Institute for the Wireless Internet of Things

at Northeastern University

Mathematical Picture Language Seminar An introduction to Forward Error Correction and Guessing Random Additive Noise Decoding

Ken Duffy

Professor, Department of Electrical and Computer Engineering

Professor, Department of Mathematics

Faculty Member, Institute for the Wireless Internet of Things

Northeastern University

k.duffy@northeastern.edu

epic.sites.northeastern.edu

A trip back in time

Dublin 2005

Institute for the Wireless Internet of Things

at Northeastern

J.T. LEWIS MEMORIAL CONFERENCE

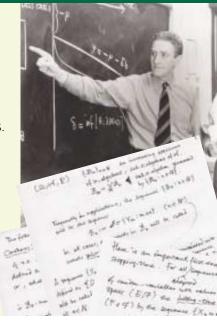
JUNE 14TH -17TH 2005

Dublin Institute of Technology, Dublin, Ireland.

The conference will focus on three broad areas of applied mathematics in which John Lewis made major contributions. These are:

- (i) quantum mechanics;
- (ii) statistical mechanics;
- (iii) communications theory.

The conference will consist of plenary talks and parallel sessions in the above topics. The emphasis will be squarely on modern developments.



Plenary Speakers

JENNIFER CHAYES DEREK MCAULEY

DAVID EVANS CATHLEEN MORAWETZ

GEORGE W. FORD NEIL O'CONNELL

ARTHUR JAFFE RAYMOND RUSSELL

FRANK KELLY ANDRE VERBEURE

CHRISTOPHER KING MARC YOR

ORGANISING COMMITTEE:

Tony Dorlas dorlas@stp.dias.ie
Ken Duffy ken.duffy@nuim.ie
Brendan Goldsmith brendan.qoldsmith@dit.ie

CONFERENCE ADMINISTRATOR:

Marguerite Carter, CNRI, Focas Institute, DIT, Kevin Street, Dublin 8, Ireland

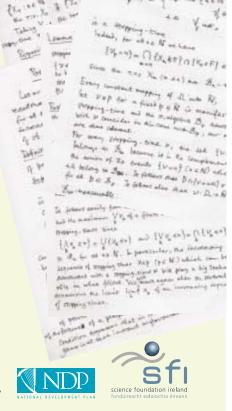
T: 00353 1 4027903

F: 00353 1 4027901

E: cnri@dit.ie

W: http://www.cnri.dit.ie/lewis_2005.html

Venue: DIT, Aungier Street, Dublin 2, Ireland.



Supported by

Dublin 2005

Acknowledgements

Collaborators and Acknowledgements

Muriel Medard MIT

- Wei An
- Joe Griffin
- Basak Ozaydin
- Amit Solomon
- Kathleen Yang

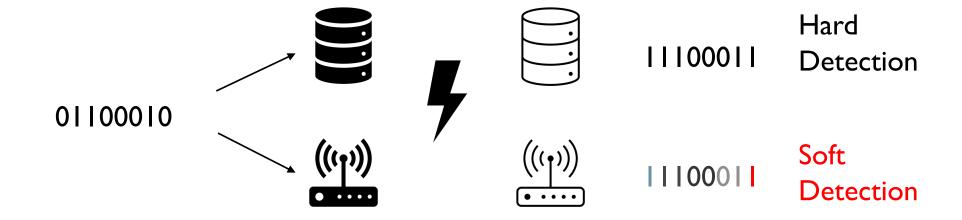
- Kishori Konwar
- Jiange Li
- Hadi Sarieddeen
- Peihong Yuan
- Kevin Galligan
- Moritz Grundei

Rabia Yazicigil Boston University

- Vaibhav Bansal
- Qijun Liu
- Jonathan Ngo
- Arslan Riaz
- Alperen Yasar
- Furkan Ercan

Context

Error correction coding



Error correction

Shannon (1948):

- Error detection and correction is possible only if a subset of strings are code-words.
- Out of 2^n possible strings, 2^k are code-words, giving a rate of R=k/n.
- The highest rate a code-book can be depends on a statistic of the corruption that
- My intentions in this talk?
 Entirely dishonorable and epsilontics will be left to the listener!

