Institute for the Wireless Internet of Things

at Northeastern University

An introduction to Forward Error Correction and Guessing Random Additive Noise Decoding

Ken Duffy
Professor, Department of Electrical and Computer Engineering Professor, Department of Mathematics
Faculty Member, Institute for the Wireless Internet of Things Northeastern University
k.duffy@northeastern.edu
epic.sites.northeastern.edu

A trip back in time

Dublin 2005

N Institute for the Wireless Internet of Things

at Northeastern

Dublin 2005

Acknowledgements

Collaborators and Acknowledgements

Muriel Medard
MIT

- Wei An
- Joe Griffin
- Basak Ozaydin
- Amit Solomon
- Kathleen Yang
- Kishori Konwar
- Jiange Li
- Hadi Sarieddeen
- Peihong Yuan
- Kevin Galligan
- Moritz Grundei

Rabia Yazicigil
Boston University

- Vaibhav Bansal
- Qijun Liu
- Jonathan Ngo
- Arslan Riaz
- Alperen Yasar
- Furkan Ercan

-

Context

Error correction coding

Error correction

Shannon (1948):

- Error detection and correction is possible only if a subset of strings are code-words.
- Out of 2^{n} possible strings, 2^{k} are code-words, giving a rate of $\mathrm{R}=\mathrm{k} / \mathrm{n}$.
- The highest rate a code-book can be depends on a statistic of the corruption that
- EMy intentions in this talk?

Entirely dishonorable and epsilontics will be left to the listener!

- 1

Joe Doob ...it is not always clear that the author's mathematical intentions are honorable. (MR0026286)

Following tradition, the "detailed epsilontics" of the proof of the fundamental theorem are omitted. (MR0055621)

Error correction coding

Shannon (1948):

- Error detection and correction is possible only if a subset of strings are code-words.
- Out of 2^{n} possible strings, 2^{k} are code-words, giving a rate of $\mathrm{R}=\mathrm{k} / \mathrm{n}$.
- The highest rate a code-book can be depends on a statistic of the corruption that we now call the Shannon Entropy.
- Best correction performance bang for buck comes at long code-lengths.
- In practice, for communication and storage of digital data, almost all error correction codes are linear in the binary field of two elements, F_{2}

$$
\mathrm{a}^{\mathrm{k}} \mathrm{G}=\mathrm{c}^{\mathrm{n}} .
$$

- Linear codes $=$ perfect grammar.

Berlekamp, McEliece \& Van Tilborg (1978): optimal hard detection decoding of linear codes is NP-complete.

Complexity Limits of Forward Error Correction

Practical consequence is the current paradigm: co-design of restricted code (i.e. grammar) and decoder pairs.

Error Detection Only \longleftarrow Cyclic Redundancy Check
Majority Logic \longleftarrow RM
Berlekamp-Massey \longleftarrow BCH
CA-SCL \longleftarrow CA-Polar
No decoder
« Random Linear Code

- Distinct chip required to decode each code.
- Requires standardization.

Guessing Random Additive Noise Decoding

Guessing Random Additive Noise Decoding

Practical decoding region

- A function of the redundancy, n-k, rather than k / n.

Idea behind GRAND

Channel output is input plus noise effect

Standard decoder: identify X^{n} using structure of code-book
 GRAND: identify N^{n} using structure of the noise

```
Inputs: Code-book membership test, Y }\mp@subsup{Y}{}{n}\mathrm{ .
Output: Decoding }\mp@subsup{c}{}{*,n}\mathrm{ .
yn}\leftarrow\operatorname{demod}(\mp@subsup{Y}{}{n})
d\leftarrow0.
while}d=0\mathrm{ do
    z
    if }\mp@subsup{y}{}{n}\ominus\mp@subsup{z}{}{n}\mathrm{ is in the code-book then
        c ^ { * , n } \leftarrow y ^ { n } \ominus z ^ { n }
        d}\leftarrow
        return c*,n.
    end if
end while
```

