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Shannon (1948):

• Error detection and correction is possible only if a subset of strings are code-words.
• Out of 2n possible strings, 2k are code-words, giving a rate of R=k/n.
• The highest rate a code-book can be depends on a statistic of the corruption that 

we now call the Shannon Entropy. 
• Best correction performance bang for buck comes at long code-lengths.

• Historical aside:

Joe Doob

Shannon, Bell. Sys. Tech. J., 1948. Duffy, London Math. Soc. Newsletter, 2021.

i
i

“NLMS_497” — 2021/10/22 — 11:25 — page 32 — #32 i
i

i
i

i
i

32 FEATURES

to anticipate that the average amount of guessing
needed to identify Zn should grow exponentially,
but how quickly? And how does it depend on the
distribution of Z ?

For didactic simplicity, let’s assume that the alphabet
is binary L = {0,1}, and P (Z = 1) = p < 1/2 and so
that P (Z = 0) = 1 � p > 1/2. Hence Alice is picking
a random binary string, Zn , of length, n that Bob is
trying to guess. Following tradition, let us not fret
about detailed epsilontics and trust that everything
can be made rigorous.

As p < 1/2, the most likely string consists of n
zeros, the next most likely string has a single one
and n � 1 zeros, and so forth. Thus Bob’s guesswork
order,G , follows strings with an increasing number of
ones (i.e. Hamming weight), breaking ties arbitrarily.
Before analysing the average guesswork, let’s concern
ourselves with probabilities. The likelihood that the
string Zn contains i 2 {0, . . . ,n} ones is

P
©≠
´
n’
j=1

Zj = i
™Æ
¨
=
✓
n
i

◆
pi (1 � p)n�i .

Using the laziest version of Stirling’s approximation,
n! ⇡ nne�n , a bit of simpli�cation shows that the

number of strings with about nx ones satis�es✓
n
nx

◆
⇡ 2�n(x log2 (x)+(1�x) log2 (1�x)) .

Hence the probability of having nx ones in the string
✓
n
nx

◆
pnx (1 � p)n (1�x) ⇡ 2�nI (x)

where

I (x) = x log2
✓
x
p

◆
+ (1 � x) log2

✓
1 � x
1 � p

◆
.

It is easy to see that I is strictly convex and its
minimum occurs when x = p , hence the most likely
number of ones is np and, using our approximation to
the binomial coe�cient, the number of strings with
np ones (which Information Theorists call the Typical
Set) is approximately 2nH (Z ) , where H is Shannon
entropy. Thus one might imagine that Shannon
entropy does play a role in guesswork, because by
the time Bob has made✓

n
0

◆
+
✓
n
1

◆
+ · · · +

✓
n
np

◆
⇡ 2nH (Z )

queries, he has acquired almost all of the probability.
It is not, however, the full story.

Honorable intentions & epsilontics

My only grievance with the late, great probabilist Joseph Doob was that he lost a coin-toss to William
Feller:

While writing my book I had an argument with Feller. He asserted that everyone said “random
variable” and I asserted that everyone said “chance variable.” We obviously had to use the same
name in our books, so we decided the issue by a stochastic procedure. That is, we tossed for it
and he won. [11]

That chance event has led generations of English-speaking students to believe there is randomness in
Probability Theory when Kolmogorov’s insight was, instead, to build it on uncertainty through lack of
invertibility.

Claude Shannon had greater cause for upset, however. In his Mathematical Reviews of Shannon’s
seminal paper introducing Information Theory [10], Doob wrote (trolled?):

. . . it is not always clear that the author’s mathematical intentions are honorable. (MR0026286)

That upset Shannon, and later Doob expressed regret for its tone. I have never heard comment, however,
on Doob’s review of another important paper in Information Theory by Brockway McMillan [8]:

Following tradition, the "detailed epsilontics” of the proof of the fundamental theorem are
omitted. (MR0055621)
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My only grievance with the late, great probabilist Joseph Doob was that he lost a coin-toss to William
Feller:

While writing my book I had an argument with Feller. He asserted that everyone said “random
variable” and I asserted that everyone said “chance variable.” We obviously had to use the same
name in our books, so we decided the issue by a stochastic procedure. That is, we tossed for it
and he won. [11]

That chance event has led generations of English-speaking students to believe there is randomness in
Probability Theory when Kolmogorov’s insight was, instead, to build it on uncertainty through lack of
invertibility.