Joe Doob

...it is not always clear that the author's mathematical intentions are honorable. (MR0026286)

Following tradition, the "detailed epsilontics" of the proof of the fundamental theorem are omitted. (MR0055621)

Error correction coding

Shannon (1948):

- Error detection and correction is possible only if a subset of strings are code-words.
- Out of 2^n possible strings, 2^k are code-words, giving a rate of R=k/n.
- The highest rate a code-book can be depends on a statistic of the corruption that we now call the Shannon Entropy.
- Best correction performance bang for buck comes at long code-lengths.
- In practice, for communication and storage of digital data, almost all error correction codes are linear in the binary field of two elements, F_2

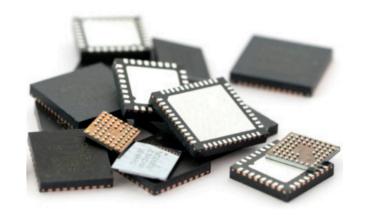
$$a^k G = c^n$$
.

• Linear codes = perfect grammar.

Berlekamp, McEliece & Van Tilborg (1978): optimal hard detection decoding of linear codes is NP-complete.

Complexity Limits of Forward Error Correction

Practical consequence is the current paradigm: co-design of restricted code (i.e. grammar) and decoder pairs.

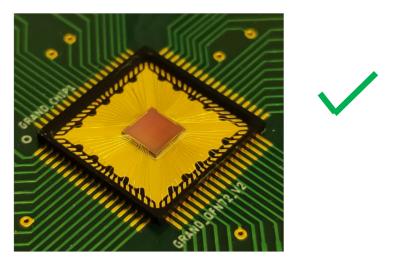


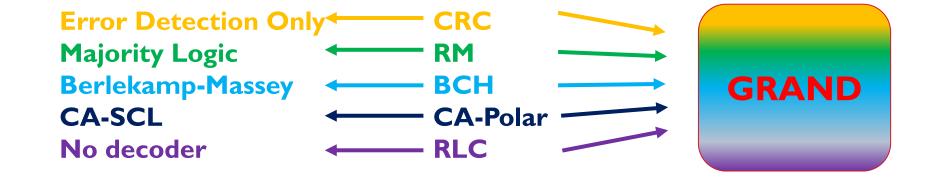
Error Detection Only Cyclic Redundancy Check
Majority Logic RM
Berlekamp-Massey BCH
CA-SCL CA-Polar
No decoder Random Linear Code

- Distinct chip required to decode each code.
- Requires standardization.

LDPC – 1960s CA-Polar – 2010s

Guessing Random Additive Noise Decoding





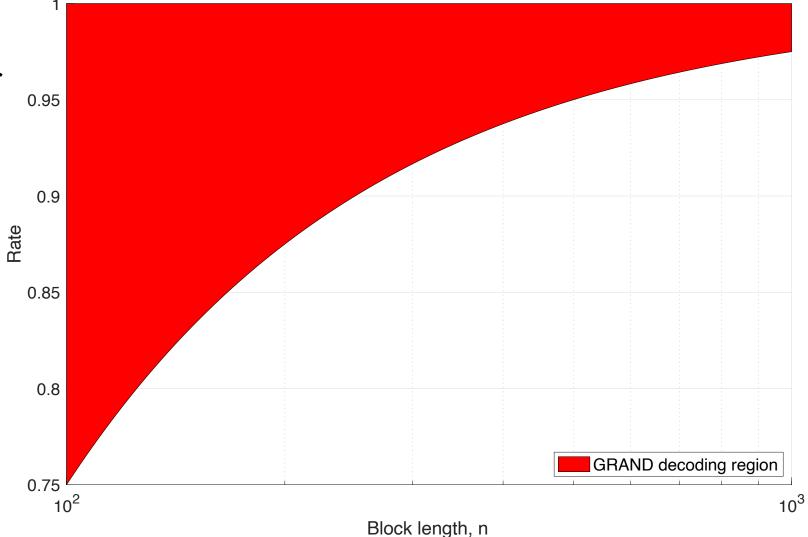
Guessing Random Additive Noise Decoding

Institute for the Wireless Internet of Things

at Northeastern

Practical decoding region

 A function of the redundancy, n-k, rather than k/n.



Idea behind GRAND

Channel output is input plus noise effect

$$Y^n = X^n \oplus N^n$$

$$Y^n = X^n \oplus X^n$$

$$Y^n = X^n \oplus X^n$$

Standard decoder: identify X^n using structure of code-book **GRAND**: identify N^n using structure of the noise

```
Inputs: Code-book membership test, Y^n.
Output: Decoding c^{*,n}.
y^n \leftarrow \operatorname{demod}(Y^n).
d \leftarrow 0.
while d = 0 do
   z^n \leftarrow next most likely noise effect
   if y^n \ominus z^n is in the code-book then
      c^{*,n} \leftarrow y^n \ominus z^n
      d \leftarrow 1
      return c^{*,n}.
   end if
end while
```

- **Universal** decoders suitable for moderate redundancy codes.
- Complexity a function of noise and redundancy, not code-rate.
- Highly parallelizable.