- Universal decoders suitable for moderate redundancy codes.
- Complexity a function of noise and redundancy, not code-rate.
- Highly parallelizable.
Duffy, Li, Médard, IEEE Tran. Inf.Theory, I9. Duffy, Li, Médard, IEEE ISIT, I8.

```

\section*{GRAND is max. likelihood if channel match}
- Channel output is input plus independent noise:

- Max. likelihood decoding:
\[
\begin{aligned}
c^{n, *} & \in \arg \max \left\{p\left(y^{n} \mid c^{n, i}\right): c^{n, i} \in \mathcal{C}_{n}\right\} \\
& =\arg \max \left\{P\left(N^{n}=y^{n} \ominus c^{n, i}\right): c^{n, i} \in \mathcal{C}_{n}\right\}
\end{aligned}
\]
- Max. likelihood decoding by sequential guessing
\[
P\left(N^{n}=y^{n} \ominus c^{n, *}\right) \geq P\left(N^{n}=y^{n} \ominus c^{n, i}\right) \text { for all } c^{n, i} \in \mathcal{C}_{n}
\]
- As maximum likelihood decoding is optimal for uniform sources, automatically get existing capacity results.
- New way of thinking enables new derivation of old results \& new ones.

\section*{Number of queries to an error}

ngs.
: query identifies a
is approximately

\section*{Guesswork}
- Given you know the distribution from which an object is selected, Guesswork is the number of yes/no queries until a randomly selected object is identified:
\[
\begin{aligned}
G\left(z^{n, i}\right) & \leq G\left(z^{n, j}\right) \text { iff } \\
P\left(N^{n}=z^{n, i}\right) & \geq P\left(N^{n}=z^{n, j}\right)
\end{aligned}
\]


\section*{Number of queries to a correct decoding}

Moments of \# queries to correct decoding:
\[
\Lambda(\alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(G\left(N^{n}\right)^{\alpha}\right)= \begin{cases}\alpha H_{1 /(1+\alpha)} & \text { if } \alpha>-1 \\ -H_{\infty} & \text { if } \alpha \leq-1\end{cases}
\]

Probabilities of \# queries to correct decoding:
\[
P\left(G\left(N^{n}\right) \approx 2^{n g}\right) \approx \exp \left(-n \sup _{\alpha}(\alpha g-\Lambda(\alpha))\right)
\]

Probabilities of \# queries to incorrect decoding a rate R codebook:
\[
P\left(U^{n} \approx 2^{n u}\right) \approx \begin{cases}\exp (-n(1-R-u)) & \text { if } u \in[0,1-R] \\ 0 & \text { otherwise }\end{cases}
\]

Likelihood of error: \(\quad P\left(U^{n} \leq G\left(N^{n}\right)\right) \quad\) Complexity: \(\quad \min \left(U^{n}, G\left(N^{n}\right)\right)\)

\section*{Theorems - Channel Coding, Error Exponent}
at Northeastern

Proposition 1 (Channel Coding Theorem With GRAND). Under Assumptions 1 and 2, with \(I^{U}\) defined in equation (10) and \(I^{N}\) in equation (8), we have the following.
1) If the code-book rate is less than the capacity, \(R<1-H\), then
\(\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(U^{n} \leq G\left(N^{n}\right)\right)=-\inf _{a \in[H, 1-R]}\left\{I^{U}(a)+I^{N}(a)\right\}<0\), so that the probability that GRAND does not correctly identify the transmitted code-word decays exponentially in the block length \(n\). If, in addition, \(x^{*}\) exists such that
\[
\begin{equation*}
\left.\frac{d}{d x} I^{N}(x)\right|_{x=x^{*}}=1 \tag{12}
\end{equation*}
\]
then the error rate simplifies further to
\[
\begin{align*}
\epsilon(R) & =-\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(U^{n} \leq G\left(N^{n}\right)\right) \\
& = \begin{cases}1-R-H_{1 / 2} & \text { if } R \in\left(0,1-x^{*}\right) \\
I^{N}(1-R) & \text { if } R \in\left[1-x^{*}, 1-H\right)\end{cases} \tag{13}
\end{align*}
\]

Moreover,
\[
s(R)=\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(U^{n} \geq G\left(N^{n}\right)\right)=0
\]
so that the probability that GRAND does not provide the true channel does not decay exponentially in \(n\).

Proposition 3. (GRANDAB Coding Theorem and Guessing Complexity). Under the assumptions of Theorems 1 and 2. If the code-book rate is less than the capacity, \(R<1-H\), then the GRANDAB error rate is
\[
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{1}{n} \log P\left(\left\{U^{n} \leq G\left(N^{n}\right)\right\} \cup\left\{\frac{1}{n} \log G\left(N^{n}\right) \geq H+\delta\right\}\right) \\
& =-\min \left\{\inf _{a \in[H, 1-R]}\left\{I^{U}(a)+I^{N}(a)\right\}, I^{N}(H+\delta)\right\}<0
\end{aligned}
\]
so that probability that the ML decoding is not the transmitted code-word decays exponentially in the block length \(n\). If, in addition, \(x^{*}\) defined in equation (12) exists then this simplifies to what we call the GRANDAB error rate
\[
\begin{equation*}
\epsilon^{A B}(R)=\min \left(\epsilon(R), I^{N}(H+\delta)\right) \tag{21}
\end{equation*}
\]
where \(\epsilon(R)\) is the ML decoding error rate in equation (13). The expected number of guesses until GRANDAB terminates, \(\left\{D_{A B}^{n}\right\}\), satisfies
\[
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(D_{A B}^{n}\right)=\min \left(H_{1 / 2}, 1-R, H+\delta\right)