Claude Shannon had greater cause for upset, however. In his Mathematical Reviews of Shannon’s
seminal paper introducing Information Theory [10], Doob wrote (trolled?):

. . . it is not always clear that the author’s mathematical intentions are honorable. (MR0026286)

That upset Shannon, and later Doob expressed regret for its tone. I have never heard comment, however,
on Doob’s review of another important paper in Information Theory by Brockway McMillan [8]:
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omitted. (MR0055621)

My intentions in this talk? 
Entirely dishonorable and epsilontics will be left to the listener!
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Shannon (1948):

• Error detection and correction is possible only if a subset of strings are code-words.
• Out of 2n possible strings, 2k are code-words, giving a rate of R=k/n.
• The highest rate a code-book can be depends on a statistic of the corruption that 

we now call the Shannon Entropy. 
• Best correction performance bang for buck comes at long code-lengths.
• In practice, for communication and storage of digital data, almost all error correction 

codes are linear in the binary field of two elements, F2
ak G = cn .

• Linear codes = perfect grammar. 

Berlekamp, McEliece & Van Tilborg (1978): optimal hard detection decoding of linear 
codes is NP-complete. 

Shannon, Bell. Sys. Tech. J., 1948. Berlekamp, McEliece & Van Tilborg, IEEE Tran. Inf. Theory, 1978.



Complexity Limits of Forward Error Correction
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Practical consequence is the current paradigm: co-design of restricted code (i.e. grammar) 
and decoder pairs.

• Distinct chip required to 
decode each code.

• Requires standardization.

Cyclic Redundancy Check
RM
BCH
CA-Polar
Random Linear Code

Error Detection Only
Majority Logic
Berlekamp-Massey
CA-SCL
No decoder

LDPC – 1960s
CA-Polar – 2010s



Guessing Random Additive Noise Decoding
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CRC
RM
BCH
CA-Polar
RLC

Error Detection Only
Majority Logic
Berlekamp-Massey
CA-SCL
No decoder

GRAND



Guessing Random Additive Noise Decoding

13Shannon, and Berlekamp, McEliece & Van Tilborg



Practical decoding region
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• A function of the 
redundancy, n-k, rather 
than k/n.
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Channel output is input plus noise effect

5G Control Channel Encoding

Channel output is code-word plus channel noise

Y
n = X

n � N
n

Y
n = enc(xk)� N

n

Y
n = enc(xk)� N

n

Y
n = X

n

|{z}
2nR

� N
n

|{z}
2nH

Y
n = enc(xk)| {z }

2nR

� N
n

|{z}
2nH

Y
n = enc(xk)| {z }

|A|nR

� N
n

|{z}
|A|nH

[001111] = [101110]� [100001]

Y
n = enc(xk)| {z }

|A|nR

� N
n

|{z}
|A|nµH

E (Ln) = nµ

[100001]

On the down-link, bits are interleaved after the CRC, which is also a linear operation

Standard decoder: identify Xn using structure of code-book
GRAND: identify Nn using structure of the noise

• Universal decoders suitable for 
moderate redundancy codes.

• Complexity a function of noise and 
redundancy, not code-rate.

• Highly parallelizable.

Duffy, Li, Médard, IEEE Tran. Inf. Theory, 19. Duffy, Li, Médard, IEEE ISIT, 18. 

