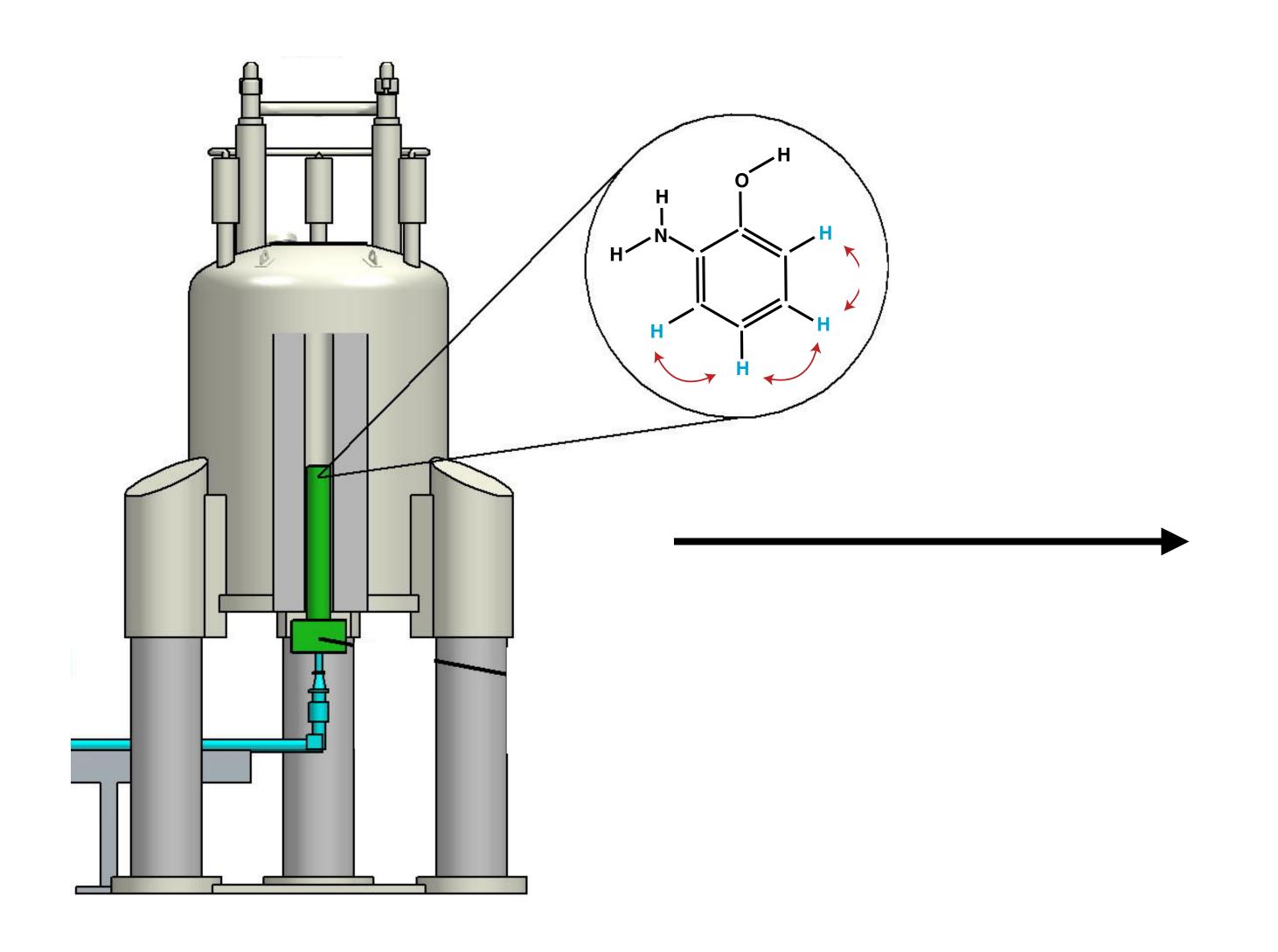
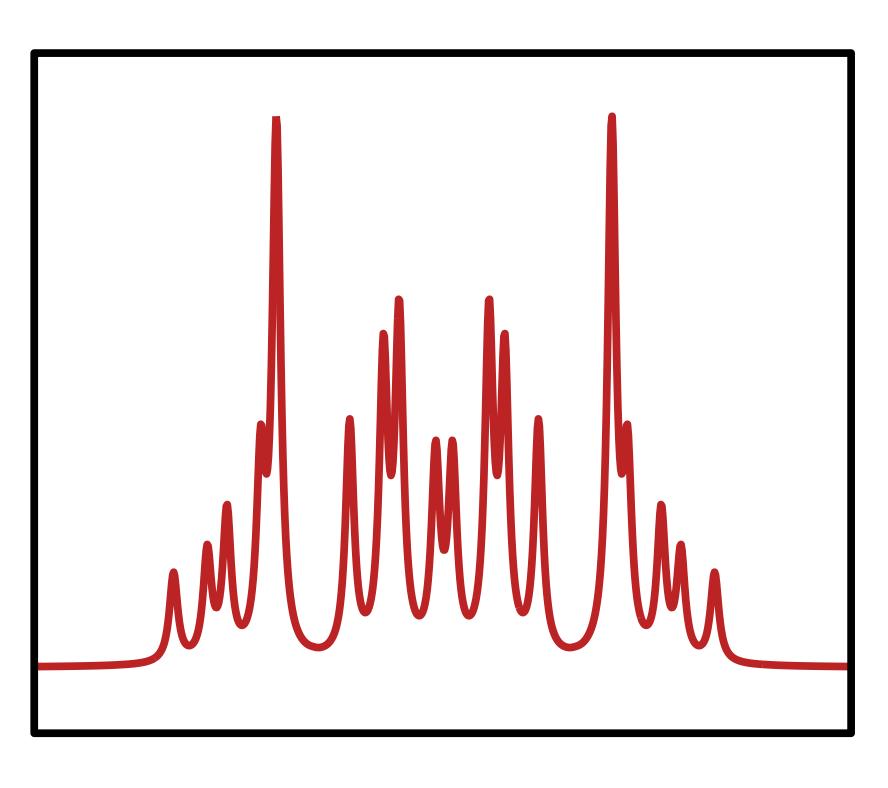
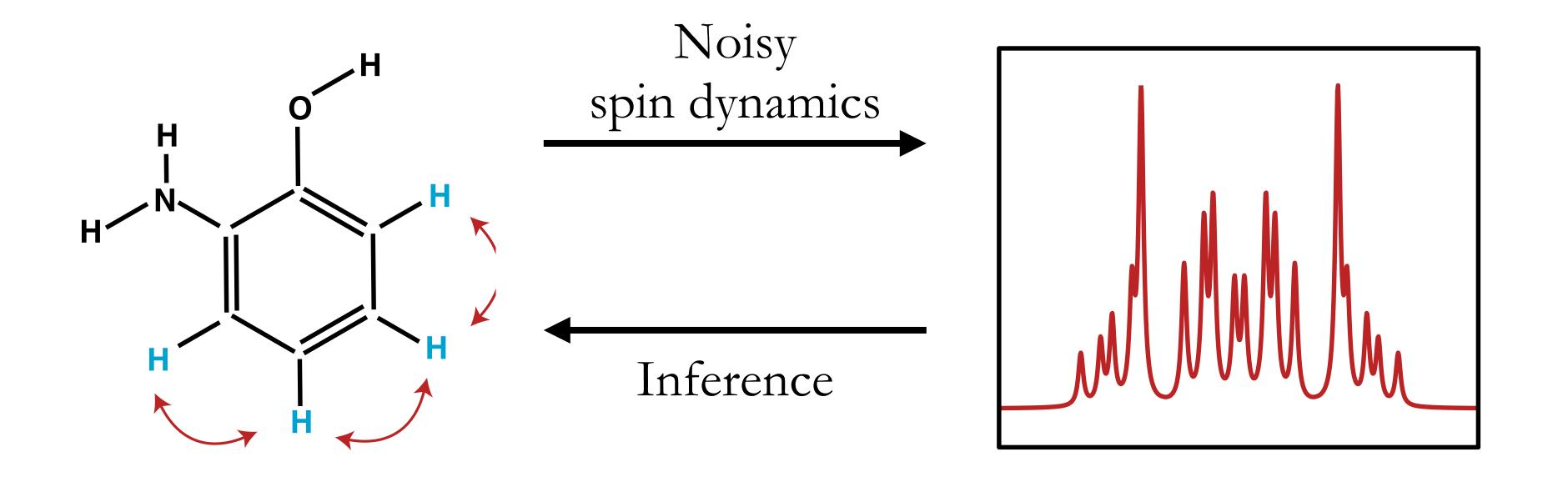
