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implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies
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where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 
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Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.
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Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396–402 | www.nature.com/natmachintell 399

ARTICLESNATURE MACHINE INTELLIGENCE

implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD2
H

!! !! ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s

∂θAðωjθÞ

!!!!!

!!!!!≤
ffiffiffiffiffiffi
Iθθ

p
ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 

1 2

3 4

1

2

3

4
O

OO

O

O
H

H

H H

H H

α-ketoglutaric acid

H

H

H
O

N H

H

H

H

2-Aminophenol

H

H

H

H

N

OH

Acetaldehyde-oxime mixture

H

H

H O

H

O

1,4-Benzoquinone

a b

M
ole

cu
le 
i

Molecule j

Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.

Statistics

Inference

Q(zi):〈zi∣
N

Uθ(t )

FFT

Time

Frequency

Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396–402 | www.nature.com/natmachintell 399



ARTICLESNATURE MACHINE INTELLIGENCE

implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD2
H

!! !! ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s

∂θAðωjθÞ

!!!!!

!!!!!≤
ffiffiffiffiffiffi
Iθθ

p
ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 

1 2

3 4

1

2

3

4
O

OO

O

O
H

H

H H

H H

α-ketoglutaric acid

H

H

H
O

N H

H

H

H

2-Aminophenol

H

H

H

H

N

OH

Acetaldehyde-oxime mixture

H

H

H O

H

O

1,4-Benzoquinone

a b

M
ole

cu
le 
i

Molecule j

Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.

Statistics

Inference

Q(zi):〈zi∣
N

Uθ(t )

FFT

Time

Frequency

Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396–402 | www.nature.com/natmachintell 399

ARTICLESNATURE MACHINE INTELLIGENCE

implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD2
H

!! !! ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s

∂θAðωjθÞ

!!!!!

!!!!!≤
ffiffiffiffiffiffi
Iθθ

p
ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 

1 2

3 4

1

2

3

4
O

OO

O

O
H

H

H H

H H

α-ketoglutaric acid

H

H

H
O

N H

H

H

H

2-Aminophenol

H

H

H

H

N

OH

Acetaldehyde-oxime mixture

H

H

H O

H

O

1,4-Benzoquinone

a b

M
ole

cu
le 
i

Molecule j

Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.

Statistics

Inference

Q(zi):〈zi∣
N

Uθ(t )

FFT

Time

Frequency

Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396–402 | www.nature.com/natmachintell 399

Noisy 
spin dynamics

Inference

Simulation can be useful Simulation can be hard

Simulate noisy spin systems with noisy spin systems

NMR sample Quantum hardware



ARTICLESNATURE MACHINE INTELLIGENCE

implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD2
H

!! !! ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s

∂θAðωjθÞ

!!!!!

!!!!!≤
ffiffiffiffiffiffi
Iθθ

p
ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 

1 2

3 4

1

2

3

4
O

OO

O

O
H

H

H H

H H

α-ketoglutaric acid

H

H

H
O

N H

H

H

H

2-Aminophenol

H

H

H

H

N

OH

Acetaldehyde-oxime mixture

H

H

H O

H

O

1,4-Benzoquinone

a b

M
ole

cu
le 
i

Molecule j

Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.

Statistics

Inference

Q(zi):〈zi∣
N

Uθ(t )

FFT

Time

Frequency

Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396–402 | www.nature.com/natmachintell 399

ARTICLESNATURE MACHINE INTELLIGENCE

implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD2
H

!! !! ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s

∂θAðωjθÞ

!!!!!

!!!!!≤
ffiffiffiffiffiffi
Iθθ

p
ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 

1 2

3 4

1

2

3

4
O

OO

O

O
H

H

H H

H H

α-ketoglutaric acid

H

H

H
O

N H

H

H

H

2-Aminophenol

H

H

H

H

N

OH

Acetaldehyde-oxime mixture

H

H

H O

H

O

1,4-Benzoquinone

a b

M
ole

cu
le 
i

Molecule j

Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.

Statistics

Inference

Q(zi):〈zi∣
N

Uθ(t )

FFT

Time

Frequency

Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396–402 | www.nature.com/natmachintell 399

Spin dynamics

Inference

ˆ̃
H

(0,0)
f,eff = !0,S

NSX

i=1

h
z

Si
Ŝ
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Î
z

i
Î
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Ĥ =
X

i

(2⇡hi) Ŝ
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Ĥ (t) = Ĥf (t) +
N�1X

n=0

rect

✓
t� tn

⌧n

◆
Ĥ
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1. Dynamics is hard 
(protein NOESY, solid-state NMR) 

2. Ensemble averaging 
(ESR/EPR, solid-state NMR)



Computing the spectrum
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Ŝ
z

i
Ŝ
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Ŝ
+
i
Ŝ
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Ŝ
y

tot

⌘

+ !RF,I

⇣
cos

�
�
I

RF
�
Î
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tot|mj (t)i

|mj (t)i = Û (t, 0) |mji
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Î
�
j
+ Î
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Use importance sampling to reduce cost

Sels - Nature Machine Intelligence (2020) 



Experimental demonstration
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Î
z

i
Î
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Î
+
i
Î
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Ŝ1 + Ŝ2 + Ŝ3
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Ensemble averaging with discrete ancillas



Solid state NMR
Pharma-relevant proteins, Polymers, Industrial catalysts, Battery materials

(1) long-range dynamics is challenging 
to classically simulate

(2) need to average over 
103-104 angles

Can more naturally encode dynamics on  
quantum computer/simulator

Can do in a single pass  
using 10-15 ancilla qubits

Simulation often necessary to infer chemical structure

Quantum advantages:

Classical challenges:

dij /
1

r3ij

�
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�

1

040901-9 S. E. Ashbrook and P. Hodgkinson J. Chem. Phys. 149, 040901 (2018)

can be obtained readily with standard techniques, while differ-
ent experiments can be used to measure dynamics in slow, fast,
or intermediate time scales. In many problems of interest, e.g.,
probing H sites involved in hydrogen bonding or the dynamics
of included solvent, isotopic substitution with 2H is straight-
forward and relatively inexpensive. Particularly when allied
with MAS, 2H NMR can be used to probe complex behav-
ior, such as water motion and H exchange in pharmaceutical
hydrates.76 Isotopic enrichment is not always feasible, and so
it is useful to be able to obtain information on dynamics via
“dilute” spins, such as 13C. (Although 1H NMR relaxation
and times and linewidths can provide valuable information on
overall dynamics, the “spin diffusion” due to the strong dipolar
interactions between 1H spins makes it difficult to localise the
molecular origins of the results observed.) Figure 6 illustrates
two applications of 13C NMR for characterising dynamics.
Figure 6(b) plots the temperature dependence of the 13C T1
relaxation times for protonated carbons on the furan rings of
the drug furosemide (FS) in a co-crystal form with isonicoti-
namide. The relaxation is largely driven by dipolar interactions
to the bonded 1H nuclei, and so fitting the “T1 minimum”
curves provides the thermal activation parameters for the re-
orientation of the furan rings. The activation parameters of
the two distinct furan rings in the crystal asymmetric cell are

indistinguishable and are both consistent with a small ampli-
tude libration-type motion. This contrasts with the starting
model provided by X-ray diffraction, Fig. 6(a), in which one
furan ring is modeled in terms of a large amplitude ⇠180�

disorder, but the other is not. Analysis shows that the X-ray
diffraction data cannot readily distinguish between large and
small amplitude disorder, i.e., the NMR data is required to
show that the two rings have essentially the same dynamics.
At the other end of the frequency spectrum, Figs. 6(c) and 6(d)
illustrate the use of 13C NMR to probe slow re-orientational
jumps in a polymeric system. The “CODEX” experiment is
sensitive to re-orientation of the 13C CSA anisotropy tensor,
and the simulated curves are consistent with an effective re-
orientation angle of 103� predicted on the basis of defects
travelling along the polymer chain.

