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• Quantum systems with intricate entanglement are pivotal in 
quantum information science. 

• However, it is experimentally challenging to certify that a highly-
entangled quantum state is created in the lab.
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Motivation

• Quantum systems with intricate entanglement are pivotal in 
quantum information science. 

• To understand if we have created the desired quantum system in 
the lab, we need to perform certification.



• We have a desired -qubit state , which is our target state. 

• We have an -qubit state  created in the experimental lab. 

• Task: Test if  is close to  or not from data? 

                 (  is close to 1) 

• A fundamental task in data science for quantum.
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Motivation

• Many techniques based on statistics & learning theory have been 
proposed for performing certification. 

• However, it remains experimentally challenging to certify highly-
entangled quantum many-body systems.



• Approach 1: Random Clifford measurements (classical shadow) 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.
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• Approach 1: Random Clifford measurements (classical shadow) 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

is still experimentally challenging.
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• Approach 2: Random Pauli measurements (classical shadow) 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.
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• Approach 2: Random Pauli measurements (classical shadow) 

• Advantage: 

Only needs single-qubit measurements on  

• Challenge: 

Requires exp( ) measurements for most target  

especially when  is highly entangled.

ρ

n |ψ⟩

|ψ⟩

How to Certify?



• Approach 3: Cross-entropy benchmark (XEB) 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.
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• Approach 3: Cross-entropy benchmark (XEB) 

• Advantage: 

Only needs single-qubit measurements (Z-basis) on  

• Challenge: 
Does not rigorously address the certification task. 

 can be far from  despite perfect XEB score.
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• All existing certification protocols either 

        a. Require deep quantum circuits 

        b. Use exponentially many measurements 

        c. Apply for low-entanglement state  

        d. Lack rigorous guarantees

|ψ⟩

Existing Challenges



• All existing certification protocols either 
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• All existing certification protocols either 

        a. Require deep quantum circuits before measurements 

        b. Use exponentially many measurements 

        c. Apply only for low-entanglement state  

        d. Lack rigorous guarantees
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Question
Can we rigorously certify highly-entangled quantum states 

from performing few single-qubit measurements?



Question
Can we rigorously certify almost all quantum states 
from performing few single-qubit measurements?
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For almost all -qubit state , we can certify that  is close 
to  using only  single-qubit measurements.

n |ψ⟩ ρ
|ψ⟩⟨ψ| 𝒪(n2)

Theorem 1

Certification



For almost all -qubit state , we can certify that  is close 
to  using only  single-qubit measurements.

n |ψ⟩ ρ
|ψ⟩⟨ψ| 𝒪(n2)

Theorem 1

• The certification procedure applies to any . 

•  is enough even when  has  circuit complexity.

ρ

𝒪(n2) |ψ⟩ exp(n)
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For almost all -qubit state , we can certify that  is close 
to  using only  single-qubit measurements.

n |ψ⟩ ρ
|ψ⟩⟨ψ| 𝒪(n2)

Theorem 1

• The certification procedure applies to any . 

•  is enough even when  has  circuit complexity.
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• Consider an -qubit target state . 

• Choose a basis , where  is a bitstring. 

• Let  be the measurement distribution.
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• Let  be the measurement distribution. 

• Consider a random walk on -bit Boolean hypercube.

π(b) = |⟨b|ψ⟩ |2
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• Let  be the measurement distribution. 
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• Let  be the measurement distribution. 

• Consider a random walk on -bit Boolean hypercube.

π(b) = |⟨b|ψ⟩ |2
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• Let  be the measurement distribution. 

• Let  be the time the random talk takes to relax to stationary .

π(b) = |⟨b|ψ⟩ |2
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For an -qubit state  with relax. time , we can certify that 
 is close to  with  single-qubit measurements.

n |ψ⟩ τ
ρ |ψ⟩⟨ψ| 𝒪(τ)

Theorem 2

• When restricted to independent Pauli-basis measurements, 
we need  single-qubit measurements.𝒪(τ2)

Certification
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• Repeat the following measurement a few times.
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• Pick a random qubit .x
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• Pick a random qubit . Measure all except qubit  in Z basis.x x
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• Pick a random qubit . Measure  in random X/Y/Z basis.x x
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• That’s it.
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• The measurement outcomes on       specifies an edge  on 

the Boolean hypercube.

(b0, b1)
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• The ideal post-measurement 1-qubit state  on qubit  is 

proportional to .

|ψb0,b1
⟩ x

⟨b0|ψ⟩|0⟩ + ⟨b1|ψ⟩|1⟩
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• Use randomized Pauli measurement (classical shadow) on qubit  

to predict the fidelity  with the ideal 1-qubit state .
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Average over  to get 
Shadow overlap 

ω
𝔼[ω]



Key Feature

 is the time the random talk takes to relax to stationary τ π

Shadow overlap  accurately tracks the fidelity .𝔼[ω] ⟨ψ|ρ|ψ⟩
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Physical Intuition

Shadow overlap  

•  and  has overlap of zero. 

•  and  has shadow overlap of . 

• Shadow overlap is like the Hamming distance version of fidelity.
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Physical Intuition
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Physical Intuition

Shadow overlap  

•  and  has fidelity 0. 

•  and  has = . 

• Shadow overlap has a Hamming distance nature.
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What can we use this new certification protocol for?

Applications



What can we use this new certification protocol for?

Applications

Example 1
Benchmarking

Shadow overlap  certifies 
if the state has a high fidelity

𝔼[ω]



Benchmarking quantum devices

4-qubit Haar random state 
White Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n
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What can we use this new certification protocol for?

Train/certify ML models, 
such as neural quantum states, 

using shadow overlap 𝔼[ω]

Example 2
ML tomography

Applications
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Shadow overlap  certifies 
if the state has a high fidelity

𝔼[ω]
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Training/Certifying NN tomography

Neural 
Network 
for |ψ⟩

|b0⟩

|b1⟩

Relative Neural Quantum State

Use NN  times 
to get 

n
⟨b|ψ⟩

Represent |ψ⟩
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⟨b1|ψ⟩



Training/Certifying NN tomography

We consider learning a class of 120-qubit states with 
exponentially high circuit complexity.



Training/Certifying NN tomography
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Training/Certifying NN tomography

We consider learning a class of 120-qubit states with 
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Training/Certifying NN tomography

We consider learning a class of 120-qubit states with 
exponentially high circuit complexity.



Train/certify ML models, 
such as neural quantum states, 

using shadow overlap 𝔼[ω]

Example 2
ML tomography

Applications

Example 1
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Train/certify ML models, 
such as neural quantum states, 

using shadow overlap 𝔼[ω]

Example 2
ML tomography

Applications

Example 1
Benchmarking

Shadow overlap  certifies 
if the state has a high fidelity

𝔼[ω]

Example 3
Optimizing circuits

To prepare a target state , 
we can optimize the circuit 

to max shadow overlap 

|ψ⟩

𝔼[ω]

What can we use this new certification protocol for?



Optimizing state-preparation circuit
n = 6 n = 50

n = 6 n = 50

Constructing an n-qubit MPS 
with H, CZ, T gates.



Optimizing state-preparation circuit

Training using Monte-Carlo 
optimization to prepare 

a 50-qubit MPS.

n = 50

n = 50



• We prove that almost all quantum states can be efficiently certified 
from few single-qubit measurements. 

• Are there states not certifiable with few single-qubit measurements?

Conclusion