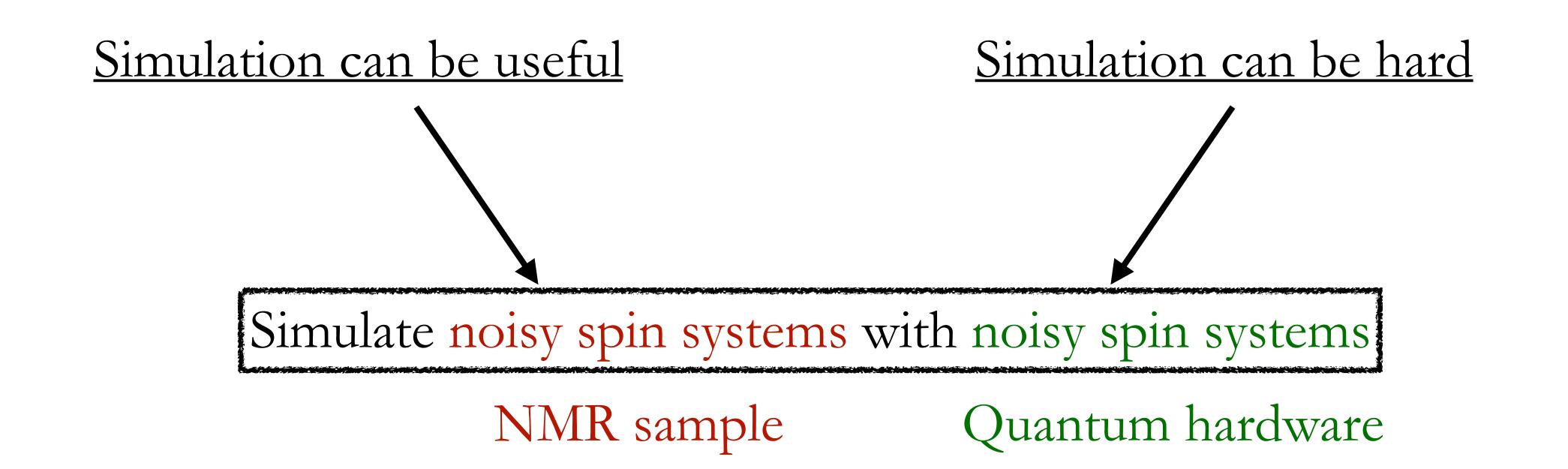
Quantum simulation of parameteraveraged NMR experiments