In terms of future perspectives, the progress in obtaining
high-resolution spectra from biomolecular solids illustrated
above in Fig. 1 will facilitate the study of dynamics in proteins
and other biopolymers. This will be particularly advantageous
for probing dynamics via relaxation times since the relaxation
in the solid state is not complicated with relaxation due to
overall molecular motion, as is the case in solution. A draw-
back of using relaxation times to probe dynamics is that it is
generally difficult to infer the type of motional process from

FIG. 6. (a) Asymmetric unit of a furosemide (FS)-isonicotinamide (INA) co-crystal, with the carbon labeling of the FS furan rings shown. The ring on FS2
was modeled as disordered over two positions (alternate position distinguished with ’). (b) Temperature dependence of the 13C T1 relaxation times for the
furan carbon atoms, together with fits for a simple motional model. Adapted from data published in Ref. 74. (c) Monomer unit and schematic representation
of the helical main chain of poly(4-methyl-1-pentene), P4M1P, illustrating the helical jump angle. The ellipsoid represents a CSA tensor, whose re-orientation
is monitored by the CODEX experiment. (d) Experimental CODEX results (symbols) for the C1 carbon of P4M1P and calculated (lines) for different helical
jump angles. From Reichert and Krushelnitsky, Modern Methods in Solid-State NMR: A Practitioner’s Guide. Copyright 2018 The Royal Society of Chemistry.
Reproduced with permission from The Royal Society of Chemistry.
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can be obtained readily with standard techniques, while differ-

ent experim
ents can be used tom

easure dynam
ics in slow, fast,

or interm
ediate tim

e scales. In m
any problem

s of interest, e.g.,

probing H
sites involved in hydrogen bonding or the dynam

ics

of included
solvent, isotopic

substitution
with 2H

is straight-

forward
and

relatively
inexpensive. Particularly

when
allied

with
M

AS, 2H
NM

R
can

be
used

to
probe

com
plex

behav-

ior, such
as water m

otion
and

H
exchange

in
pharm

aceutical

hydrates. 76
Isotopic enrichm

ent is not always feasible, and
so

it is useful to
be

able
to

obtain
inform

ation
on

dynam
ics via

“dilute”
spins, such

as 13C. (Although
1H

NM
R

relaxation

and tim
es and linewidths can provide valuable inform

ation on

overall dynam
ics, the “spin diffusion” due to the strong dipolar

interactions between 1H
spins m

akes it difficult to localise the

m
olecular origins of the results observed.) Figure 6

illustrates

two
applications

of 13C
NM

R
for characterising

dynam
ics.

Figure
6(b) plots the

tem
perature

dependence
of the 13C

T
1

relaxation
tim

es for protonated
carbons on

the
furan

rings of

the drug
furosem

ide (FS) in
a co-crystal form

with
isonicoti-

nam
ide. The relaxation is largely driven by dipolar interactions

to
the

bonded
1H

nuclei, and
so

fitting
the

“
T

1 m
inim

um
”

curves provides the
therm

al activation
param

eters for the
re-

orientation
of the

furan
rings. The

activation
param

eters
of

the two
distinct furan

rings in
the crystal asym

m
etric cell are

indistinguishable and
are both

consistent with
a sm

all am
pli-

tude
libration-type

m
otion. This

contrasts
with

the
starting

m
odel provided

by
X-ray

diffraction, Fig. 6(a), in
which

one

furan
ring

is
m

odeled
in

term
s

of a
large

am
plitude ⇠180 �

disorder, but the
other is not. Analysis shows that the

X-ray

diffraction
data

cannot readily
distinguish

between
large

and

sm
all am

plitude
disorder, i.e., the

NM
R

data
is

required
to

show
that the

two
rings have

essentially
the

sam
e

dynam
ics.

At the other end of the frequency spectrum
, Figs. 6(c) and 6(d)

illustrate
the

use
of 13C

NM
R

to
probe

slow
re-orientational

jum
ps in

a
polym

eric
system

. The
“CODEX”

experim
ent is

sensitive
to

re-orientation
of the 13C

CSA
anisotropy

tensor,

and
the

sim
ulated

curves are
consistent with

an
effective

re-

orientation
angle

of
103 �

predicted
on

the
basis

of
defects

travelling
along

the polym
er chain.

In
term

s of future perspectives, the progress in
obtaining

high-resolution
spectra

from
biom

olecular
solids

illustrated

above in Fig. 1 will facilitate the study of dynam
ics in proteins

and other biopolym
ers. This will be particularly advantageous

for probing dynam
ics via relaxation tim

es since the relaxation

in
the

solid
state

is
not com

plicated
with

relaxation
due

to

overall m
olecular m

otion, as is the
case

in
solution. A

draw-

back
of using

relaxation
tim

es to
probe

dynam
ics is that it is

generally
difficult to

infer the
type

of m
otional process from

FIG. 6.
(a) Asym

m
etric

unit of a
furosem

ide
(FS)-isonicotinam

ide
(INA) co-crystal, with

the
carbon

labeling
of the

FS
furan

rings shown. The
ring

on
FS2

was m
odeled

as disordered
over two

positions (alternate
position

distinguished
with

’). (b) Tem
perature

dependence
of the 13C

T
1 relaxation

tim
es for the

furan
carbon

atom
s, together with

fits for a
sim

ple
m

otional m
odel. Adapted

from
data

published
in

Ref. 74. (c) M
onom

er unit and
schem

atic
representation

of the helical m
ain

chain
of poly(4-m

ethyl-1-pentene), P4M
1P, illustrating

the helical jum
p

angle. The ellipsoid
represents a CSA

tensor, whose re-orientation

is m
onitored

by
the

CODEX
experim

ent. (d) Experim
ental CODEX

results (sym
bols) for the

C1
carbon

of P4M
1P

and
calculated

(lines) for different helical

jum
p

angles. From
Reichert and

Krushelnitsky,
M
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e
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can be obtained readily with standard techniques, while differ-

ent experiments can be used to measure dynamics in slow, fast,

or intermediate time scales. In many problems of interest, e.g.,

probing H sites involved in hydrogen bonding or the dynamics

of included solvent, isotopic substitution with 2H is straight-

forward and relatively inexpensive. Particularly when allied

with MAS, 2H NMR can be used to probe complex behav-

ior, such as water motion and H exchange in pharmaceutical

hydrates.76 Isotopic enrichment is not always feasible, and so

it is useful to be able to obtain information on dynamics via

“dilute” spins, such as 13C. (Although 1H NMR relaxation

and times and linewidths can provide valuable information on

overall dynamics, the “spin diffusion” due to the strong dipolar

interactions between 1H spins makes it difficult to localise the

molecular origins of the results observed.) Figure 6 illustrates

two applications of 13C NMR for characterising dynamics.

Figure 6(b) plots the temperature dependence of the 13C T 1

relaxation times for protonated carbons on the furan rings of

the drug furosemide (FS) in a co-crystal form with isonicoti-

namide. The relaxation is largely driven by dipolar interactions

to the bonded 1H nuclei, and so fitting the “T 1 minimum”

curves provides the thermal activation parameters for the re-

orientation of the furan rings. The activation parameters of

the two distinct furan rings in the crystal asymmetric cell are

indistinguishable and are both consistent with a small ampli-

tude libration-type motion. This contrasts with the starting

model provided by X-ray diffraction, Fig. 6(a), in which one

furan ring is modeled in terms of a large amplitude ⇠180�

disorder, but the other is not. Analysis shows that the X-ray

diffraction data cannot readily distinguish between large and

small amplitude disorder, i.e., the NMR data is required to

show that the two rings have essentially the same dynamics.

At the other end of the frequency spectrum, Figs. 6(c) and 6(d)

illustrate the use of 13C NMR to probe slow re-orientational

jumps in a polymeric system. The “CODEX” experiment is

sensitive to re-orientation of the 13C CSA anisotropy tensor,

and the simulated curves are consistent with an effective re-

orientation angle of 103� predicted on the basis of defects

travelling along the polymer chain.

In terms of future perspectives, the progress in obtaining

high-resolution spectra from biomolecular solids illustrated

above in Fig. 1 will facilitate the study of dynamics in proteins

and other biopolymers. This will be particularly advantageous

for probing dynamics via relaxation times since the relaxation

in the solid state is not complicated with relaxation due to

overall molecular motion, as is the case in solution. A draw-

back of using relaxation times to probe dynamics is that it is

generally difficult to infer the type of motional process from

FIG. 6. (a) Asymmetric unit of a furosemide (FS)-isonicotinamide (INA) co-crystal, with the carbon labeling of the FS furan rings shown. The ring on FS2

was modeled as disordered over two positions (alternate position distinguished with ’). (b) Temperature dependence of the 13C T 1 relaxation times for the

furan carbon atoms, together with fits for a simple motional model. Adapted from data published in Ref. 74. (c) Monomer unit and schematic representation

of the helical main chain of poly(4-methyl-1-pentene), P4M1P, illustrating the helical jump angle. The ellipsoid represents a CSA tensor, whose re-orientation

is monitored by the CODEX experiment. (d) Experimental CODEX results (symbols) for the C1 carbon of P4M1P and calculated (lines) for different helical

jump angles. From Reichert and Krushelnitsky, Modern Methods in Solid-State NMR: A Practitioner’s Guide. Copyright 2018 The Royal Society of Chemistry.