8

Inputs: Code-book membership test, Y n.
Output: Decoding c

⇤,n.
y
n  demod(Y n).

d 0.
while d = 0 do

z
n  next most likely noise effect

if y
n  z

n is in the code-book then

c
⇤,n  y

n  z
n

d 1
return c

⇤,n.
end if

end while

E(Z(t)) ⇡ e
↵t

E(G(t)) ⇡ te
↵t

VI. CISS

E(Un) ⇡ 2n�k

|LLR(y)| =
����log

✓
fY |c(y|1)
fY |c(y|0)

◆����



GRAND is max. likelihood if channel match
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• Channel output is input plus independent noise:

• Max. likelihood decoding:

• Max. likelihood decoding by sequential guessing

• As maximum likelihood decoding is optimal for uniform sources, automatically get 
existing capacity results.

• New way of thinking enables new derivation of old results & new ones.

5G Control Channel Encoding

Channel output is code-word plus channel noise

Y
n = X

n � N
n

Y
n = enc(xk)� N

n

Y
n = enc(xk)� N

n

Y
n = X

n

|{z}
2nR

� N
n

|{z}
2nH

Y
n = enc(xk)| {z }

2nR

� N
n
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2nH

Y
n = enc(xk)| {z }

|A|nR

� N
n

|{z}
|A|nH

[001111] = [101110]� [100001]

Y
n = enc(xk)| {z }

|A|nR

� N
n

|{z}
|A|nµH

E (Ln) = nµ

[100001]

On the down-link, bits are interleaved after the CRC, which is also a linear operation

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P(Un  G (Nn))

min(Un,G (Nn))

c
n,⇤ 2 arg max

�
p(yn|cn,i ) : c

n,i 2 Cn

 

= arg max
�
P(Nn = y

n  c
n,i ) : c

n,i 2 Cn

 
,

g

1� b

(1� b)n

b + g

✓
bg

(1� b)(1� g)

◆m ✓
1� g

1� b

◆l

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P(Un  G (Nn))

min(Un,G (Nn))

c
n,⇤ 2 arg max

�
p(yn|cn,i ) : c

n,i 2 Cn

 

= arg max
�
P(Nn = y

n  c
n,i ) : c

n,i 2 Cn

 
,

P(Nn = y
n  c

n,⇤) � P(Nn = y
n  c

n,i ) for all c
n,i 2 Cn

g

1� b

(1� b)n

b + g

✓
bg

(1� b)(1� g)

◆m ✓
1� g

1� b

◆l

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise



Number of queries to an error
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Consider a binary (n,k) code. There are 2k-1 possible erroneous decodings.

If the codebook was chosen at random, the likelihood that a code-book query identifies a 
codeword is approximately 2k / 2n = 2-(n-k) .

Hence the number of queries until an erroneous decoding is found, Un, is approximately 
geometrically distributed with probability 2-(n-k) .

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3
ORBGRAND CRC [64,52]
ORBGRAND CRC [128,116]
ORBGRAND CRC [256,244]
ORBGRAND PAC [64,52]
ORBGRAND PAC [128,116]
ORBGRAND PAC [256,244]
ORBGRAND RLC [128,116]
ORBGRAND RLC [256,244]
ORBGRAND RLC [512,500]
Geometric approximation, n-k=12



Guesswork
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• Given you know the distribution from which an object is selected, Guesswork is the 
number of yes/no queries until a randomly selected object is identified:

Massey, IEEE ISIT, 1994

1 2 3 4 5 6 7 8 9 10

k
0

0.1

0.2

0.3

0.4

0.5

P(
N
=k
)

g

1� b

(1� b)n

b + g

✓
bg

(1� b)(1� g)

◆m ✓
1� g

1� b

◆l

(1� b)n�l
b

l

G (zn,i )  G (zn,j) i↵

P(Nn = z
n,i ) � P(Nn = z

n,j)

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise



Number of queries to a correct decoding
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Moments of # queries to correct  
decoding:

Probabilities of # queries to correct 
decoding:

Arikan, IEEE Trans. Inf. Theory, 96. Malone & Sullivan, IEEE Trans. Inf. Theory, 04. Pfister & Sullivan, IEEE Trans. Inf. Theory,  04.

Christiansen and Duffy, IEEE Trans. Inf. Theory, 13.