NMR spectroscopy









$$S(t) = \left\langle \hat{S}_{\text{tot}}^{+}(t) \right\rangle = -\lambda \text{Tr} \left\{ e^{i\hat{H}t} \hat{S}_{\text{tot}}^{+} e^{-i\hat{H}t} \hat{S}_{\text{tot}}^{z} \right\}$$

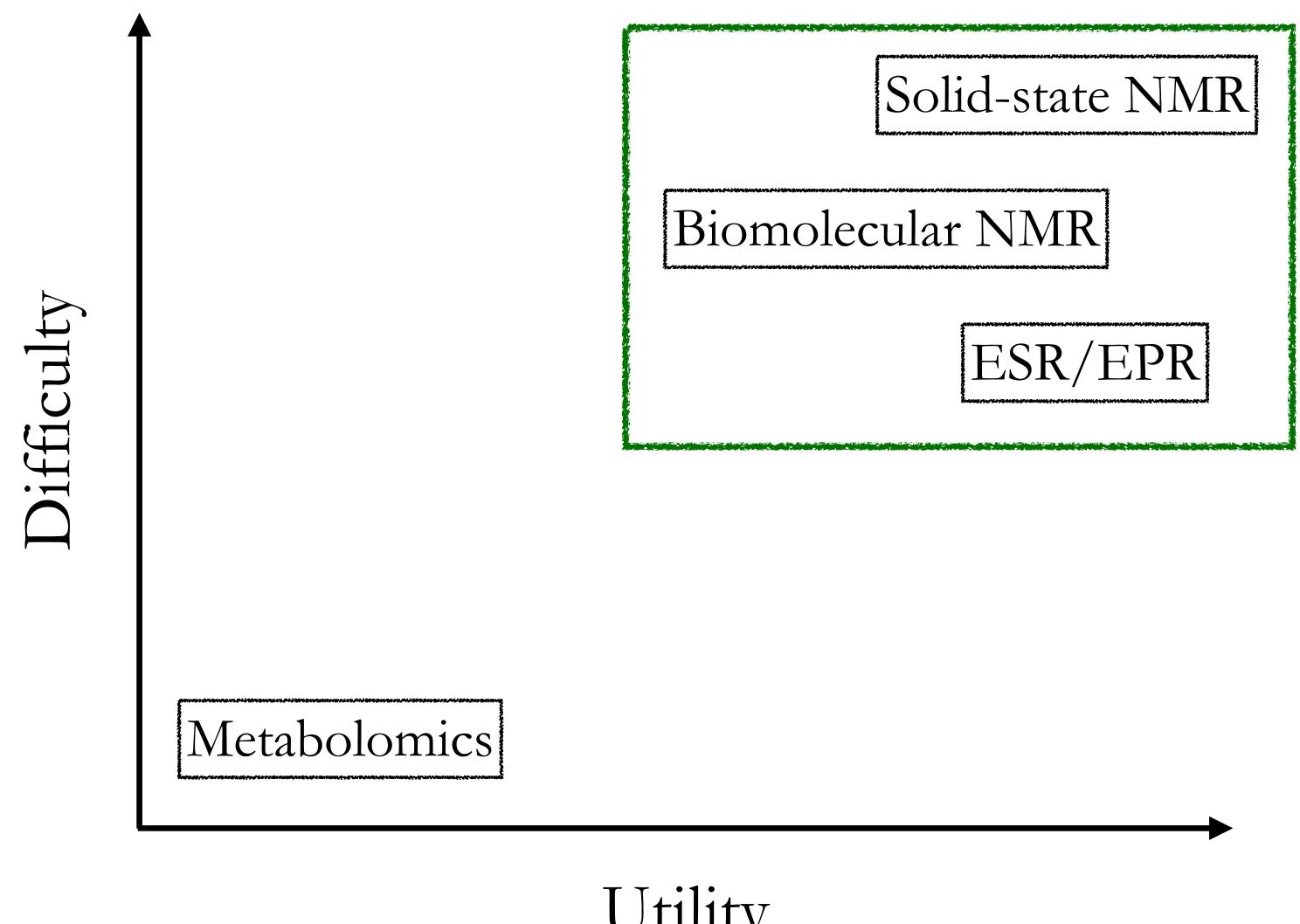
$$\hat{H} = \sum_{i} (2\pi h_{i}) \, \hat{S}_{i}^{z} + \sum_{i < j} (2\pi J_{i,j}) \, \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} + \sum_{i < j} \frac{\left(2\pi \tilde{K}_{i,j}\right)}{r_{i,j}^{3}} \left(\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} - 3\left(\hat{\mathbf{S}}_{i} \cdot \mathbf{u}_{i,j}\right)\left(\hat{\mathbf{S}}_{j} \cdot \mathbf{u}_{i,j}\right)\right)$$
Local magnetic

