!
; b
!

is P a!, where

〈⋅, ⋅〉s is the symplectic inner product defined in Supplementary
Note 1. The fact that Mð�Þ is diagonal in the Pauli basis allows us
to build the reconstruction map M�1 by simply taking the inverse
of the coefficients of Mð�Þ in the Pauli basis.
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