Reproduced with permission from The Royal Society of Chemistry.

040901-9

S
.E

.A
sh

bro
ok

and
P.H

odgki
nso

n

J.
C

hem
.P

hys
.149,040901

(2
018)

can
beobtain

ed
rea

dily
with

sta
ndard

tec
hniques,

while
diffe

r-

entexperim
entscan

beused
tomeas

uredynam
ics

inslo
w,fa

st,

orinterm
ediate

tim
esca

les
.In

manyproblem
sofintere

st,
e.g

.,

probingHsite
sinvolved

inhydrogen
bondingorthedynam

ics

ofinclu
ded

solvent,iso
topicsubstit

utionwith2
Hisstra

ight-

forward
andrela

tively
inexpensiv

e.Parti
cularl

ywhen
alli

ed

with
MAS,2

H
NMRcan

beused
to

probecomplex
behav-

ior,such
as

wate
rmotionandHexchangein

pharm
ace

utica
l

hydrate
s.76

Iso
topicenrich

mentisnotalw
aysfea

sib
le,

andso

itisusef
ulto

beableto
obtain

inform
atio

nondynam
ics

via

“dilute”
spins,such

as13
C.(Although1

H
NMRrela

xatio
n

andtim
esandlinew

idthscan
providevalu

ableinform
atio

non

overa
lld

ynam
ics

,th
e“sp

indiffu
sio

n”duetothestro
ngdipolar

intera
ctio

nsbetw
een

1
Hspinsmakesitdiffi

culttolocal
ise

the

molec
ular

orig
insoftheres

ults
obser

ved.)Figure6illu
stra

tes

twoapplica
tionsof13

CNMRforchara
cte

risi
ngdynam

ics
.

Figure
6(b)plotsthetem

pera
ture

dependence
ofthe13

CT
1

rela
xatio

ntim
es

forprotonate
dcar

bonsonthefuran
rin

gsof

thedrugfurosem
ide(FS)inaco-cr

ysta
lform

with
iso

nico
ti-

nam
ide.T

herela
xatio

nislarg
ely

driv
en

bydipolar
intera

ctio
ns

to
thebonded1

H
nucle

i,andso
fittin

gthe“T
1minimum”

curves
provides

thetherm
alact

ivatio
npara

mete
rsforthere-

orien
tati

onofthefuran
rin

gs.Theact
ivatio

npara
mete

rs
of

thetwodisti
nctfuran

rin
gsinthecry

sta
lasy

mmetri
ccel

lare

indisti
nguish

ableandare
bothconsist

entwith
asm

all
am

pli-

tudelibrati
on-ty

pemotion.This
contras

ts
with

thesta
rtin

g

modelprovided
byX-ra

ydiffr
act

ion,Fig.6(a)
,in

which
one

furan
rin

gismodele
din

term
sofalarg

eam
plitu

de⇠
180�

diso
rder,

buttheother
isnot.Analy

sis
showsthattheX-ra

y

diffr
act

iondata
can

notrea
dily

disti
nguish

betw
een

larg
eand

sm
all

am
plitu

dediso
rder,

i.e.
,theNMRdata

isreq
uired

to

showthatthetworin
gshaveess

ential
ly

thesam
edynam

ics
.

Attheotherendofthefre
quency

spect
rum,Figs.6

(c)
and6(d)

illu
stra

tetheuse
of13

CNMRto
probeslo

wre-
orien

tati
onal

jumpsin
apolymeric

syste
m.The“C

ODEX”experim
entis

sen
siti

veto
re-

orien
tati

onofthe13
CCSAaniso

tro
pyten

sor,

andthesim
ulate

dcurves
are

consist
entwith

an
eff

ect
ivere-

orien
tati

onangle
of103�

pred
icte

donthebasi
sofdefe

cts

trav
elli

ngalo
ngthepolymerchain

.

In
term

soffuturepers
pect

ives,
theprogres

sinobtain
ing

high-re
solutionspect

ra
fro

m
biomolec

ular
solidsillu

stra
ted

aboveinFig.1
willfac

ilit
ate

thestu
dyofdynam

ics
inprotein

s

andotherbiopolymers
.Thiswillbeparti

cularl
yadvantag

eous

forprobingdynam
ics

viarela
xatio

ntim
essin

ce
therela

xatio
n

in
thesolid

sta
te

isnotcomplica
ted

with
rela

xatio
ndueto

overa
llmolec

ular
motion,as

isthecas
ein

solution.Adraw
-

back
ofusin

grela
xatio

ntim
es

to
probedynam

ics
isthatitis

genera
lly

diffi
cultto

infer
thetypeofmotionalproces

sfro
m

FIG.6.(a)
Asymmetri

cunitofafurosem
ide(FS)-is

onico
tinam

ide(IN
A)co-cr

ysta
l,with

thecar
bonlab

elin
goftheFSfuran

rin
gsshown.Therin

gonFS2

was
modele

das
diso

rdere
dover

twopositi
ons(alt

ern
ate

positi
ondisti

nguish
ed

with
’).

(b)Tem
pera

ture
dependence

ofthe13
CT

1rela
xatio

ntim
es

forthe

furan
car

bonato
ms,togeth

er
with

fitsforasim
plemotionalmodel.

Adapted
fro

m
data

publish
ed

in
Ref.

74.(c)
Monomer

unitandsch
em

atic
rep

res
entati

on

ofthehelic
almain

chain
ofpoly(4-m

eth
yl-1

-penten
e),

P4M1P,illu
stra

tingthehelic
aljumpangle.

Theelli
psoidrep

res
entsaCSAten

sor,whose
re-

orien
tati

on

ismonitored
bytheCODEXexperim

ent.(d)Experim
ental

CODEXres
ults

(sy
mbols)

fortheC1car
bonofP4M1Pandcal

culate
d(lin

es)
fordiffe

ren
thelic

al

jumpangles
.FromReic

hert
andKrusheln

itsk
y,M

oder
n

M
et

hods
in

Solid
-S

ta
te

N
M

R
:A

P
ra

ct
iti

oner
’s

G
uid

e.Copyrig
ht2018TheRoyalSocie

tyofChem
istr

y.

Reproduced
with

perm
issi

onfro
mTheRoyalSocie

tyofChem
istr

y.

0
4
0
9
0
1
-9

S
.
E
.
A
s
h
b
ro

o
k

a
n
d

P
.
H
o
d
g
k
in

s
o
n

J
.
C
h
e
m

.
P
h
y
s
. 149

,
0
4
0
9
0
1

(2
0
1
8
)

can be obtained readily with standard techniques, while differ-

ent experim
ents can be used tom

easure dynam
ics in slow, fast,

or interm
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e scales. In m
any problem

s of interest, e.g.,

probing H
sites involved in hydrogen bonding or the dynam

ics

of included
solvent, isotopic substitution

with 2H
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forward
and

relatively
inexpensive. Particularly

when
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with
M

AS, 2H
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can

be
used

to
probe

com
plex

behav-

ior, such
as water m
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and
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exchange in

pharm
aceutical

hydrates. 76
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ent is not always feasible, and so

it is useful to
be able to

obtain
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on

dynam
ics via

“dilute”
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as 13C. (Although
1H

NM
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relaxation

and tim
es and linewidths can provide valuable inform
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overall dynam
ics, the “spin diffusion” due to the strong dipolar

interactions between 1H
spins m

akes it difficult to localise the

m
olecular origins of the results observed.) Figure 6 illustrates

two
applications

of 13C
NM

R
for characterising

dynam
ics.

Figure
6(b) plots the

tem
perature

dependence
of the 13C

T
1

relaxation
tim

es for protonated
carbons on

the furan
rings of

the drug
furosem

ide (FS) in
a co-crystal form

with
isonicoti-

nam
ide. The relaxation is largely driven by dipolar interactions

to
the

bonded
1H

nuclei, and
so

fitting
the

“
T
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inim

um
”

curves provides the therm
al activation

param
eters for the re-

orientation
of the
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activation
param
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of

the two
distinct furan

rings in
the crystal asym

m
etric cell are

indistinguishable and
are both

consistent with
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with
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by
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diffraction, Fig. 6(a), in
which

one
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is
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in
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other is not. Analysis shows that the
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data cannot readily
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data
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to

show
that the two

rings have essentially
the sam

e dynam
ics.