Local magnetic response

Bond angles

Relative positions of nuclei

Simulation utility and difficulty



- 1. Dynamics is hard (protein NOESY, solid-state NMR)
- 2. Ensemble averaging (ESR/EPR, solid-state NMR)

Utility

Computing the spectrum

$$A(\omega) = \operatorname{Re} \int_{0}^{\infty} dt \cdot e^{i\omega t - \gamma t} S(t)$$

$$S(t) = \langle S_{\text{tot}}^{+}(t) \rangle = -\lambda \text{Tr} \left\{ \hat{S}_{\text{tot}}^{+}(t) \, \hat{S}_{\text{tot}}^{z} \right\}$$

$$|m_j(t)\rangle = \hat{U}(t,0) |m_j\rangle$$

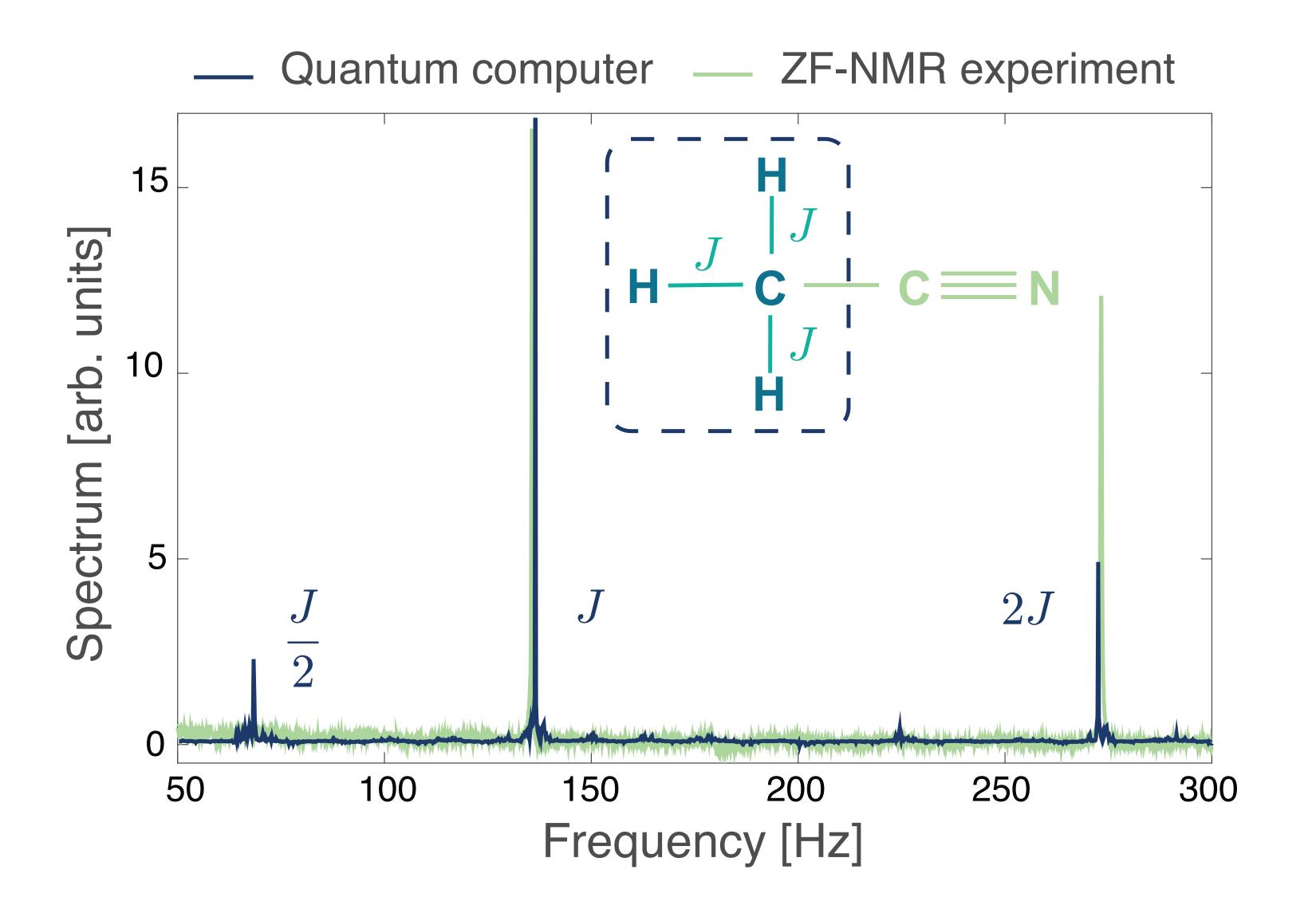
Easy to do on a quantum computer given the ability to implement $\hat{U}(t,0)$

$$S(t) = \frac{1}{2^{N_s}} \sum_{j=1}^{2^{N_s}} m_j \langle m_j(t) | \hat{S}_{tot}^+ | m_j(t) \rangle$$