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵)

= lim
n!1

1

n
log E

⇣
e

↵ log G(Nn)
⌘

=

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P (G (Nn) ⇡ 2ng ) ⇡ exp

✓
�n sup

↵
(↵g � ⇤(↵))

◆

Ln

⇤N
L

(↵) = lim
n!1

1

n
log E

⇣
G

⇣
N

L
n
⌘↵⌘

= ⇤L(⇤N(↵))

P

⇣
G

⇣
N

L
n
⌘
⇡ |A|ng

⌘
⇡ exp

✓
�n sup

↵

⇣
↵g � ⇤N

L

(↵)
⌘◆

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵)

= lim
n!1

1

n
log E

⇣
e

↵ log G(Nn)
⌘

=

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P (G (Nn) ⇡ |A|ng ) ⇡ exp

✓
�n sup

↵
(↵g � ⇤(↵))

◆

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise

Probabilities of # queries to 
incorrect decoding a rate R 
codebook:

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵)

= lim
n!1

1

n
log E

⇣
e

↵ log G(Nn)
⌘

=

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P (G (Nn) ⇡ |A|ng ) ⇡ exp

✓
�n sup

↵
(↵g � ⇤(↵))

◆

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise

Likelihood of error:

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P(Un  G (Nn))

min(Un,G (Nn))

P (G (Nn) ⇡ |A|ng ) ⇡ exp

✓
�n sup

↵
(↵g � ⇤(↵))

◆

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise

⇤(↵) = lim
n!1

1

n
log E (G (Nn)↵) =

(
↵H1/(1+↵) if ↵ > �1

�H1 if ↵  �1

P(Un  G (Nn))

min(Un,G (Nn))

P (G (Nn) ⇡ |A|ng ) ⇡ exp

✓
�n sup

↵
(↵g � ⇤(↵))

◆

P (Un ⇡ 2nu) ⇡
(

exp (�n(1� R � u)) if u 2 [0, 1� R]

0 otherwise

Complexity:



Theorems – Channel Coding, Error Exponent
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Duffy, Li, Médard, IEEE Tran. Inf.  Theory, 19. 
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Proof: To see that such a y exists if R < 1−Hmin, observe
that as R < 1 − Hmin we have that the noise guessing rate
function starts strictly below the non-transmitted guessing rate
function, I N (0) = Hmin < 1 − R = I U (0). As both I N and
I U are continuous, the existence of such a y is guaranteed.

Defining the continuous function f : [0, 1]2 → [0, 1]3 by
f (x, y) = (x, y, min(x, y)), then by the contraction principle,

{(
1
n

log G(Nn ),
1
n

log Un,
1
n

log Dn
)}

satisfies the LDP with rate function

I N,U,D(x, y, z) =
{

I N (x) + I U (y) if z = min(x, y)

+∞ otherwise .

We apply the [68, Th. 3.1] to establish the concentration of
measure conditioned on the rare event that the algorithm termi-
nates within |A|ny guesses. By that theorem, we have that for
any open neighborhood B of (min(y, H ), 1 − R, min(y, H )),

lim
n→∞P

((
log G(Nn)

n
,
log Un

n
,
log Dn

n

)
∈ B

∣∣∣∣
log Dn

n
≤ y

)
=1,

from which the result follows.
If the code-book rate is less than capacity, Theorem 3

recovers what we already knew from Proposition 1: that we
have concentration of measure onto correct decodings. Even if
the code-book rate is beyond capacity, however, it establishes
that, conditioned on the algorithm terminating early, there are
circumstances where we shall have concentration onto correct
decodings. Examples to this effect are presented in the right
hand panel of Fig. 4, where the supremum over all y satisfying
the condition of Theorem 3, y∗, which we call the super-
critical guessing threshold, is marked. For code-book rates that
are greater than capacity, i.e. the left two lines, y∗ < H and
the ML decoding is only likely to be correct if the GRAND
algorithm terminates in a number of queries in the guesswork
order that is below approximately |A|ny∗

.