At the other end of the frequency spectrum
, Figs. 6(c) and 6(d)

illustrate the use of 13C
NM

R
to

probe slow
re-orientational

jum
ps in

a
polym

eric
system

. The
“CODEX”

experim
ent is

sensitive to
re-orientation

of the 13C
CSA

anisotropy
tensor,

and
the sim

ulated
curves are consistent with

an
effective re-

orientation
angle
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predicted

on
the

basis
of defects

travelling along the polym
er chain.

In term
s of future perspectives, the progress in obtaining

high-resolution
spectra

from
biom

olecular solids
illustrated

above in Fig. 1 will facilitate the study of dynam
ics in proteins

and other biopolym
ers. This will be particularly advantageous

for probing dynam
ics via relaxation tim

es since the relaxation

in
the

solid
state

is
not com

plicated
with

relaxation
due

to

overall m
olecular m

otion, as is the case in
solution. A
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(a) Asym

m
etric unit of a furosem

ide (FS)-isonicotinam
ide (INA) co-crystal, with

the carbon
labeling

of the FS
furan

rings shown. The ring
on

FS2

was m
odeled

as disordered
over two

positions (alternate
position

distinguished
with

’). (b) Tem
perature

dependence
of the 13C

T
1 relaxation

tim
es for the

furan
carbon

atom
s, together with

fits for a sim
ple m

otional m
odel. Adapted

from
data published

in
Ref. 74. (c) M

onom
er unit and

schem
atic representation

of the helical m
ain chain of poly(4-m

ethyl-1-pentene), P4M
1P, illustrating the helical jum

p angle. The ellipsoid represents a CSA
tensor, whose re-orientation
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by
the CODEX

experim
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canbeobtainedreadilywithstandardtechniques,whilediffer-

entexperimentscanbeusedtomeasuredynamicsinslow,fast,

orintermediatetimescales.Inmanyproblemsofinterest,e.g.,

probingHsitesinvolvedinhydrogenbondingorthedynamics

ofincludedsolvent,isotopicsubstitutionwith
2Hisstraight-

forwardandrelativelyinexpensive.Particularlywhenallied

withMAS,2HNMRcanbeusedtoprobecomplexbehav-

ior,suchaswatermotionandHexchangeinpharmaceutical

hydrates.76Isotopicenrichmentisnotalwaysfeasible,andso

itisusefultobeabletoobtaininformationondynamicsvia

“dilute”spins,suchas
13C.(Although

1HNMRrelaxation

andtimesandlinewidthscanprovidevaluableinformationon

overalldynamics,the“spindiffusion”duetothestrongdipolar

interactionsbetween
1Hspinsmakesitdifficulttolocalisethe

molecularoriginsoftheresultsobserved.)Figure6illustrates

twoapplicationsof
13CNMRforcharacterisingdynamics.

Figure6(b)plotsthetemperaturedependenceofthe
13CT1

relaxationtimesforprotonatedcarbonsonthefuranringsof

thedrugfurosemide(FS)inaco-crystalformwithisonicoti-

namide.Therelaxationislargelydrivenbydipolarinteractions

tothebonded
1Hnuclei,andsofittingthe“T1minimum”

curvesprovidesthethermalactivationparametersforthere-

orientationofthefuranrings.Theactivationparametersof

thetwodistinctfuranringsinthecrystalasymmetriccellare

indistinguishableandarebothconsistentwithasmallampli-

tudelibration-typemotion.Thiscontrastswiththestarting

modelprovidedbyX-raydiffraction,Fig.6(a),inwhichone

furanringismodeledintermsofalargeamplitude⇠180�

disorder,buttheotherisnot.AnalysisshowsthattheX-ray

diffractiondatacannotreadilydistinguishbetweenlargeand

smallamplitudedisorder,i.e.,theNMRdataisrequiredto

showthatthetworingshaveessentiallythesamedynamics.

Attheotherendofthefrequencyspectrum,Figs.6(c)and6(d)

illustratetheuseof13CNMRtoprobeslowre-orientational

jumpsinapolymericsystem.The“CODEX”experimentis

sensitivetore-orientationofthe
13CCSAanisotropytensor,

andthesimulatedcurvesareconsistentwithaneffectivere-

orientationangleof103�predictedonthebasisofdefects

travellingalongthepolymerchain.

Intermsoffutureperspectives,theprogressinobtaining

high-resolutionspectrafrombiomolecularsolidsillustrated

aboveinFig.1willfacilitatethestudyofdynamicsinproteins

andotherbiopolymers.Thiswillbeparticularlyadvantageous

forprobingdynamicsviarelaxationtimessincetherelaxation

inthesolidstateisnotcomplicatedwithrelaxationdueto

overallmolecularmotion,asisthecaseinsolution.Adraw-

backofusingrelaxationtimestoprobedynamicsisthatitis

generallydifficulttoinferthetypeofmotionalprocessfrom

FIG.6.(a)Asymmetricunitofafurosemide(FS)-isonicotinamide(INA)co-crystal,withthecarbonlabelingoftheFSfuranringsshown.TheringonFS2

wasmodeledasdisorderedovertwopositions(alternatepositiondistinguishedwith’).(b)Temperaturedependenceofthe13CT1relaxationtimesforthe

furancarbonatoms,togetherwithfitsforasimplemotionalmodel.AdaptedfromdatapublishedinRef.74.(c)Monomerunitandschematicrepresentation

ofthehelicalmainchainofpoly(4-methyl-1-pentene),P4M1P,illustratingthehelicaljumpangle.TheellipsoidrepresentsaCSAtensor,whosere-orientation

ismonitoredbytheCODEXexperiment.(d)ExperimentalCODEXresults(symbols)fortheC1carbonofP4M1Pandcalculated(lines)fordifferenthelical

jumpangles.FromReichertandKrushelnitsky,ModernMethodsinSolid-StateNMR:APractitioner’sGuide.Copyright2018TheRoyalSocietyofChemistry.

ReproducedwithpermissionfromTheRoyalSocietyofChemistry.
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canbeobtainedreadily
with

standardtechniques,whilediffe
r-

entexperim
entscanbeusedtomeasuredynamicsinslow,fa

st,

orintermediatetim
escales.Inmanyproblemsofinterest,e.g.,

probingHsite
sinvolvedinhydrogenbondingorthedynamics

ofincludedsolvent,isotopicsubstit
utionwith2

Hisstra
ight-

forwardandrelativelyinexpensive.Partic
ularly

whenallie
d

with
MAS,2

HNMRcanbeusedtoprobecomplex
behav-

ior,suchaswatermotionandHexchangeinpharmaceutical

hydrates.76
Iso

topicenrichmentisnotalwaysfeasible,andso

itisusefultobeabletoobtaininformationondynamicsvia

“dilute”spins,suchas13
C.(Although1

HNMRrelaxation

andtim
esandlinewidthscanprovidevaluableinformationon

overalldynamics,th
e“spindiffu

sion”duetothestro
ngdipolar

interactionsbetween1
Hspinsmakesitdifficulttolocalise

the

molecularoriginsoftheresultsobserved.)Figure6illu
stra

tes

twoapplicationsof13
CNMRforcharacterisi

ngdynamics.

Figure6(b)plotsthetemperaturedependenceofthe13
CT

1

relaxationtim
esforprotonatedcarbonsonthefuranringsof

thedrugfurosemide(FS)inaco-crystalform
with

isonicoti-

namide.Therelaxationislargelydrivenbydipolarinteractions

tothebonded1
Hnuclei,andso

fittin
gthe“T

1minimum”

curvesprovidesthethermalactivationparametersforthere-

orientationofthefuranrings.Theactivationparametersof

thetwodisti
nctfuranringsinthecrystalasymmetric

cellare

indisti
nguishableandarebothconsist

entwith
asmallampli-

tudelibration-typemotion.Thiscontrasts
with

thestartin
g

modelprovidedbyX-raydiffr
action,Fig.6(a),inwhichone

furanringismodeledintermsofalargeamplitu
de⇠1

80�

disorder,buttheotherisnot.Analysis
showsthattheX-ray

diffr
actiondatacannotreadily

disti
nguish

betweenlargeand

smallamplitu
dedisorder,i.e.,theNMRdataisrequiredto

showthatthetworingshaveesse
ntially

thesamedynamics.

Attheotherendofthefrequencyspectrum,Figs.6(c)and6(d)

illu
stra

tetheuseof13
CNMRtoprobeslowre-orientational

jumpsinapolymeric
system.The“CODEX”experim

entis

sensiti
vetore-orientationofthe13

CCSAanisotropytensor,

andthesim
ulatedcurvesareconsist

entwith
aneffectivere-

orientationangleof103�
predictedonthebasis

ofdefects

trav
ellin

galongthepolymerchain.