Use importance sampling to reduce cost

Experimental demonstration

$$\hat{H} = 2\pi J \left(\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2 + \hat{\mathbf{S}}_3 \right) \cdot \hat{\mathbf{S}}_4$$
$$J = 136.2 \text{ Hz}$$



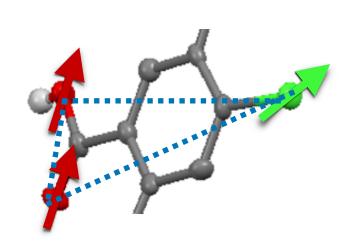
KS - arXiv:2109.13298

Ensemble averaging with discrete ancillas

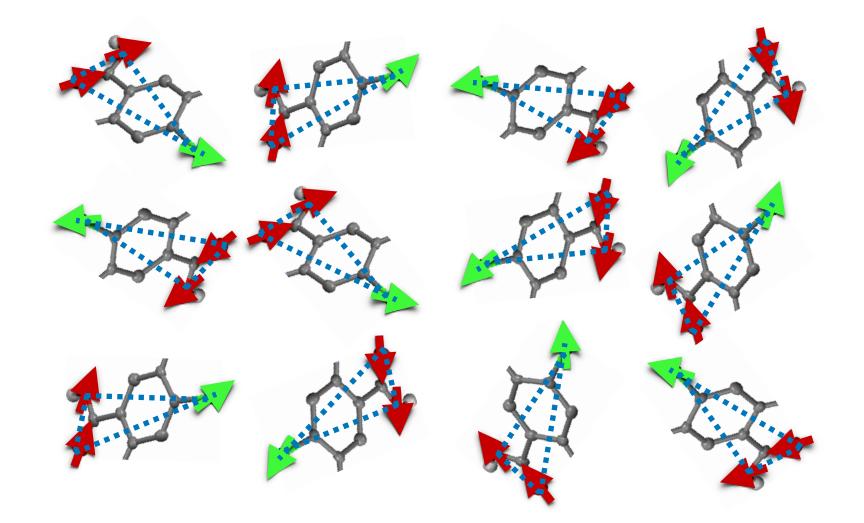
Solid state NMR

Pharma-relevant proteins, Polymers, Industrial catalysts, Battery materials

Simulation often necessary to infer chemical structure



$$d_{ij} \propto \frac{1}{r_{ij}^3} \left(3\cos^2 \Theta_{ij} - 1 \right)$$



Classical challenges:

(1) long-range dynamics is challenging to classically simulate

Can more naturally encode dynamics on quantum computer/simulator

(2) need to average over 10³-10⁴ angles

Can do in a single pass using 10-15 ancilla qubits

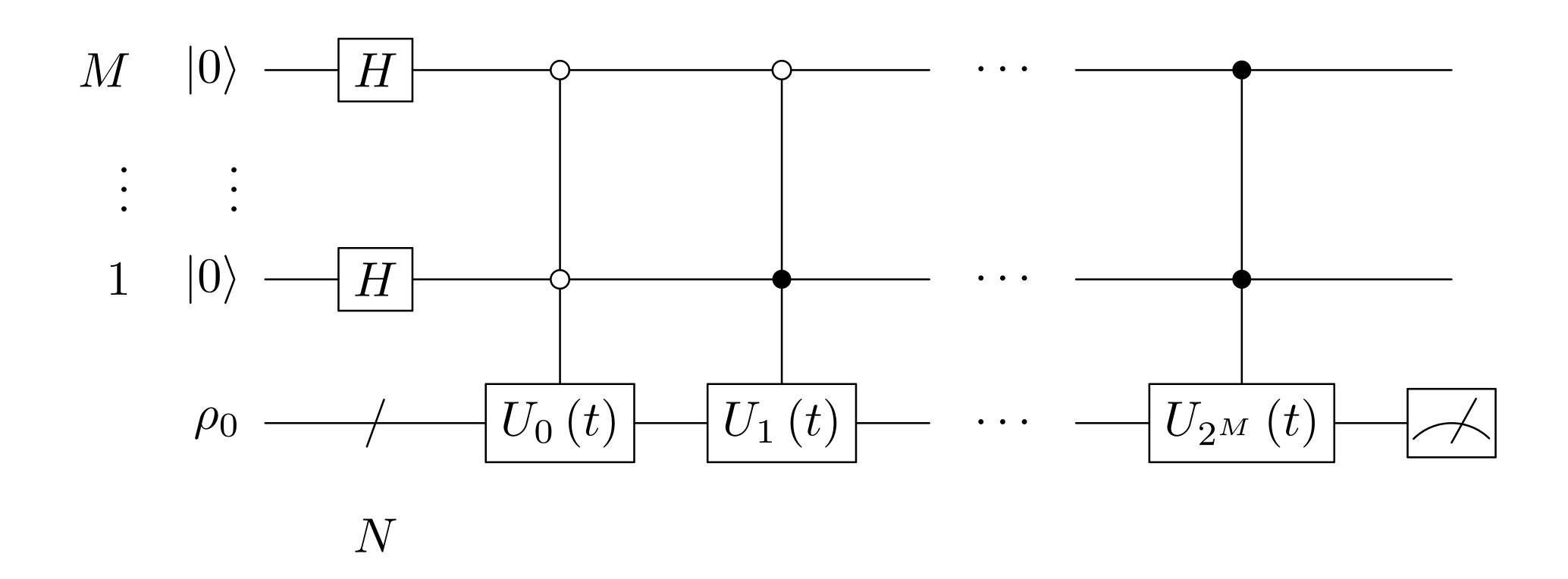
Quantum advantages:

Idea: Use ancilla-controlled operations to parallelize simulation

$$H = \omega_0 S_{\text{tot}}^z + \omega_0 \sum_i \omega_i S_i^z + \sum_{i,j} b_{ij} \left(3(S_i \cdot e_{ij}^{(\Omega)})(S_j \cdot e_{ij}^{(\Omega)}) - S_i \cdot S_j \right)$$

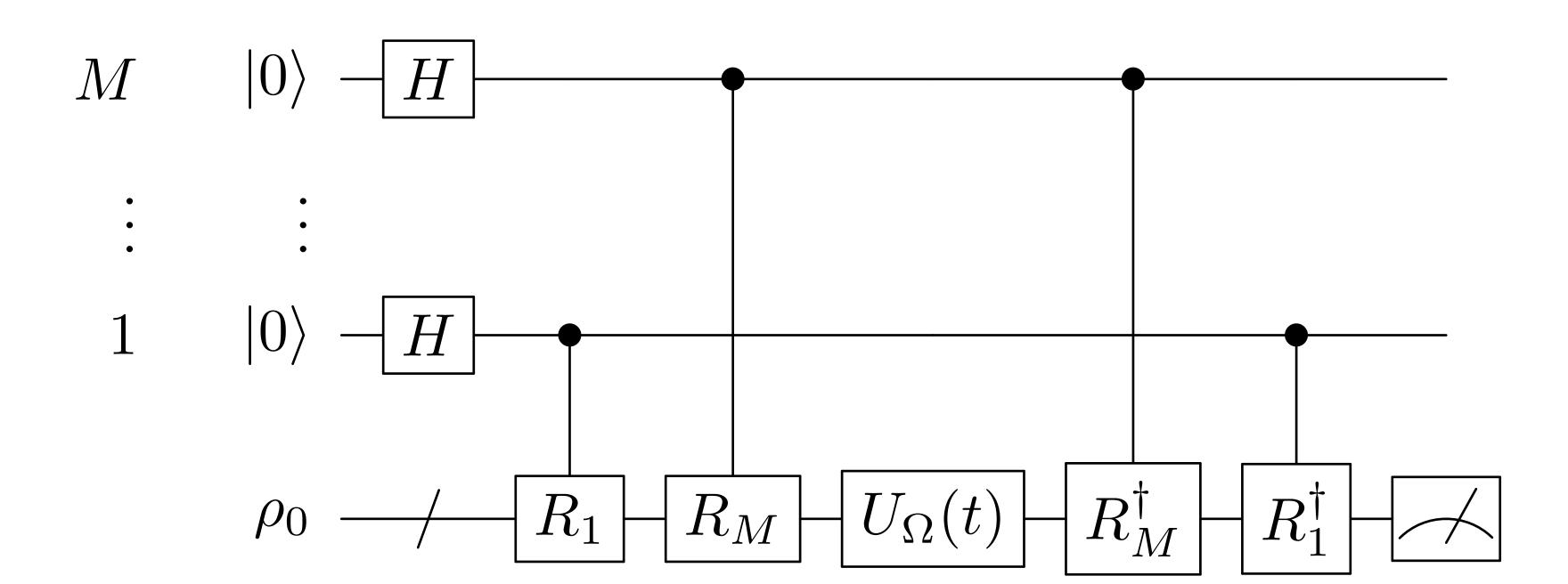
$$Depends on orientation$$

$$b_{ij} = -\frac{\mu_0 \gamma^2 \hbar}{4\pi r_{ij}^3}$$



Orientation averaging (simplified)

$$H_{\Omega} = \sum_{i,j} b_{ij} \left(3(\mathbf{S}_i \cdot \mathbf{e}_{ij}^{(\Omega)})(\mathbf{S}_j \cdot \mathbf{e}_{ij}^{(\Omega)}) - \mathbf{S}_i \cdot \mathbf{S}_j \right)$$