GRAND is max. likelihood if channel match

Channel output is input plus independent noise:

$$Y^n = X^n \oplus N^n$$

Max. likelihood decoding:

$$c^{n,*} \in \operatorname{arg\,max} \left\{ p(y^n | c^{n,i}) : c^{n,i} \in \mathcal{C}_n \right\}$$

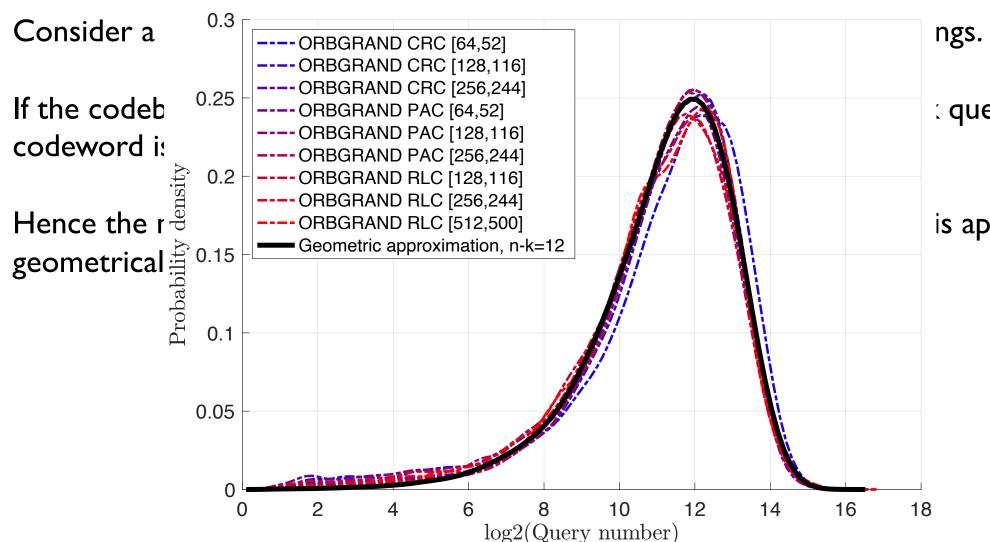
$$= \operatorname{arg\,max} \left\{ P(N^n = y^n \ominus c^{n,i}) : c^{n,i} \in \mathcal{C}_n \right\}$$

Max. likelihood decoding by sequential guessing

$$P(N^n = y^n \ominus c^{n,*}) \ge P(N^n = y^n \ominus c^{n,i})$$
 for all $c^{n,i} \in C_n$

- As maximum likelihood decoding is optimal for uniform sources, automatically get existing capacity results.
- New way of thinking enables new derivation of old results & new ones.

Number of queries to an error



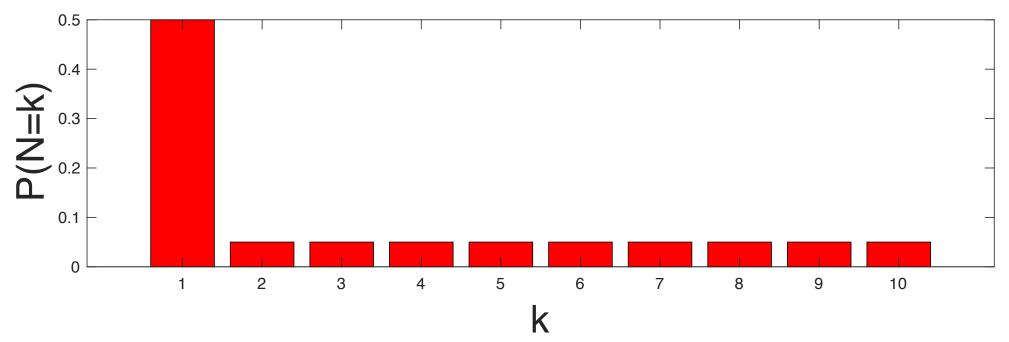
query identifies a

is approximately

Guesswork

• Given you know the distribution from which an object is selected, Guesswork is the number of yes/no queries until a randomly selected object is identified:

$$G(z^{n,i}) \le G(z^{n,j})$$
 iff $P(N^n = z^{n,i}) \ge P(N^n = z^{n,j})$



Number of queries to a correct decoding

decoding:

Moments of # queries to correct decoding:
$$\Lambda(\alpha) = \lim_{n \to \infty} \frac{1}{n} \log E\left(G(N^n)^{\alpha}\right) = \begin{cases} \alpha H_{1/(1+\alpha)} & \text{if } \alpha > -1 \\ -H_{\infty} & \text{if } \alpha \leq -1 \end{cases}$$