Intermsoffuturepersp
ectives,theprogressinobtaining

high-resolutionspectra
frombiomolecularsolidsillu

stra
ted

aboveinFig.1willfacilita
tethestudyofdynamicsinproteins

andotherbiopolymers.Thiswillbepartic
ularly

advantageous

forprobingdynamicsviarelaxationtim
essincetherelaxation

inthesolid
stateisnotcomplicatedwith

relaxationdueto

overallmolecularmotion,asisthecaseinsolution.Adraw
-

backofusingrelaxationtim
estoprobedynamicsisthatitis

generally
difficulttoinferthetypeofmotionalprocessfrom

FIG.6.(a)Asymmetric
unitofafurosemide(FS)-is

onicotinamide(IN
A)co-crystal,with

thecarbonlabelingoftheFSfuranringsshown.TheringonFS2

wasmodeledasdisorderedovertwopositi
ons(alternatepositi

ondisti
nguishedwith

’).
(b)Temperaturedependenceofthe13

CT
1relaxationtim

esforthe

furancarbonatoms,togetherwith
fitsforasim

plemotionalmodel.Adaptedfromdatapublish
edinRef.74.(c)Monomerunitandschematic

representation

ofthehelicalmainchainofpoly(4-methyl-1-pentene),P4M1P,illu
stra

tingthehelicaljumpangle.Theellip
soidrepresentsaCSAtensor,whosere-orientation

ismonitoredbytheCODEXexperim
ent.(d)Experim

entalCODEXresults
(sy

mbols)
fortheC1carbonofP4M1Pandcalculated(lin

es)fordiffe
renthelical

jumpangles.FromReichertandKrushelnitsk
y,M

odern
M
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odsin
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can
be obtain

ed
rea

dily
with

sta
ndard

tec
hniques,

while
diffe

r-

ent experi
ments can

be used
to meas

ure dynam
ics

in slo
w, fa

st,

or inter
mediate

tim
e sca

les
. In

many problem
s of inter

est
, e.

g.,

probing H site
s involved

in hydrogen
bonding or the dynam

ics

of inclu
ded

solvent, iso
topic substit

utio
n with

2 H is stra
ight-

forward
and rel

ativ
ely

inexpensiv
e.

Part
icu

lar
ly

when
alli

ed

with
MAS,

2 H
NMR can

be used
to

probe complex
behav-

ior, such
as

wate
r motio

n and H exchange in
pharm

ace
utica

l

hydrat
es.

76 Iso
topic enric

hment is not alw
ays fea

sib
le,

and so

it is usef
ul to

be able to
obtain

inform
atio

n on dynam
ics

via

“dilu
te”

spins, such
as

13 C. (A
lth

ough
1 H

NMR
rel

axatio
n

and tim
es

and lin
ew

idths can
provide valu

able inform
atio

n on

overa
ll d

ynam
ics

, th
e “sp

in diffu
sio

n” due to the stro
ng dipolar

inter
act

ions betw
een

1 H spins makes
it diffi

cult to local
ise

the

molec
ular

orig
ins of the res

ults
obser

ved.) Figure 6 illu
stra

tes

two applica
tio

ns of
13 C

NMR
for chara

cte
risi

ng dynam
ics

.

Figure
6(b) plots the tem

pera
ture

dependence
of the

13 C T 1

rel
axatio

n tim
es

for protonate
d car

bons on the furan
rin

gs of

the drug furosem
ide (FS) in

a co-cr
ysta

l form
with

iso
nico

ti-

nam
ide. T

he rel
axatio

n is larg
ely

driv
en

by dipolar
inter

act
ions

to
the bonded

1 H
nucle

i, and so
fittin

g the “T 1
minim

um”

curves
provides

the therm
al act

ivatio
n para

mete
rs for the re-

orie
ntati

on of the furan
rin

gs. The act
ivatio

n para
mete

rs
of

the two disti
nct furan

rin
gs in the cry

sta
l asy

mmetr
ic cel

l are

indisti
nguish

able and are
both

consis
ten

t with
a sm

all
am

pli-

tude lib
rat

ion-ty
pe motio

n. This
contra

sts
with

the sta
rtin

g

model provided
by X-ra

y diffr
act

ion, Fig. 6(a)
, in

which
one

furan
rin

g is
modele

d in
ter

ms of a larg
e am

plitu
de ⇠

180�

diso
rder,

but the other
is not. Analy

sis
shows that the X-ra

y

diffr
act

ion data
can

not rea
dily

disti
nguish

betw
een

larg
e and

sm
all

am
plitu

de diso
rder,

i.e.
, the NMR data

is req
uire

d to

show that the two rin
gs have ess

ential
ly

the sam
e dynam

ics
.

At the other end of the fre
quency

spect
rum, Figs. 6

(c)
and 6(d)

illu
stra

te the use
of

13 C NMR to
probe slo

w re-
orie

ntati
onal

jumps in
a polymeri

c syste
m. The “C

ODEX” experi
ment is

sen
siti

ve to
re-

orie
ntati

on of the
13 C CSA aniso

tro
py ten

sor,

and the sim
ulate

d curves
are

consis
ten

t with
an

eff
ect

ive re-

orie
ntati

on angle
of 103�

pred
icte

d on the basi
s of defe

cts

trav
elli

ng alo
ng the polymer chain

.

In
ter

ms of future pers
pect

ives,
the progres

s in obtain
ing

high-re
solutio

n spect
ra

fro
m

biomolec
ular

solid
s illu

stra
ted

above in Fig. 1
will fac

ilit
ate

the stu
dy of dynam

ics
in protein

s

and other biopolymers
. This will be part

icu
lar

ly advantag
eous

for probing dynam
ics

via rel
axatio

n tim
es sin

ce
the rel

axatio
n

in
the solid

sta
te

is
not complica

ted
with

rel
axatio

n due to

overa
ll molec

ular
motio

n, as
is the cas

e in
solutio

n. A draw
-

back
of usin

g rel
axatio

n tim
es

to
probe dynam

ics
is that it is

genera
lly

diffi
cult to

infer
the type of motio

nal proces
s fro

m

FIG
. 6. (a)

Asymmetr
ic unit of a furosem

ide (FS)-is
onico

tin
am

ide (IN
A) co-cr

ysta
l, with

the car
bon lab

elin
g of the FS furan

rin
gs shown. The rin

g on FS2

was
modele

d as
diso

rdere
d over

two positi
ons (al

ter
nate

positi
on disti

nguish
ed

with
’).

(b) Tem
pera

ture
dependence

of the
13 C T 1

rel
axatio

n tim
es

for the

furan
car

bon ato
ms, togeth

er
with

fits for a sim
ple motio

nal model.
Adapted

fro
m

data
publish

ed
in

Ref.
74. (c)

Monomer
unit and sch
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atic

rep
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entati
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of the helic
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chain
of poly(4-m

eth
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-penten
e),

P4M1P, illu
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g the helic

al jump angle.
The elli

psoid rep
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ents a CSA ten
sor, whose

re-
orie

ntati
on

is monito
red

by the CODEX experi
ment. (d) Experi

mental
CODEX res

ults
(sy

mbols)
for the C1 car

bon of P4M1P and cal
culate

d (lin
es)

for diffe
ren

t helic
al

jump angles
. From Reic
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and Krusheln
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canbeobtainedreadilywithstandardtechniques,whilediffer-

entexperimentscanbeusedtomeasuredynamicsinslow,fast,

orintermediatetimescales.Inmanyproblemsofinterest,e.g.,

probingHsitesinvolvedinhydrogenbondingorthedynamics

ofincludedsolvent,isotopicsubstitutionwith
2Hisstraight-

forwardandrelativelyinexpensive.Particularlywhenallied

withMAS,
2HNMRcanbeusedtoprobecomplexbehav-

ior,suchaswatermotionandHexchangeinpharmaceutical

hydrates.
76Isotopicenrichmentisnotalwaysfeasible,andso

itisusefultobeabletoobtaininformationondynamicsvia

“dilute”spins,suchas
13C.(Although

1HNMRrelaxation

andtimesandlinewidthscanprovidevaluableinformationon

overalldynamics,the“spindiffusion”duetothestrongdipolar

interactionsbetween
1Hspinsmakesitdifficulttolocalisethe

molecularoriginsoftheresultsobserved.)Figure6illustrates

twoapplicationsof
13CNMRforcharacterisingdynamics.