$$U_{\Omega}(t) = e^{-iH_{\Omega}t}$$

$$R_k = e^{-i\varphi_k \mathbf{n}_k \mathbf{S}_{\text{tot}}}$$

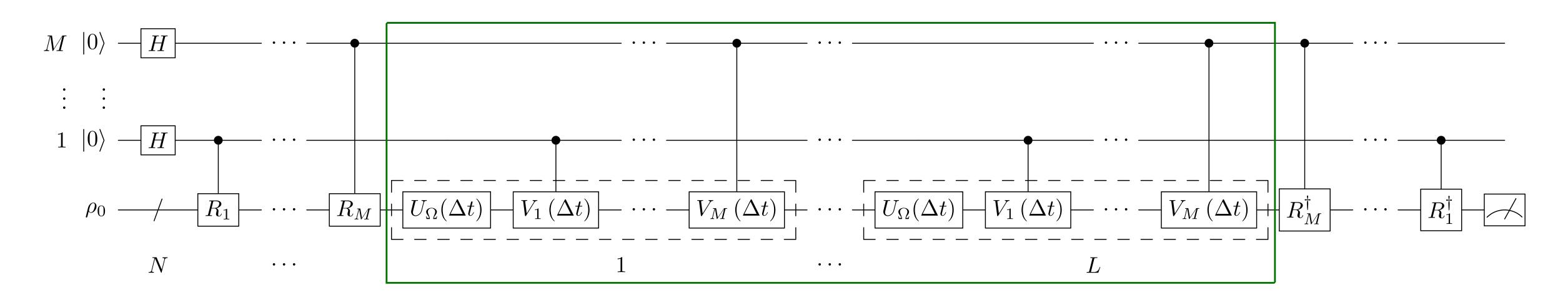
Controlled version =

Two-qubit gates

Orientation averaging (full)

$$H = \omega_0 S_{\text{tot}}^z + \omega_0 \sum_{i} \omega_i S_i^z + \sum_{i,j} b_{ij} \left(3(S_i \cdot e_{ij}^{(\Omega)})(S_j \cdot e_{ij}^{(\Omega)}) - S_i \cdot S_j \right)$$

$$b_{ij} = -\frac{\mu_0 \gamma^2 \hbar}{4\pi r_{ij}^3}$$



- Discretize dynamics: $U_{\Omega}(t) = \left[U_{\Omega}(\Delta t)\right]^{L}$
- Fix chemical shift term: $V_k(\Delta t) = R_k e^{-i\Delta t} \omega_0 \sum_i (1 + \omega_i) S_i^z R_k^{\dagger}$

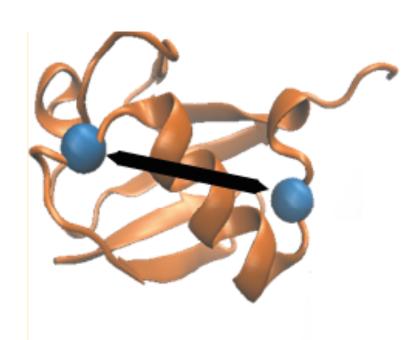
Efficient powder-averaged solid-state NMR simulation!

Controlled version = Two-qubit gates

Ensemble averaging with continuous ancilla

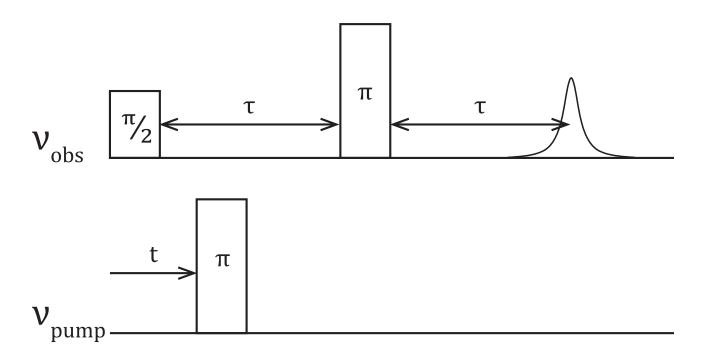
Electron paramagnetic resonance (EPR)

Catalysts, photosystems, molecular conductors, proteins in live cell environment

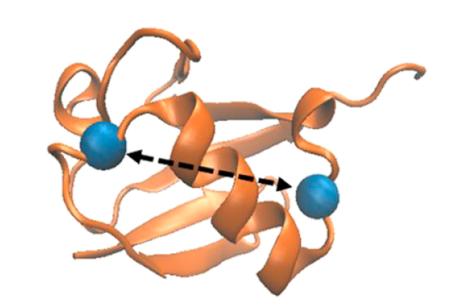


Simulation necessary to infer structural change

Can be hard due to ensemble averaging for spin >1/2



High spin EPR



High-field, isotropic g-tensor, pair of electron spins with s>1/2

$$H = \sum_{k=1,2} \left\{ \omega_{i} S_{k}^{z} + \mathbf{S}_{k} \cdot \overline{\mathbf{D}}_{k} \cdot \mathbf{S}_{k} + \mathbf{S}_{k} \cdot \overline{\mathbf{A}}_{k} \cdot \mathbf{I}_{k} \right\} + \frac{\eta}{r_{12}^{3}} \left(3 \cos^{2} \theta - 1 \right) \left\{ S_{1}^{z} S_{2}^{z} - \frac{1}{2} \left(S_{1}^{+} S_{2}^{-} + S_{1}^{-} S_{2}^{+} \right) \right\}$$
Eigenvalues are distributed (2 x 2 = 4 parameters)

Distances are distributed (1 parameter)

Distances are distributed (1 parameter)

Need to ensemble average simulations over 6 independent parameter distributions!