B. Approximate ML Decoding With GRANDAB
While Proposition 2 identifies the computational complexity

of GRAND and so is directly related to the decoding algo-
rithm, Proposition 1 provides a version of the Channel Coding
Theorem for ML decoding in general. That is, it relates to
the likelihood that an ML decoding is in error, irrespective
of the algorithm used to identify the ML decoding. Its proof
via noise guessing, however, suggests an approximate ML
decoding scheme, GRANDAB, with constrained complexity.

If the code-book rate is within capacity, R < 1 − H ,
the likelihood of erroneous decoding is strictly decaying in n.
Essentially this occurs as the likelihood of identifying a
transmitted noise sequence is dominated by queries to up to,
and including, the Shannon Typical Set, a fact made clear by
I N (H ) = 0. The expected guessing location to the first non-
transmitted element encountered is governed by one minus the
code-book rate, I U (1 − R) = 0. Thus when R < 1 − H ,
H < 1 − R and guessing the true input dominates over
identifying a non-transmitted code-word.

That guessing the noise has a long tail beyond H is a
consequence of large growth in the number of sequences to be
queried when compared to the rate of acquisition of probability
on querying them, leading to the undesirable H1/2 growth
rate for unconstrained noise guessing. For dense code-books,
this guessing tail is clipped with an error at 1 − R, but -
despite that error - capacity is achieved so long as the code is
within capacity R < 1− H . Further contemplation of this fact
suggests the following algorithm: perform the GRAND, but
abandon guessing after |A|n(H+δ) queries, for some δ > 0,
declaring an error. This algorithm does not implement ML
decoding, but it is still capacity achieving.

Proposition 3. (GRANDAB Coding Theorem and Guessing
Complexity). Under the assumptions of Theorems 1 and 2.
If the code-book rate is less than the capacity, R < 1 − H ,
then the GRANDAB error rate is

lim
n→∞

1
n

log P
({

Un ≤ G(Nn)
}

∪
{

1
n

log G(Nn) ≥ H + δ

})

= − min
{

inf
a∈[H,1−R]

{I U (a) + I N (a)}, I N (H + δ)

}
< 0,

so that probability that the ML decoding is not the trans-
mitted code-word decays exponentially in the block length n.
If, in addition, x∗ defined in equation (12) exists then this
simplifies to what we call the GRANDAB error rate

εAB(R) = min
(
ε(R), I N (H + δ)

)
(21)

where ε(R) is the ML decoding error rate in equation (13).
The expected number of guesses until GRANDAB termi-
nates, {Dn

AB}, satisfies

lim
n→∞

1
n

log E(Dn
AB) = min

(
H1/2, 1 − R, H + δ

)
.

For rates above capacity, R > 1 − H , the success probability
is identical to that for ML decoding, given in equation (14).

Proof: By the principle of the largest term,
[3, Lemma 1.2.15] or [69],

lim sup
n→∞

1
n

log P
({

Un ≤G(Nn)
}

∪
{

1
n

log G(Nn)≥ H +δ

})

= max
(

lim sup
n→∞

1
n

log P
(
Un ≤ G(Nn)

)
,

lim sup
n→∞

1
n

log P
(

1
n

log G(Nn) ≥ H + δ

))
,

with a similar equation holding for lim inf. The behavior of
the first term is identified in Proposition 1. The behavior
of the second term is established directly from the LDP in
Theorem 1 on noting that

inf
x≥H+δ

I N (x) = I N (H + δ),

as I N is strictly increasing beyond H . Coupled with the
continuity of I N , we obtain equation (21). The expected
number of guesses until the algorithm completes is determined
in an identical manner to that in Proposition 2.

The interpretation of this result is straight-forward:
GRANDAB results in an error if either the ML decoding
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Fig. 2. Example: A = {0, 1}, block length n = 16 and R = 4/5. Upper panel:
compares exact computation of P(Un = k) (blue line) with the exponential
distribution approximation given in equation (9) (orange circles) for first
100 guesses. Lower panel: the difference between the exact and approximate
values.