Figure6(b)plotsthetemperaturedependenceofthe
13C

T1

relaxationtimesforprotonatedcarbonsonthefuranringsof

thedrugfurosemide(FS)inaco-crystalformwithisonicoti-

namide.Therelaxationislargelydrivenbydipolarinteractions

tothebonded
1Hnuclei,andsofittingthe“T1minimum”

curvesprovidesthethermalactivationparametersforthere-

orientationofthefuranrings.Theactivationparametersof

thetwodistinctfuranringsinthecrystalasymmetriccellare

indistinguishableandarebothconsistentwithasmallampli-

tudelibration-typemotion.Thiscontrastswiththestarting

modelprovidedbyX-raydiffraction,Fig.6(a),inwhichone

furanringismodeledintermsofalargeamplitude⇠180
�

disorder,buttheotherisnot.AnalysisshowsthattheX-ray

diffractiondatacannotreadilydistinguishbetweenlargeand

smallamplitudedisorder,i.e.,theNMRdataisrequiredto

showthatthetworingshaveessentiallythesamedynamics.

Attheotherendofthefrequencyspectrum,Figs.6(c)and6(d)

illustratetheuseof
13CNMRtoprobeslowre-orientational

jumpsinapolymericsystem.The“CODEX”experimentis

sensitivetore-orientationofthe
13CCSAanisotropytensor,

andthesimulatedcurvesareconsistentwithaneffectivere-

orientationangleof103
�predictedonthebasisofdefects

travellingalongthepolymerchain.

Intermsoffutureperspectives,theprogressinobtaining

high-resolutionspectrafrombiomolecularsolidsillustrated

aboveinFig.1willfacilitatethestudyofdynamicsinproteins

andotherbiopolymers.Thiswillbeparticularlyadvantageous

forprobingdynamicsviarelaxationtimessincetherelaxation

inthesolidstateisnotcomplicatedwithrelaxationdueto

overallmolecularmotion,asisthecaseinsolution.Adraw-

backofusingrelaxationtimestoprobedynamicsisthatitis

generallydifficulttoinferthetypeofmotionalprocessfrom

FIG.6.(a)Asymmetricunitofafurosemide(FS)-isonicotinamide(INA)co-crystal,withthecarbonlabelingoftheFSfuranringsshown.TheringonFS2

wasmodeledasdisorderedovertwopositions(alternatepositiondistinguishedwith’).(b)Temperaturedependenceofthe
13C

T1relaxationtimesforthe

furancarbonatoms,togetherwithfitsforasimplemotionalmodel.AdaptedfromdatapublishedinRef.74.(c)Monomerunitandschematicrepresentation

ofthehelicalmainchainofpoly(4-methyl-1-pentene),P4M1P,illustratingthehelicaljumpangle.TheellipsoidrepresentsaCSAtensor,whosere-orientation

ismonitoredbytheCODEXexperiment.(d)ExperimentalCODEXresults(symbols)fortheC1carbonofP4M1Pandcalculated(lines)fordifferenthelical

jumpangles.FromReichertandKrushelnitsky,M
odern

M
ethodsin

Solid-State
N

M
R:A

Practitioner’sG
uide.Copyright2018TheRoyalSocietyofChemistry.

ReproducedwithpermissionfromTheRoyalSocietyofChemistry.
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can be obtained readily with standard techniques, while differ-ent experiments can be used to measure dynamics in slow, fast,or intermediate time scales. In many problems of interest, e.g.,probing H sites involved in hydrogen bonding or the dynamicsof included solvent, isotopic substitution with 2H is straight-forward and relatively inexpensive. Particularly when alliedwith MAS, 2H NMR can be used to probe complex behav-ior, such as water motion and H exchange in pharmaceuticalhydrates.76 Isotopic enrichment is not always feasible, and soit is useful to be able to obtain information on dynamics via“dilute” spins, such as 13C. (Although 1H NMR relaxationand times and linewidths can provide valuable information onoverall dynamics, the “spin diffusion” due to the strong dipolarinteractions between 1H spins makes it difficult to localise themolecular origins of the results observed.) Figure 6 illustratestwo applications of 13C NMR for characterising dynamics.Figure 6(b) plots the temperature dependence of the 13C T1relaxation times for protonated carbons on the furan rings ofthe drug furosemide (FS) in a co-crystal form with isonicoti-namide. The relaxation is largely driven by dipolar interactionsto the bonded 1H nuclei, and so fitting the “T1 minimum”curves provides the thermal activation parameters for the re-orientation of the furan rings. The activation parameters ofthe two distinct furan rings in the crystal asymmetric cell are

indistinguishable and are both consistent with a small ampli-tude libration-type motion. This contrasts with the startingmodel provided by X-ray diffraction, Fig. 6(a), in which onefuran ring is modeled in terms of a large amplitude ⇠180�disorder, but the other is not. Analysis shows that the X-raydiffraction data cannot readily distinguish between large andsmall amplitude disorder, i.e., the NMR data is required toshow that the two rings have essentially the same dynamics.At the other end of the frequency spectrum, Figs. 6(c) and 6(d)illustrate the use of 13C NMR to probe slow re-orientationaljumps in a polymeric system. The “CODEX” experiment issensitive to re-orientation of the 13C CSA anisotropy tensor,and the simulated curves are consistent with an effective re-orientation angle of 103� predicted on the basis of defectstravelling along the polymer chain.
In terms of future perspectives, the progress in obtaininghigh-resolution spectra from biomolecular solids illustratedabove in Fig. 1 will facilitate the study of dynamics in proteinsand other biopolymers. This will be particularly advantageousfor probing dynamics via relaxation times since the relaxationin the solid state is not complicated with relaxation due tooverall molecular motion, as is the case in solution. A draw-back of using relaxation times to probe dynamics is that it isgenerally difficult to infer the type of motional process from

FIG. 6. (a) Asymmetric unit of a furosemide (FS)-isonicotinamide (INA) co-crystal, with the carbon labeling of the FS furan rings shown. The ring on FS2
was modeled as disordered over two positions (alternate position distinguished with ’). (b) Temperature dependence of the 13C T1 relaxation times for the
furan carbon atoms, together with fits for a simple motional model. Adapted from data published in Ref. 74. (c) Monomer unit and schematic representation
of the helical main chain of poly(4-methyl-1-pentene), P4M1P, illustrating the helical jump angle. The ellipsoid represents a CSA tensor, whose re-orientation
is monitored by the CODEX experiment. (d) Experimental CODEX results (symbols) for the C1 carbon of P4M1P and calculated (lines) for different helical
jump angles. From Reichert and Krushelnitsky, Modern Methods in Solid-State NMR: A Practitioner’s Guide. Copyright 2018 The Royal Society of Chemistry.
Reproduced with permission from The Royal Society of Chemistry.
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canbeobtainedreadilywithstandardtechniques,whilediffer-

entexperimentscanbeusedtomeasuredynamicsinslow,fast,

orintermediatetimescales.Inmanyproblemsofinterest,e.g.,

probingHsitesinvolvedinhydrogenbondingorthedynamics

ofincludedsolvent,isotopicsubstitutionwith
2Hisstraight-

forwardandrelativelyinexpensive.Particularlywhenallied

withMAS,
2HNMRcanbeusedtoprobecomplexbehav-

ior,suchaswatermotionandHexchangeinpharmaceutical

hydrates.
76Isotopicenrichmentisnotalwaysfeasible,andso

itisusefultobeabletoobtaininformationondynamicsvia

“dilute”spins,suchas
13C.(Although

1HNMRrelaxation

andtimesandlinewidthscanprovidevaluableinformationon

overalldynamics,the“spindiffusion”duetothestrongdipolar

interactionsbetween
1Hspinsmakesitdifficulttolocalisethe

molecularoriginsoftheresultsobserved.)Figure6illustrates

twoapplicationsof
13CNMRforcharacterisingdynamics.

Figure6(b)plotsthetemperaturedependenceofthe
13C

T1

relaxationtimesforprotonatedcarbonsonthefuranringsof

thedrugfurosemide(FS)inaco-crystalformwithisonicoti-

namide.Therelaxationislargelydrivenbydipolarinteractions

tothebonded
1Hnuclei,andsofittingthe“T1minimum”

curvesprovidesthethermalactivationparametersforthere-

orientationofthefuranrings.Theactivationparametersof

thetwodistinctfuranringsinthecrystalasymmetriccellare

indistinguishableandarebothconsistentwithasmallampli-

tudelibration-typemotion.Thiscontrastswiththestarting

modelprovidedbyX-raydiffraction,Fig.6(a),inwhichone

furanringismodeledintermsofalargeamplitude⇠180�

disorder,buttheotherisnot.AnalysisshowsthattheX-ray

diffractiondatacannotreadilydistinguishbetweenlargeand

smallamplitudedisorder,i.e.,theNMRdataisrequiredto

showthatthetworingshaveessentiallythesamedynamics.