Probabilities of # queries to correct decoding:

$$P(G(N^n) \approx 2^{ng}) \approx \exp\left(-n\sup_{\alpha}(\alpha g - \Lambda(\alpha))\right)$$

Probabilities of # queries to incorrect decoding a rate R codebook:

$$P(U^n \approx 2^{nu}) pprox \begin{cases} \exp(-n(1-R-u)) & \text{if } u \in [0, 1-R] \\ 0 & \text{otherwise} \end{cases}$$

Likelihood of error:

$$P(U^n \leq G(N^n))$$

Complexity:

 $\min(U^n, G(N^n))$

Arikan, IEEE Trans. Inf. Theory, 96. Malone & Sullivan, IEEE Trans. Inf. Theory, 04. Pfister & Sullivan, IEEE Trans. Inf. Theory, 04.

Theorems - Channel Coding, Error Exponent

Institute for the Wireless Internet of Things

at Northeastern

Proposition 1 (Channel Coding Theorem With GRAND). Under Assumptions 1 and 2, with I^U defined in equation (10) and I^N in equation (8), we have the following.

1) If the code-book rate is less than the capacity, R < 1-H, then

$$\lim_{n\to\infty} \frac{1}{n} \log P(U^n \le G(N^n)) = -\inf_{a\in[H,1-R]} \{I^U(a) + I^N(a)\} < 0,$$

so that the probability that GRAND does not correctly identify the transmitted code-word decays exponentially in the block length n. If, in addition, x^* exists such that

$$\frac{d}{dx}I^{N}(x)|_{x=x^{*}}=1,$$
(12)

then the error rate simplifies further to

$$\epsilon(R) = -\lim_{n \to \infty} \frac{1}{n} \log P(U^n \le G(N^n))$$

$$= \begin{cases} 1 - R - H_{1/2} & \text{if } R \in (0, 1 - x^*) \\ I^N(1 - R) & \text{if } R \in [1 - x^*, 1 - H). \end{cases}$$
(13)

Moreover,

$$s(R) = \lim_{n \to \infty} \frac{1}{n} \log P(U^n \ge G(N^n)) = 0$$

so that the probability that GRAND does not provide the true channel does not decay exponentially in n.

Proposition 3. (GRANDAB Coding Theorem and Guessing Complexity). Under the assumptions of Theorems 1 and 2. If the code-book rate is less than the capacity, R < 1 - H, then the GRANDAB error rate is

$$\lim_{n \to \infty} \frac{1}{n} \log P \left(\left\{ U^n \le G(N^n) \right\} \cup \left\{ \frac{1}{n} \log G(N^n) \ge H + \delta \right\} \right)$$

$$= -\min \left\{ \inf_{a \in [H, 1-R]} \{ I^U(a) + I^N(a) \}, I^N(H + \delta) \right\} < 0,$$

so that probability that the ML decoding is not the transmitted code-word decays exponentially in the block length n. If, in addition, x^* defined in equation (12) exists then this simplifies to what we call the GRANDAB error rate

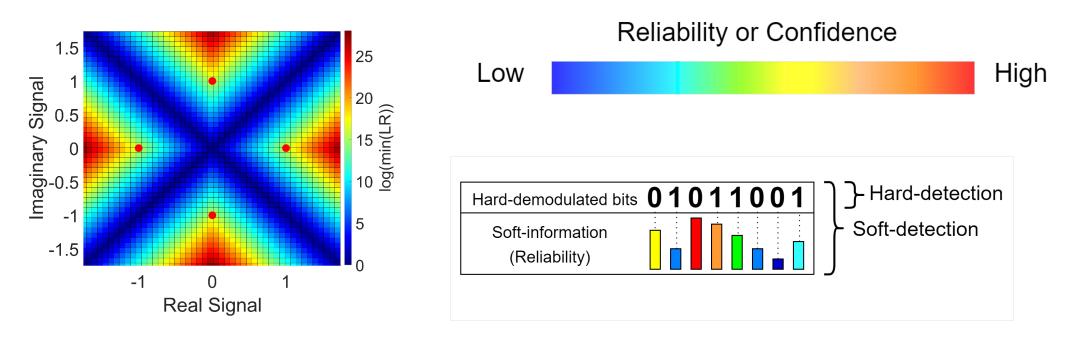
$$\epsilon^{AB}(R) = \min\left(\epsilon(R), I^N(H+\delta)\right)$$
 (21)

where $\epsilon(R)$ is the ML decoding error rate in equation (13). The expected number of guesses until GRANDAB terminates, $\{D_{AB}^n\}$, satisfies

$$\lim_{n\to\infty}\frac{1}{n}\log E(D_{AB}^n)=\min\left(H_{1/2},1-R,H+\delta\right).$$

For rates above capacity, R > 1 - H, the success probability is identical to that for ML decoding, given in equation (14).