The corresponding equality for the cumulative distribution
function can be obtained by first noting that, by the Binomial
theorem,

lim
n→∞

(
1 − |A|n(x−1)

)|A|nR

1 − |A|n(R+x−1)
= 1 if x ∈ [0, 1 − R),

while if x = 1 − R the limit of the numerator in the above
equation is exp(−1). Thus to prove that equation (11) holds
for x ∈ [0, 1 − R], we have

lim
ε↓0

lim
n→∞

1
n

log P
(

1
n

log Un ∈ (x − ε, x + ε)

)

= lim
ε↓0

lim
n→∞

1
n

log
(
P

(
1
n

log Un<x +ε

)
−P

(
1
n

log Un ≤ x −ε

))

= lim
ε↓0

lim
n→∞

1
n

log







1 −
(

1 − '|A|(x+ε)n(
|A|n

)Mn




−


1 −
(

1 − '|A|(x−ε)n(
|A|n

)Mn








= lim
ε↓0

lim
n→∞

1
n

log
(
|A|n(min(R+x+ε−1,0)) − |A|n(R+x−ε−1)

)

= −(1 − R − x),

as R + x − ε − 1 < 0 for x ∈ [0, 1 − R].
The scaling result for the mean of Un follows from the

application of Varadhan’s Theorem [3, Th. 4.3.1], giving

lim
n→∞

1
n

log E(Un) = sup
x∈[0,1−R]

(
x − I U (x)

)
= 1 − R.

Equation (9) provides a highly accurate approximation of
the distribution of Un , that it is essentially exponentially
distributed with rate |A|−n(1−R) giving rise to a mean of
|A|n(1−R). This is illustrated in Fig. 2 for a block length of
n = 16 and a code-book of rate R = 4/5, and becomes
more precise as n increases. We will use this approximation
to make near exact computations of block error probabilities

and complexity for the BSC in Section IV-C. To establish
the general channel coding and complexity results, however,
it is the LDP that is needed. On the scale of large deviations,
Theorem 2 effectively says that, for large n, the first non-
transmitted code-word will be encountered in no more than
order |A|n(1−R) guesses.

Combining Theorems 1 and 2 enables us to provide a
guessing based proof of Channel Coding Theorem. Recalling
that logarithms are taken base |A|, let h denote the Shannon
entropy of a random variable and let I denote mutual informa-
tion. For channels introduced in equations (1) and (2), capacity
is upper bounded by 1 − H as follows:

C ≤ lim sup
n→∞

1
n

sup I (Xn; Y n)≤1− lim
n→∞

h(Nn )

n
= 1 − H,

where we have upper-bounded the entropy rate of the
input, h(Xn), by its maximum, n, and used the fact that the
channel is invertible [i.e. equation (2)], while the entropy rate
of the noise exists, owing to Assumption 1. The proposition
that follows establishes, through the use of a uniform-at-
random code-book and GRAND, that this upper bound is
achieved for all noise processes satisfying Assumption 1. We
define the success rate

s(R) = − lim
n→∞

1
n

log P(Un ≥ G(Nn)),

which is the decay rate in the probability of correct decoding,
and evaluate it in the case where the code rate exceeds
capacity.

Proposition 1 (Channel Coding Theorem With GRAND).
Under Assumptions 1 and 2, with I U defined in equation (10)
and I N in equation (8), we have the following.

1) If the code-book rate is less than the capacity, R < 1−H ,
then

lim
n→∞

1
n

log P(Un ≤G(Nn))=− inf
a∈[H,1−R]

{I U (a)+ I N (a)}<0,

so that the probability that GRAND does not correctly identify
the transmitted code-word decays exponentially in the block
length n. If, in addition, x∗ exists such that

d
dx

I N (x)|x=x∗ = 1, (12)

then the error rate simplifies further to

ε(R) = − lim
n→∞

1
n

log P(Un ≤ G(Nn))

=
{

1 − R − H1/2 if R ∈ (0, 1 − x∗)
I N (1 − R) if R ∈ [1 − x∗, 1 − H ).