Prevents use of higher spin labels which have desirable biological properties

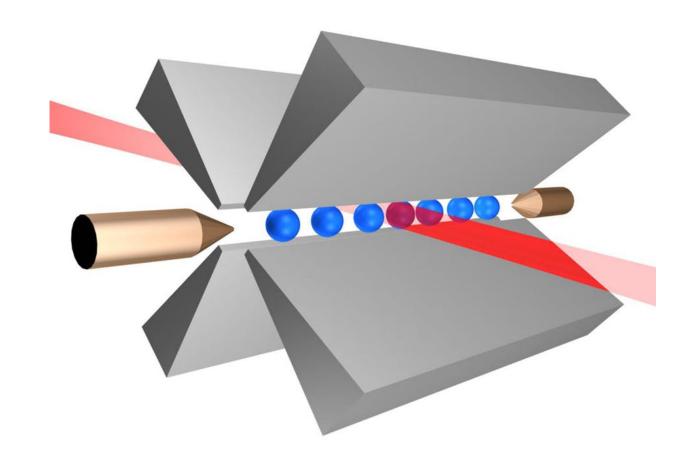
Idea: Use bosonic (continuous variable) ancilla to parallelize simulation

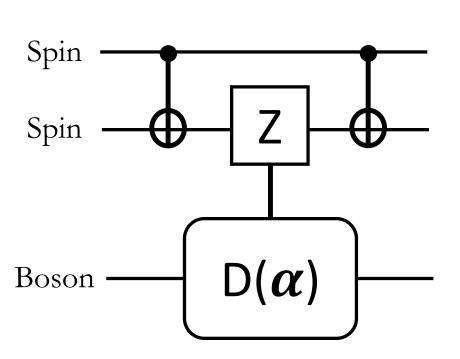
Boson-controlled spin interaction
$$\hat{U}(t) = e^{i\hat{x}\hat{H}_{\rm spin}t}$$

$$|\psi_0\rangle = |\psi_0\rangle_{\rm boson}|\psi_0\rangle_{\rm spin}$$

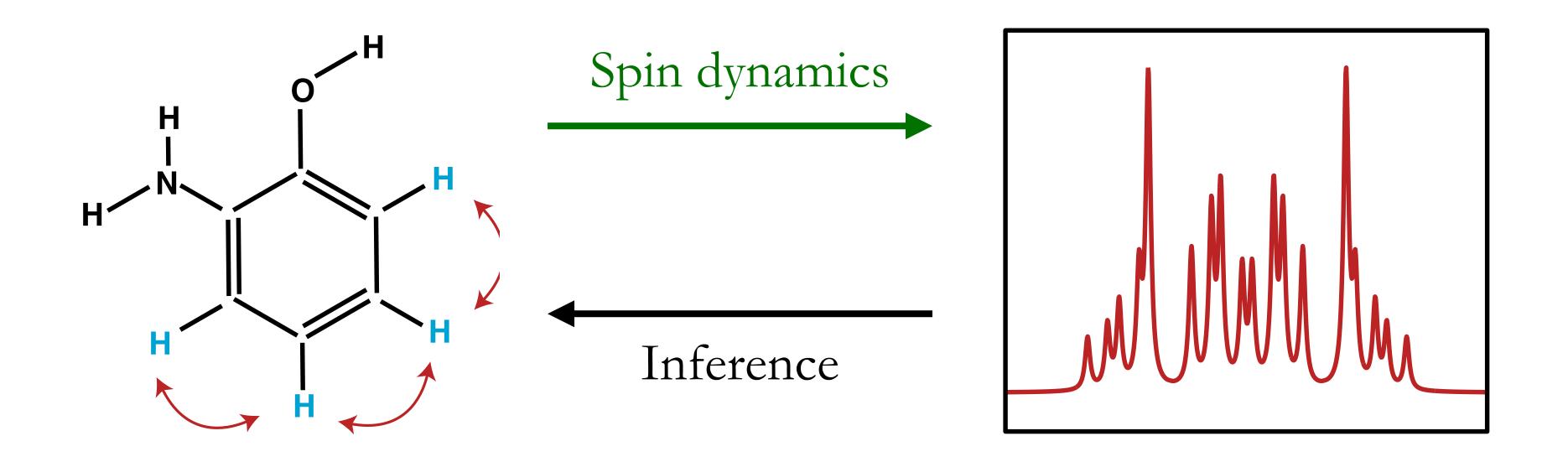
$$|\psi_0\rangle = |\psi_0\rangle_{\text{boson}} |\psi_0\rangle_{\text{spin}}$$
 $|\psi_0\rangle_{\text{boson}} = \int dx \sqrt{p(x)} |x\rangle$

$$S(t) = \langle \psi_0 | \hat{U}^{\dagger}(t) \hat{S}_{\text{tot}}^+ \hat{U}(t) | \psi_0 \rangle = \int dx \ p(x) \ _{\text{spin}} \langle \psi_0 | e^{ix\hat{H}_{\text{spin}}t} \hat{S}_{\text{tot}}^+ e^{-ix\hat{H}_{\text{spin}}t} | \psi_0 \rangle_{\text{spin}}$$





Senko - PRX (2015)



Faithful time-evolution: Decoherence in quantum hardware ≤ Decoherence in NMR system

Efficient ensemble averaging: Use ancillas in a superposition

Acknowledgements

- Theory: Alexander Schuckert (UMD), Eleanor Crane (UMD), Dries Sels (NYU, Flatiron), Eugene Demler (ETH Zurich)
- Experiment: Debopriyo Biswas, Crystal Noel, Or Katz, Marko Cetina, Chris Monroe (UMD, Duke)
- Other: Haribabu Arthanari (Harvard Medical School), Ilya Kuprov (Southampton)