Decoding with soft information



Duffy, An, Médard, IEEE Trans. Sig. Process., 23. Duffy, Médard, An, IEEE Trans. Commun., 21. Duffy, IEEE ICASSP, 21. Solomon, Duffy, Médard, IEEE ICC, 20.

Bits are flipped independently?

Because they're engineered to be so to match decoder expectations

Collect data as rows:

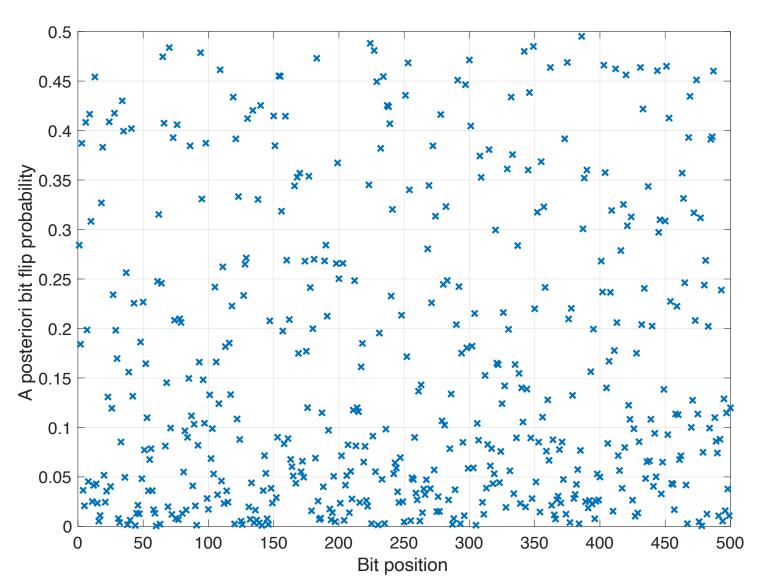
$$\begin{pmatrix}
c_{1,1} & c_{1,2} & c_{1,3} & \cdots & c_{1,n-1} & c_{1,n} \\
c_{2,1} & c_{2,2} & c_{2,3} & \cdots & c_{2,n-1} & c_{2,n} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
\hline
c_{n,1} & c_{n,2} & c_{n,3} & \cdots & c_{n,n-1} & c_{n,n}
\end{pmatrix}$$

Transmit as columns:

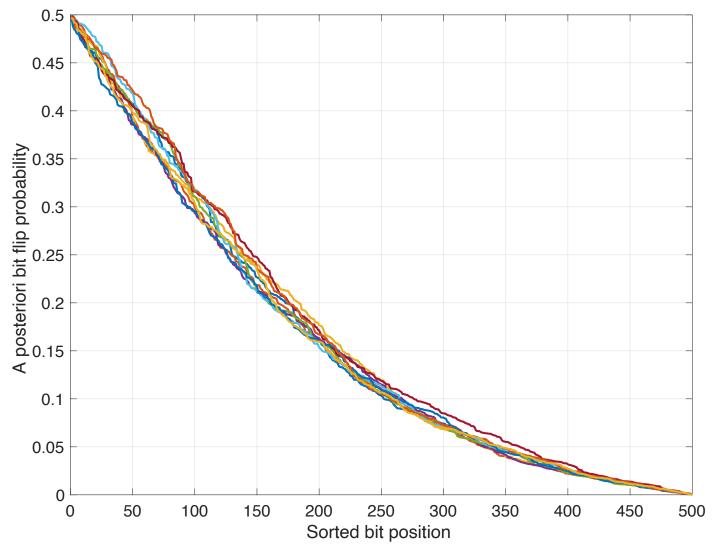
A posteriori bit flip probabilities

Standard interleaved channel model:

Additive White Gaussian Noise

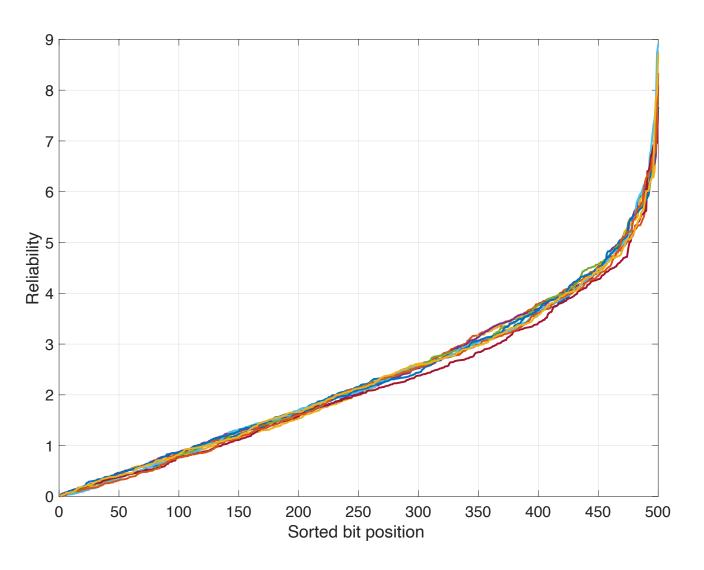


- For each set of received reliabilities, rank order from least reliable to most.
- Consistency across different samples for the same reasons empirical cumulative distribution functions converge

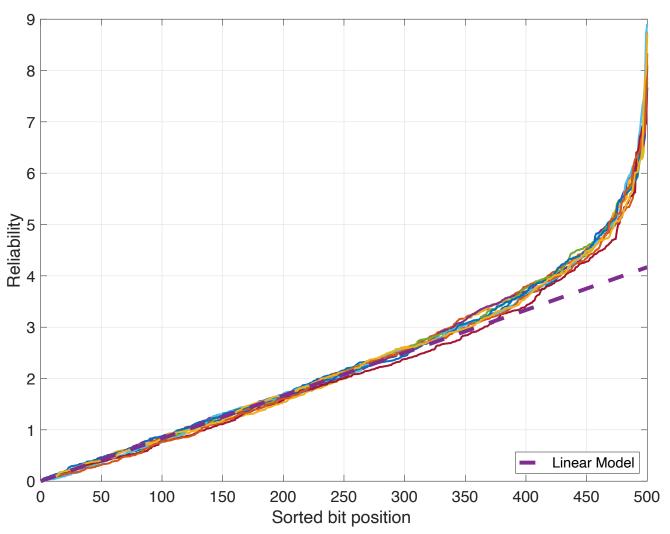


- Standard to not think of probabilities, but an invertible transformation.
- Reliability is the absolute value of the log likelihood ratio of the hypotheses that a bit is a 1 or a 0

$$|LLR| = \log\left(\frac{1-p}{p}\right)$$



- Put your statistical modelling hat on
- I.e. it's a line



$$\mathbb{P}(N^n = z^n) = \prod_{i=1}^n (1 - p_i) \prod_{i:z_i = 1} \frac{p_i}{1 - p_i}$$

$$\mathbb{P}(N^n = z^n) \propto \prod_{i:z_i=1} \frac{p_i}{1 - p_i} = e^{-\sum_{i:z_i=1} |\text{LLR}_i|}$$

If, rank ordered from least reliable

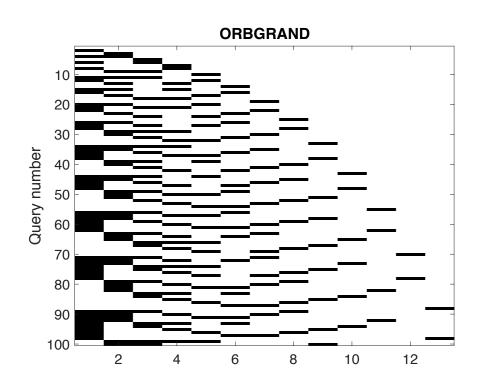
$$|LLR_i| \approx \beta i \text{ for } i = 1, \dots, n$$

then

$$\sum_{i:z_i=1} |\mathrm{LLR}_i| = \beta \sum_{i=1}^n i z_i \propto \sum_{i=1}^n i z_i = w_{\mathrm{L}}(z^n)$$

and sequences rank ordered by logistic weight.