(13)

Moreover,

s(R) = lim
n→∞

1
n

log P(Un ≥ G(Nn)) = 0

so that the probability that GRAND does not provide the true
channel does not decay exponentially in n.

2) If, instead, the code-book rate is greater than the capac-
ity, R > 1−H , then the probability of an error is not decaying
exponentially in n,

lim
n→∞

1
n

log P(Un ≤ G(Nn)) = 0.



Decoding with soft information

21

01100010 11100011
Soft
Detection

Duffy, An, Médard, IEEE Trans. Sig. Process., 23. Duffy, Médard, An, IEEE Trans. Commun., 21. Duffy, IEEE ICASSP, 21. 
Solomon, Duffy, Médard, IEEE ICC, 20.
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Because they’re engineered to be so to match decoder expectations
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• For each set of received 
reliabilities, rank order 
from least reliable to 
most.

• Consistency across 
different samples for the 
same reasons empirical 
cumulative distribution 
functions converge
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Inputs: Code-book membership test, yn.
Output: Decoding c

⇤,n.
d 0.
while d = 0 do

z
n  next most likely noise effect

if y
n  z

n is in the code-book then

c
⇤,n  y

n  z
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d 1
return c
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end if

end while
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n) =
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izi = some of rank ordered location of bits to be flipped

• Standard to not think of 
probabilities, but an invertible 
transformation. 

• Reliability is the absolute 
value of the log likelihood 
ratio of the hypotheses that a 
bit is a 1 or a 0
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Linear Model

• Put your statistical modelling hat on
• I.e. it’s a line
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If, rank ordered from least reliable 

then

and sequences rank ordered by logistic weight.

9

wL(0, 1, 0, 1) = 0(1) + 1(2) + 0(3) + 1(4)

= 6

wL(0, 1, 0, 1) =
nX

i=1

izi

= 2 + 4

= 6

wH(z
n) =

nX

i=1

zi

Y
n =

n symbolsz }| {
(Y1, . . . , Yb | Yb+1, . . . , Y2b| {z }

b symbols

| · · · |Yn�b+1, . . . , Yn)

P(Nn = z
n) =

nY

i=1

(1� pi)
Y

i:zi=1

pi

1� pi
/

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

P(Nn = z
n) /

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

|LLRi| ⇡ �i for i = 1, . . . , n

X

i:zi=1

|LLRi| = �

nX

i=1

izi /
nX

i=1

izi = wL(z
n)

9

wL(0, 1, 0, 1) = 0(1) + 1(2) + 0(3) + 1(4)

= 6

wL(0, 1, 0, 1) =
nX

i=1

izi

= 2 + 4

= 6

wH(z
n) =

nX

i=1

zi

Y
n =

n symbolsz }| {
(Y1, . . . , Yb | Yb+1, . . . , Y2b| {z }

b symbols

| · · · |Yn�b+1, . . . , Yn)

P(Nn = z
n) =

nY

i=1

(1� pi)
Y

i:zi=1

pi

1� pi
/

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

P(Nn = z
n) /

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

|LLRi| ⇡ �i for i = 1, . . . , n

X

i:zi=1

|LLRi| = �

nX

i=1

izi /
nX

i=1

izi = wL(z
n)

9

wL(0, 1, 0, 1) = 0(1) + 1(2) + 0(3) + 1(4)

= 6

wL(0, 1, 0, 1) =
nX

i=1

izi

= 2 + 4

= 6

wH(z
n) =

nX

i=1

zi

Y
n =

n symbolsz }| {
(Y1, . . . , Yb | Yb+1, . . . , Y2b| {z }

b symbols

| · · · |Yn�b+1, . . . , Yn)

P(Nn = z
n) =

nY

i=1

(1� pi)
Y

i:zi=1

pi

1� pi
/

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

P(Nn = z
n) /

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

|LLRi| ⇡ �i for i = 1, . . . , n

X

i:zi=1

|LLRi| = �

nX

i=1

izi /
nX

i=1

izi = wL(z
n)