\]

For rates above capacity, \(R>1-H\), the success probability is identical to that for ML decoding, given in equation (14).

Duffy, Li, Médard, IEEE Tran. Inf. Theory, I9.

\section*{Decoding with soft information}


\section*{Bits are flipped independently?}

Because they're engineered to be so to match decoder expectations

Collect data as rows:
\(\left(\begin{array}{cccccc}c_{1,1} & c_{1,2} & c_{1,3} & \cdots & c_{1, n-1} & c_{1, n} \\ \hline c_{2,1} & c_{2,2} & c_{2,3} & \cdots & c_{2, n-1} & c_{2, n} \\ \hline \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ \hline c_{n, 1} & c_{n, 2} & c_{n, 3} & \cdots & c_{n, n-1} & c_{n, n}\end{array}\right)\)

Transmit as columns:
\[
\left(\begin{array}{c|c|c|c|c|c}
c_{1,1} & c_{1,2} & c_{1,3} & \cdots & c_{1, n-1} & c_{1, n} \\
c_{2,1} & c_{2,2} & c_{2,3} & \cdots & c_{2, n-1} & c_{2, n} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
c_{n, 1} & c_{n, 2} & c_{n, 3} & \cdots & c_{n, n-1} & c_{n, n}
\end{array}\right)
\]

\section*{A posteriori bit flip probabilities}

Standard interleaved channel model:
Additive White Gaussian Noise


\section*{Rank ordered reliabilities}
- For each set of received reliabilities, rank order from least reliable to most.
- Consistency across different samples for the same reasons empirical cumulative distribution functions converge


\section*{Rank ordered reliabilities}
- Standard to not think of probabilities, but an invertible transformation.
- Reliability is the absolute value of the log likelihood ratio of the hypotheses that a bit is a 1 or a 0
\[
|\mathrm{LLR}|=\log \left(\frac{1-p}{p}\right)
\]


\section*{Rank ordered reliabilities}

Institute for the Wireless Internet of Things
at Northeastern
- Put your statistical modelling hat on
- I.e. it's a line


\section*{Rank ordered reliabilities}
\[
\begin{aligned}
& \mathbb{P}\left(N^{n}=z^{n}\right)=\prod_{i=1}^{n}\left(1-p_{i}\right) \prod_{i: z_{i}=1} \frac{p_{i}}{1-p_{i}} \\
& \mathbb{P}\left(N^{n}=z^{n}\right) \propto \prod_{i: z_{i}=1} \frac{p_{i}}{1-p_{i}}=e^{-\sum_{i: z_{i}=1}\left|\operatorname{LLR}_{i}\right|}
\end{aligned}
\]

If, rank ordered from least reliable
\[
\left|\operatorname{LLR}_{i}\right| \approx \beta i \text { for } i=1, \ldots, n
\]
then
\[
\sum_{i: z_{i}=1}\left|\operatorname{LLR}_{i}\right|=\beta \sum_{i=1}^{n} i z_{i} \propto \sum_{i=1}^{n} i z_{i}=w_{\mathrm{L}}\left(z^{n}\right)
\]
and sequences rank ordered by logistic weight.

\section*{Ordered Reliability Bits GRAND}


Once bits are rank ordered, ORBGRAND uses a fixed guessing order

Decreasing likelihood of noise effects
= increasing Logistic Weight (sum of rankordered position of bits flipped)


Generating patterns for a given logistic weight corresponds to solving an integer partition problem: sum of distinct integers (bit flip positions), each no greater than n, that add to given value.

\section*{Rank ordered reliabilities}



\section*{ORBGRAND in hardware}

ower
Supply


Riaz, Yasar, Ercan, An, Ngo, Galligan, Médard, Duffy, Yazicigil, IEEE ISSCC, 23.
Other circuits designs, e.g.: Abbas, Tonnellier, Ercan, Jalaleddine, Gross, IEEE Trans.VLSI, 22. Condo, IEEE Trans Circuits Syst, 2 I.
Condo, Bioglio, Land, IEEE Globecom, 2 I

\section*{ORBGRAND code performance}

Block Error Rate (BLER) fraction of blocks decoded incorrectly vs. Signal-to-Noise Ratio (SNR)

Binary phase shift keying modulation and additive white Gaussian noise

\section*{ORBGRAND code performance}

Block Error Rate (BLER) proportion of blocks decoded incorrectly vs. Signal-to-Noise Ratio (SNR)

Most celebrated recent code construction almost uniquely underperforms


Arikan, IEEE Trans. Inf. Theory, 09.

\section*{ORBGRAND decoding complexity}

Guesswork vs. Signal-to-Noise Ratio (SNR)

A measure of decoding complexity
- Decodes any moderate redundancy code, of any length, with max accuracy.
- Hard and soft detection variants have been developed.
- Inherently highly parallelizable, resulting in low latency.
- In silicon prototypes establish energy efficiency.
- Uniquely provides an accurate estimate of the likelihood of correct decoding.
- Only universal decoder that decode in channels with correlated noise.
- Essentially all long, low-rate codes are composed of smaller components and GRAND is being developed for use with them.
- Offers a single, energy efficient, precise decoder for a broad swathe of codes with a small footprint.
- Much more to come, in practice and in theory (with epsilontics)...

GRAND
granddecoder.mit.edu


\section*{NU Math (will be) hiring}

\title{
Quantum Information Science \\ Tenure Track / Tenure Open Rank Professorship
}

Details will be available soon at:
https://hr.northeastern.edu/careers/job-listings/```