Attheotherendofthefrequencyspectrum,Figs.6(c)and6(d)

illustratetheuseof
13CNMRtoprobeslowre-orientational

jumpsinapolymericsystem.The“CODEX”experimentis

sensitivetore-orientationofthe
13CCSAanisotropytensor,

andthesimulatedcurvesareconsistentwithaneffectivere-

orientationangleof103�predictedonthebasisofdefects

travellingalongthepolymerchain.

Intermsoffutureperspectives,theprogressinobtaining

high-resolutionspectrafrombiomolecularsolidsillustrated

aboveinFig.1willfacilitatethestudyofdynamicsinproteins

andotherbiopolymers.Thiswillbeparticularlyadvantageous

forprobingdynamicsviarelaxationtimessincetherelaxation

inthesolidstateisnotcomplicatedwithrelaxationdueto

overallmolecularmotion,asisthecaseinsolution.Adraw-

backofusingrelaxationtimestoprobedynamicsisthatitis

generallydifficulttoinferthetypeofmotionalprocessfrom

FIG.6.(a)Asymmetricunitofafurosemide(FS)-isonicotinamide(INA)co-crystal,withthecarbonlabelingoftheFSfuranringsshown.TheringonFS2

wasmodeledasdisorderedovertwopositions(alternatepositiondistinguishedwith’).(b)Temperaturedependenceofthe
13C

T1relaxationtimesforthe

furancarbonatoms,togetherwithfitsforasimplemotionalmodel.AdaptedfromdatapublishedinRef.74.(c)Monomerunitandschematicrepresentation

ofthehelicalmainchainofpoly(4-methyl-1-pentene),P4M1P,illustratingthehelicaljumpangle.TheellipsoidrepresentsaCSAtensor,whosere-orientation

ismonitoredbytheCODEXexperiment.(d)ExperimentalCODEXresults(symbols)fortheC1carbonofP4M1Pandcalculated(lines)fordifferenthelical

jumpangles.FromReichertandKrushelnitsky,ModernMethodsinSolid-StateNMR:APractitioner’sGuide.Copyright2018TheRoyalSocietyofChemistry.

ReproducedwithpermissionfromTheRoyalSocietyofChemistry.
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M |0Í H · · · •

...
...

1 |0Í H • · · · •

fl0 / U0 (t) U1 (t) · · · U2M (t)

N

Idea: Use ancilla-controlled operations to parallelize simulation  

H = ω0Sz
tot + ω0 ∑

i

ωiSz
i + ∑

i,j

bij (3(Si ⋅ e(Ω)
ij )(Sj ⋅ e(Ω)

ij ) − Si ⋅ Sj) bij = −
μ0γ2ℏ
4πr3

ij
Depends on orientation



Orientation averaging (simplified)

M |0Í H • •

...
...

1 |0Í H • •

fl0 / R1 RM U�(t) R
†
M R

†
1

HΩ = ∑
i,j

bij (3(Si ⋅ e(Ω)
ij )(Sj ⋅ e(Ω)

ij ) − Si ⋅ Sj)

Rk = e−iφknkStot

UΩ(t) = e−iHΩt

Controlled version 
= 

Two-qubit gates



Orientation averaging (full)

• Discretize dynamics: 

• Fix chemical shift term:
Efficient powder-averaged  

solid-state NMR simulation!

H = ω0Sz
tot + ω0 ∑

i

ωiSz
i + ∑

i,j

bij (3(Si ⋅ e(Ω)
ij )(Sj ⋅ e(Ω)

ij ) − Si ⋅ Sj) bij = −
μ0γ2ℏ
4πr3

ij

M |0Í H · · · • · · · • · · · · · · • • · · ·

...
...

1 |0Í H • · · · • · · · · · · • · · · · · · •

fl0 / R1 · · · RM U�(�t) V1 (�t) · · · VM (�t) · · · U�(�t) V1 (�t) · · · VM (�t) R
†
M

· · · R
†
1

N · · · 1 · · · L

Vk (Δt) = Rke
−iΔt ω0 ∑i (1 + ωi)Sz

i R†
k

UΩ(t) = [UΩ(Δt)]L

Controlled version = Two-qubit gates



Ensemble averaging with continuous ancilla



Electron paramagnetic resonance (EPR)
Catalysts, photosystems, molecular conductors, proteins in live cell environment
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ABSTRACT: Protein structure investigations are usually
carried out in vitro under conditions far from their native
environment in the cell. Differences between in-cell and in vitro
structures of proteins can be generated by crowding effects,
local pH changes, specific and nonspecific protein and ligand
binding events, and chemical modifications. Double electron−
electron resonance (DEER), in conjunction with site-directed
spin-labeling, has emerged in the past decade as a powerful
technique for exploring protein conformations in frozen
solutions. The major challenges facing the application of this
methodology to in-cell measurements are the instabilities of the standard nitroxide spin labels in the cell environment and the
limited sensitivity at conventional X-band frequencies. We present a new approach for in-cell DEER distance measurement in
human cells, based on the use of: (i) reduction resistant Gd3+ chelates as spin labels, (ii) high frequency (94.9 GHz) for
sensitivity enhancement, and (iii) hypo-osmotic shock for efficient delivery of the labeled protein into the cell. The proof of
concept is demonstrated on doubly labeled ubiquitin in HeLa cells.

■ INTRODUCTION
The folding and activity of a protein are strongly influenced by
its immediate physicochemical environment. Atomic level
structural and dynamic studies of proteins have succeeded to
elucidate structures and functions of proteins, thus producing
valuable information on proteins, their complexes with
substrates, and protein−protein interactions. Such studies are
usually carried out under in vitro conditions that are often
dictated by the method applied. The next level of under-
standing protein structure and function requires considering
the natural cellular environment of the proteins, where
parameters such as cytoplasmic crowding, limited protein
dynamics, subcellular localization, interaction with other
cellular components, and cellular responses may affect the
protein structure and dynamics. Accordingly, considerable
efforts are currently being devoted to developing methods
that probe protein structure and dynamics inside living cells.
Förster’s resonance energy transfer (FRET) is a highly

sensitive method (single molecule level) that can provide
distance between two chromophores on the nanometer-scale in
a solution at room temperature. It is excellent for detecting and
monitoring the dynamics of conformational changes but it
encounters difficulties in measuring with good accuracy
distances due to caveats such as the size of the fluorophore
labels, dependence on angular orientations of the fluorophores,
and background signals due to nonspecific FRET.1 In-cell FRET
usually relies on fusion with florescent proteins, and the

distance estimated from FRET is between the large protein
labels.2,3 The large size prevents atomic level structural studies4

but rather allows detecting the presence of interactions. For
example, in-cell FRET has been used to detect conformational
changes in macromolecules,5 tracking complex formation,6,7

and analyzing chromatin compaction.8

Over the past decade, nuclear magnetic resonance (NMR)
spectroscopy has played a major role in providing a look into
biomolecular structure in numerous cell types.9 NMR requires
labeling the proteins with stable isotopes such as 13C, 15N, or
19F in order to distinguish the protein under study from the
complex intracellular environment background. 13C and 15N
enriched proteins can be generated in situ in prokaryotic cells
by designing their overexpression under isotopically enriched
growth conditions. In eukaryotic cells the isotopically enriched
(13C, 15N), or labeled protein (19F), have to be delivered into
the cells while the labeling is generally carried out in vitro.
Microinjection into Xenopus laevis oocytes,10 electroporation,
use of pore-forming toxins,11 and cell penetrating peptides
(CPP) have been exploited to introduce labeled proteins into
cells with the aim of studying protein dynamics,12 folding
processes,13 protein maturation,14 and protein−protein inter-
actions.15 The drawbacks of in-cell NMR are related to the
inherent low sensitivity of the technique that require large
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FIG. 1. (a) Three27- and (b) four28-pulse DEER sequences. In both
sequences, an echo is generated by pulses at the observer spin frequency ⌫obs,
and the application of the pump pulse at the ⌫pump frequency causes a partial
dephasing in that echo. The pump pulse time t is incremented to measure the
dipolar frequency.

pump pulse flips Gd3+ by only a single quantum, then
Gd+3–Gd3+ DEER could be analysed as an effective S =
system.1 However, despite the practical success of those mea-
surements, DEER traces obtained for model compounds with
Gd+3–Gd3+ distances below 4 nm displayed features not pre-
dicted by the theory for an S = pair under the weak
dipolar coupling approximation.1,2,35 Specifically, the dipo-
lar spectrum (Fourier transform of the DEER traces) may
deviate from the Pake pattern.1,2,36 This deviation leads to
a broadening of the distance distribution and the emergence
of spurious distance peaks when the data are analysed by
the software designed for spin-1/2 systems. This effect is
larger for Gd3+ ions with a small zero field splitting (ZFS)
and thus a narrow central line.2,37 Another unexpected fea-
ture is the low modulation depth.1,2 These observations likely
result from the different spin-physics characteristics of Gd3+

compared to nitroxides—the high spin and the ZFS, which
affect the validity of the weak dipolar coupling approxima-
tion.2,35,36,38 An understanding of the factors shaping the
DEER trace is therefore essential for the proper data analysis
and for the educated choice of optimal experimental parame-
ters such as pulse frequencies and the chelate coordinating the
Gd3+ ion.