9

wL(0, 1, 0, 1) = 0(1) + 1(2) + 0(3) + 1(4)

= 6

wL(0, 1, 0, 1) =
nX

i=1

izi

= 2 + 4

= 6

wH(z
n) =

nX

i=1

zi

Y
n =

n symbolsz }| {
(Y1, . . . , Yb | Yb+1, . . . , Y2b| {z }

b symbols

| · · · |Yn�b+1, . . . , Yn)

P(Nn = z
n) =

nY

i=1

(1� pi)
Y

i:zi=1

pi

1� pi
/

Y

i:zi=1

pi

1� pi
= e

�
P

i:zi=1 |LLRi|
.

|LLRi| ⇡ �i for i = 1, . . . , n

X

i:zi=1

|LLRi| = �

nX

i=1

izi /
nX

i=1

izi = wL(z
n)



Ordered Reliability Bits GRAND

28

ORBGRAND

2 4 6 8 10 12

10

20

30

40

50

60

70

80

90

100

Q
ue

ry
 n

um
be

r

Once bits are rank ordered, 
ORBGRAND uses a fixed guessing 
order

Decreasing likelihood of noise effects 
= increasing Logistic Weight (sum of rank-
ordered position of bits flipped)

Generating patterns for a given logistic 
weight corresponds to solving an integer 
partition problem: sum of distinct integers 
(bit flip positions), each no greater than n, 
that add to given value.
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Duffy, An, Medard, IEEE Trans. Signal Proc., 22. Duffy, IEEE ICASSP, 21.
Liu,  Wei, Chen, Zhan, IEEE Trans. Info.  Theory, 23.
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Logistic weight:
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Duffy, An, Medard, IEEE Trans. Signal Proc., 22.
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Other circuits designs, e.g. :  Abbas, Tonnellier, Ercan,  Jalaleddine, Gross, IEEE Trans. VLSI, 22. Condo, IEEE Trans Circuits Syst, 21. 
Condo, Bioglio, Land, IEEE Globecom, 21



ORBGRAND code performance

31Coffey, Goodman, IEEE Trans. Inf.  Theory, 90. Koopman, https://users.ece.cmu.edu/~koopman/crc/.  Cohen, D’Oliverira, 
Duffy, Woo, Médard, IEEE Comun. Lett., 23. Arikan, arXiv, 19.

Block Error Rate (BLER) –
fraction of blocks decoded 
incorrectly vs. Signal-to-Noise 
Ratio (SNR) 

Binary phase shift keying 
modulation and additive white 
Gaussian noise
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ORBGRAND code performance
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Arikan, IEEE Trans. Inf.  Theory, 09.

Block Error Rate (BLER) –
proportion of blocks decoded 
incorrectly vs. Signal-to-Noise 
Ratio (SNR)

Most celebrated recent code 
construction almost uniquely 
underperforms
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ORBGRAND decoding complexity
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Duffy, An, Medard, IEEE Trans. Signal Proc., 22. 

Guesswork vs. Signal-to-Noise 
Ratio (SNR)

A measure of decoding 
complexity
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GRAND
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granddecoder.mit.edu

• Decodes any moderate redundancy code, of any length, with max accuracy.
• Hard and soft detection variants have been developed.
• Inherently highly parallelizable, resulting in low latency.
• In silicon prototypes establish energy efficiency.
• Uniquely provides an accurate estimate of the likelihood of correct decoding.
• Only universal decoder that decode in channels with correlated noise.
• Essentially all long, low-rate codes are composed of smaller components and 

GRAND is being developed for use with them.
• Offers a single, energy efficient, precise decoder for a broad swathe of 

codes with a small footprint.
• Much more to come, in practice and in theory (with epsilontics)… 



NU Math (will be) hiring
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Quantum Information Science
Tenure Track / Tenure Open Rank Professorship

Details will be available soon at:
https://hr.northeastern.edu/careers/job-listings/

https://hr.northeastern.edu/careers/job-listings/