Ordered Reliability Bits GRAND



Once bits are rank ordered,

ORBGRAND uses a fixed guessing order

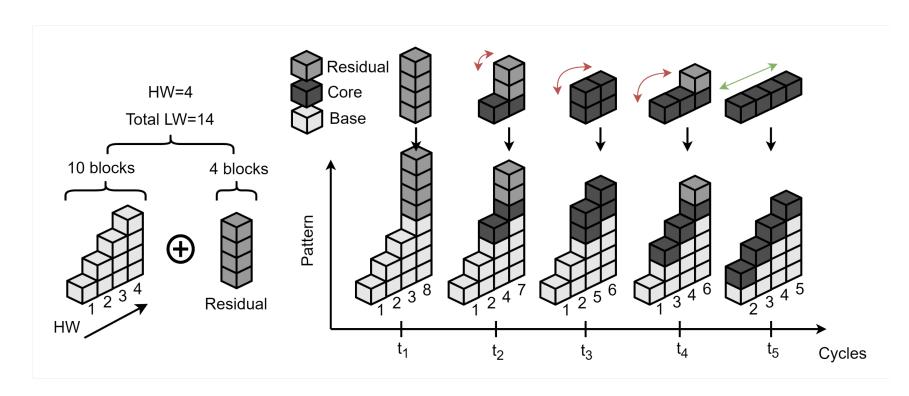
Decreasing likelihood of noise effects
= increasing Logistic Weight (sum of rankordered position of bits flipped)

$$w_{\rm L}(z^n) = \sum_{i=1}^n iz_i$$

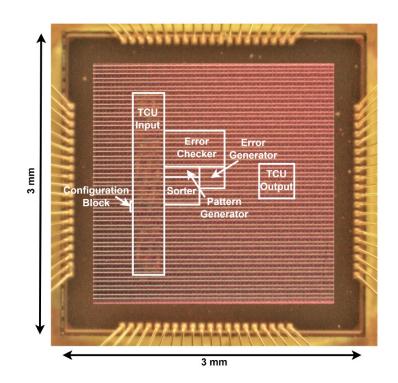
Generating patterns for a given logistic weight corresponds to solving an integer partition problem: sum of distinct integers (bit flip positions), each no greater than n, that add to given value.

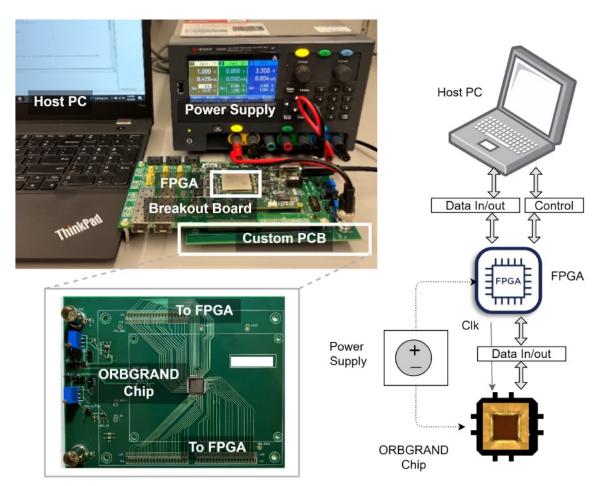
Duffy, An, Medard, IEEE Trans. Signal Proc., 22. Duffy, IEEE ICASSP, 21. Liu, Wei, Chen, Zhan, IEEE Trans. Info. Theory, 23.

Logistic weight:
$$w_{\rm L}(z^n)=\sum_{i=1}^n iz_i$$
 Hamming weight: $w_{\rm H}(z^n)=\sum_{i=1}^n z_i$



ORBGRAND in hardware



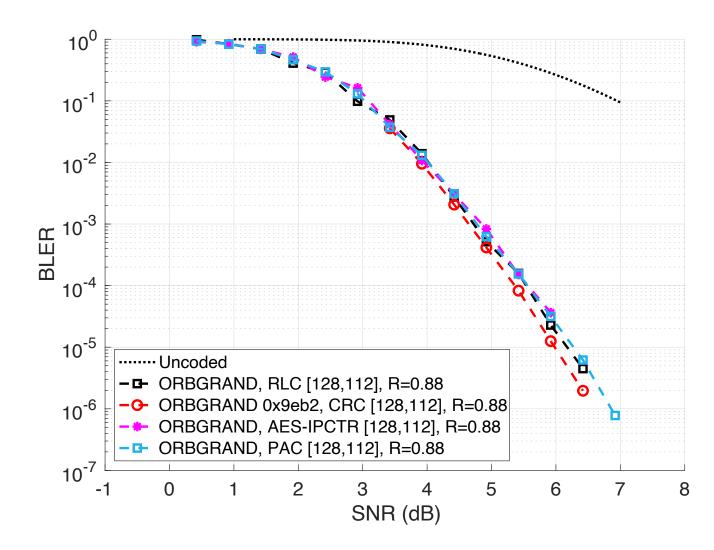


Riaz, Yasar, Ercan, An, Ngo, Galligan, Médard, Duffy, Yazicigil, IEEE ISSCC, 23.