The prior work on the subject has explored the limits of
the effective S = 1/2 and weak dipolar coupling approxima-
tion for Gd3+–Gd3+DEER using a simple frequency domain
approach: transition energies were computed by diagonal-
izing the Hamiltonian and were shown to shift due to the
mixing between the |+ , i and | , + i states by the
flip-flop term of the dipolar interaction at short distances.2,39

A large ZFS was found to reduce this mixing because
it reduces the probability of overlap between the central

transitions of the two spins in disordered samples with a
large distribution over ZFS parameters, as commonly found
for Gd3+.40,41 This understanding has led to proposals for
experimental setups that can overcome the difficulties in the
measurement of short distances.20,36,42 However, this approach
did not clarify the origin of the modulation depth prob-
lem, suggest optimal pulse settings in the DEER experiment,
account for the possible rhombicity in the ZFS, or consider
contributions from multiple transitions to the final DEER
trace.

To address both the line shape and the modulation depth,
we carried out time-domain simulations of the DEER experi-
ment using explicit density matrix propagation in Spinach.43

Our goal was not fitting the DEER traces but rather character-
izing the effect of ZFS, dipolar state mixing, and pulse parame-
ters on the DEER trace, including the modulation depth, damp-
ing rate, the shape of the Fourier transform, and the extracted
distance distribution. The simulation considers all transitions
between all energy levels at the specified temperature, the
dipolar coupling including the flip-flop terms, the rhombic
ZFS tensor up to the second spherical rank (and its ensem-
ble distribution), and explicitly simulated soft microwave
pulses.

We found that the simulation reproduces the experimental
line shapes but overestimates the modulation depth. It con-
firms that the state mixing between the |+ , i and | , + i
states of the two spins, caused by the flip-flop terms in the
dipolar Hamiltonian, leads to a strong damping of the dipo-
lar modulation and to artefacts in the distance distribution
when the software designed for spin 1/2 systems is used for
analysis.

II. THEORY

The spin Hamiltonian (in frequency units) of two electrons
with isotropic g-tensors and spin S > , such as Gd3+ or Mn2+,
interacting via the dipolar mechanism and hyperfine coupled
each to its own nucleus, is given by

Ĥ =
X

k=1,2

 
g�eB0

h
Ŝz,k + Ŝk · Dk · Ŝk + Ŝk · Ak · Îk

!
+ Ŝ1 · T · Ŝ2,

(3)
where the first term is the Zeeman interaction, the second
term is the zero-field splitting, the third term is the hyper-
fine interaction with the corresponding nucleus (Gd has two
magnetic isotopes with the total abundance of 30%44), and
the fourth term is the dipolar interaction between the two
electrons.

The ZFS is adequately described by the usual D and E
parameters,

D =
3
2

Dz, E =
Dx � Dy

2
, (4)

accounting for its rank 2 part.45 Higher-order terms (spherical
ranks 4 and 6), although present for Gd3+, are much smaller
and can be neglected.46 Dx, Dy, and Dz are the principal values
of the D tensor. In the eigenframe of the D tensor, the ZFS
Hamiltonian is

ĤZFS = D
 
Ŝ2

z �
S(S + 1)

3

!
+ E

⇣
Ŝ2

x � Ŝ2
y

⌘
. (5)

Simulation necessary 
to infer structural change

Can be hard due to 
ensemble averaging 

for spin >1/2



High spin EPR

H = ∑
k=1,2

{ωiSz
k + Sk ⋅ Dk ⋅ Sk + Sk ⋅ Ak ⋅ Ik} +

η
r3
12

(3 cos2 θ − 1) {Sz
1Sz

2 −
1
2 (S+

1 S−
2 + S−

1 S+
2 )}

r12

sample volumes (∼200 μL, of cell suspension) of 20−200 μM
in-cell concentration, and the limitation to small, fast-tumbling
proteins. The low sensitivity implies extended measurements
that require keeping the cell viable for a long time, and the high
concentrations result in in-cell conditions that may deviate
significantly from physiological conditions.
In recent years, pulsed electron−electron double resonance

(PELDOR or DEER) has emerged as another technique that
can provide atomic level structural information on biomolecules
through distance measurements between spin labels. It is
carried out at low temperatures on frozen solutions, and
therefore the dynamic information is lost, but it may be
recovered from the width of the distance distribution.16,17 Due
to its inherently higher absolute sensitivity, compared to NMR,
DEER can potentially develop into an efficient method for in-
cell structural studies. While the in-cell environment is
characterized by thousands of cellular components that can

interfere with the biomolecule under study, DEER is sensitive
only to paramagnetic systems, and therefore background
interference is expected to be negligible. Indeed, a few in-cell
DEER proof of principle demonstrations have recently been
reported.18−21 These highlighted two major challenges. The
first one is that the commonly used nitroxide spin label is
reduced and converted into a diamagnetic hydroxylamine in a
cellular environment (half-life of approximately 50 min).18 This
limits the delivery method to instantaneous microinjection
(followed by immediate freezing) to oocytes, which consid-
erably narrows the scope of the approach and prevents time
evolution explorations. Another major difficulty is the limited
sensitivity, as the measurements were carried out at standard X-
band (∼9.5 GHz) frequencies. These measurements required
∼50 oocytes per sample with an in-cell concentration of ∼200
μM;18 orders of magnitude above proteins’ physiological
concentrations. Therefore, for DEER to become a viable in-

Figure 1. (a) Ribbon structure of the ubiquitin (PDB code 1UBQ). Ser20 and Gly35 were substituted with cysteines and labeled with Gd3+-DOTA-
M. (b) Labeling reaction of Gd3+-DOTA-M with cysteine residues. (c) The four pulse DEER sequence.17

Figure 2. (A) W-band ED EPR spectrum of in vitro reference S20C/G35C-Gd3+-DOTA-M solution at 10 K. The position of the pump (ν2) and
observer (ν1) frequencies are shown. (b) Two pulse-echo decay of the in-cell (red) and in vitro (black) samples at the observer frequencies. The open
circles correspond to the τ2 value of the DEER experiment.
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High-field, isotropic g-tensor, pair of  electron spins with s>1/2

Eigenvalues are distributed 
(2 x 2 = 4 parameters) Distances are distributed 

(1 parameter)

Orientations are distributed (1 parameter)

Need to ensemble average simulations over 6 independent parameter distributions!

Prevents use of  higher spin labels which have desirable biological properties 



Idea: Use bosonic (continuous variable) ancilla to parallelize simulation  

Û (t) = ei ̂xĤspint

|ψ0⟩ = |ψ0⟩boson |ψ0⟩spin

S (t) = ⟨ψ0 | Û† (t) ̂S+
totÛ (t) |ψ0⟩ = ∫ dx p (x) spin⟨ψ0 |eixĤspint ̂S+

tote
−ixĤspint |ψ0⟩spin

Boson-controlled spin interaction

|ψ0⟩boson = ∫ dx p (x) |x⟩

D(!)

Z
Transmon 1

Transmon 2

ModeBoson

Spin

Spin

Senko - PRX (2015) 
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implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD2
H

!! !! ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s

∂θAðωjθÞ

!!!!!

!!!!!≤
ffiffiffiffiffiffi
Iθθ

p
ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 
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Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown. 
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1–4, where 
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the 
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.
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Fig. 3 | Method overview. We take a product state with a given total magnetization mi, according to Q0(j). The latter can be chosen to minimize the 
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.
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variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(θ) and measure the project back onto the z-basis at 
time t. By applying a fast Fourier transform to the estimate S(t∣θ), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.
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Faithful time-evolution: Decoherence in quantum hardware  Decoherence in NMR system≤

Efficient ensemble averaging: Use ancillas in a superposition