ORBGRAND code performance

Block Error Rate (BLER) – fraction of blocks decoded incorrectly vs. Signal-to-Noise Ratio (SNR)

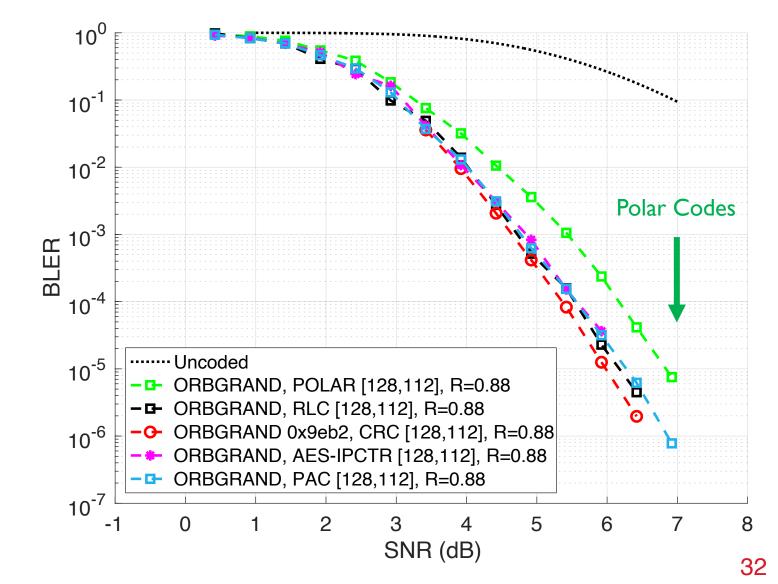
Binary phase shift keying modulation and additive white Gaussian noise



ORBGRAND code performance

Block Error Rate (BLER) – proportion of blocks decoded incorrectly vs. Signal-to-Noise Ratio (SNR)

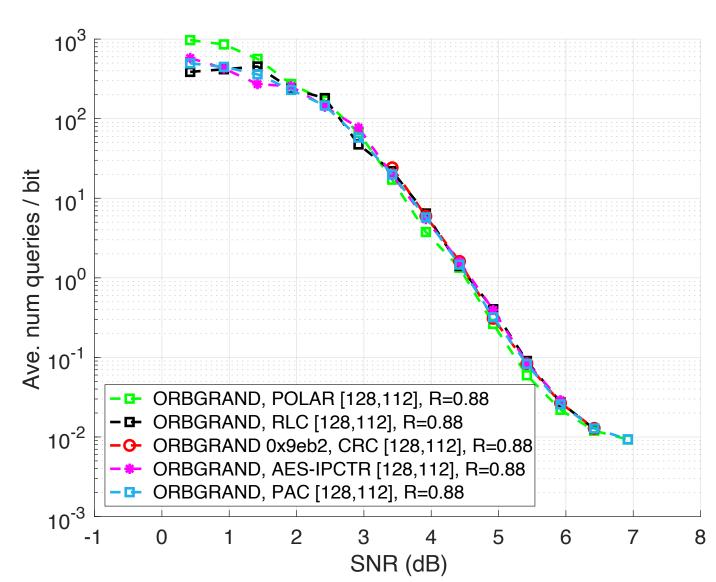
Most celebrated recent code construction almost uniquely underperforms



ORBGRAND decoding complexity

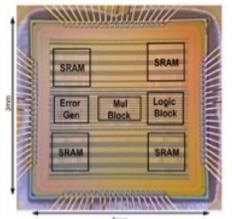
Guesswork vs. Signal-to-Noise Ratio (SNR)

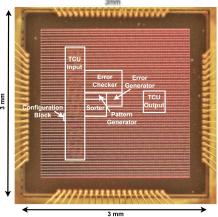
A measure of decoding complexity



- Decodes any moderate redundancy code, of any length, with max accuracy.
- Hard and soft detection variants have been developed.
- Inherently highly parallelizable, resulting in low latency.
- In silicon prototypes establish energy efficiency.
- Uniquely provides an accurate estimate of the likelihood of correct decoding.
- Only universal decoder that decode in channels with correlated noise.
- Essentially all long, low-rate codes are composed of smaller components and GRAND is being developed for use with them.
- Offers a single, energy efficient, precise decoder for a broad swathe of codes with a small footprint.
- Much more to come, in practice and in theory (with epsilontics)...

granddecoder.mit.edu





NU Math (will be) hiring

Quantum Information Science

Tenure Track / Tenure Open Rank Professorship

Details will be available soon at:

https://hr.northeastern.edu/careers/job-listings/