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Motivation

® Quantum systems with are pivotal in

quantum information science.

® To understand if we have created the desired quantum system in

the lab, we need to perform certification.




What is Certification?

® \We have a desired n-qubit state |i/), which is our target state.
® \We have an n-qubit state p created in the experimental lab.

® Task: Test if p is close to or not from data?

( is close to 1)

® A fundamental task in data science for quantum.




Motivation

® Many techniques based on statistics & learning theory have been

proposed for performing certification.

® However, it remains experimentally challenging to certity highly-

entangled quantum many-body systems.
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® Approach 1: Random Clifford measurements (classical shadow)
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How to Certify?

® Approach 1: Random Clifford measurements (classical shadow)

® Advantage:

Only needs depth-n random Clitford circuits on

® Challenge:

Implementing depth-n random Clifford circuits

is still experimentally challenging.
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How to Certify?

® Approach 2: Random Pauli measurements (classical shadow)

® Advantage:

Only needs single-qubit measurements on

® Challenge:

Requires exp(n) measurements for most target

especially when is highly entangled.




How to Certify?

® Approach 3: Cross-entropy benchmark (XEB)
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How to Certify?

® Approach 3: Cross-entropy benchmark (XEB)

® Advantage:

Only needs single-qubit measurements (Z-basis) on

® Challenge:

Does not rigorously address the certification task.

can be far from despite pertect XEB score.
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Existing Challenges

® All existing certification protocols either
a. Require deep quantum circuits before measurements
b. Use exponentially many measurements
c. Apply only for low-entanglement state

d. Lack rigorous guarantees




Question

Can we rigorously certity highly-entangled quantum states

from performing few single-qubit measurements?
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Question

Can we rigorously certify almost all quantum states

from performing few single-qubit measurements?
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Outline

® Theorem
® Protocol

® Applications
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For almost all n-qubit state 1//), we can certity that p is close

to using only O(n?) single-qubit measurements.
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Certification
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\_

For almost all n-qubit state 1//), we can certity that p is close

to using only O(n?) single-qubit measurements.

/

® The certification procedure applies to any .

e O(n?) is enough even when has exp(n) circuit complexity.



Relaxation Time

® Consider an n-qubit target state
® Choose a basis |b), where b € {0,1}" is a bitstring.

o Let 7(b) = | (b|y)|* be the measurement distribution.
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Relaxation Time

o Let 7(b) = | (b|y)|* be the measurement distribution.

® Consider a random walk on n-bit Boolean hypercube.
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Relaxation Time

o Let 7(b) = | (b|y)|* be the measurement distribution.

® Consider a random walk on n-bit Boolean hypercube.
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Relaxation Time

o Let 7(b) = | (b|y)|* be the measurement distribution.

® | et 7 be the time the random talk takes to relax to stationary r.

100 110 100 110
With prob. 000 % With prob. oo 010
7(b) (b’ 111
2(b) + (b)) T 2o+ 20)

001 011 001 011



Certification

B ecrem 2 .

For an n-qubit state with relax. time 7, we can certity that

is close to with O(7) single-qubit measurements.

\_ J

® \When restricted to independent Pauli-basis measurements,

we need O(7°) single-qubit measurements.
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Measurement Protocol

® Repeat the following measurement a few times.

Quantum state Single-qubit
Measurement



Measurement Protocol

® Pick a random qubit x.
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Measurement Protocol

® Pick a random qubit x. Measure all except qubit x in Z basis.
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Measurement Protocol

® Pick a random qubit x. Measure x in random X/Y/Z basis.

Quantum state Single-qubit
Measurement



Measurement Protocol

® That's it.
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Postprocessing

® The measurement outcomes on || specities an edge (b, b;) on

the Boolean hypercube.
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Postprocessing

® The post-measurement 1-qubit state on qubit x is

proportional to (by|y)|0) + (b;|y)|1).

100 110

000% 4 (A x/v/z
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001 A11 Single-qubit
Measurement
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Postprocessing

® Use randomized Pauli measurement (classical shadow) on qubit x

to predict the fidelity @ with the 1-qubit state
100 110
000% 4 (A x/v/z
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Postprocessing

® Use randomized Pauli measurement (classical shadow) on qubit x

to predict the fidelity @ with the 1-qubit state

Average over @ to get

000 Shadow overlap | o]
1 11 LK)/ LA)/ I (AR
00" f11 Single-qubit

Measurement
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Key Feature

Shadow overlap [E|@]| accurately tracks the fidelity

Elw] > 1 — € implies > |1 — 7€

> 1 —€eimpliestlw| > 1 —¢€

7 is the time the random talk takes to relax to stationary «
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Physical Intuition

ln
Shadow overlap || = — Tr(
woverap (01 =1 3 3

® and has fidelity O.

° and has E|w|= n;I.

® Shadow overlap has a Hamming distance nature.
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Applications

What can we use this new certification protocol for?

Example 1

Benchmarking

Shadow overlap E[w] certities
it the state has a high fidelity
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Benchmarking quantum devices

Hilbert space d = 24 (Haar)

1.0
> 0.8
S
L 0.6
4-qubit Haar random state 3
White Noise § 0.4
1 True Fidelity
0.2 XEB
Shadow Overlap
0.0

0.0 0.1 0.2 0.3 0.4 0.5

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is % White Noise



Benchmarking quantum devices

Hilbert space d = 229 (Haar)
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Benchmarking quantum devices

Hilbert space d = 24 (Haar)
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Benchmarking quantum devices

Hilbert space d = 24 (Phase)
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Benchmarking quantum devices

Hilbert space d = 229 (Phase)

1.0
> 0.8
S
L. 0.6
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20 0.2 XEB
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*Shadow overlap normalized s.t., target state is 1, maximally mixed state is % White Noise



Benchmarking quantum devices
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Benchmarking quantum devices

Hilbert space d = 229 (Phase)
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Applications

What can we use this new certification protocol for?

Example 1

Benchmarking

Shadow overlap E[w] certities
it the state has a high fidelity
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Applications

What can we use this new certification protocol for?

Example 1 Example 2
Benchmarking ML tomography

Train/certity ML models,

Shadow overlap E[w] certities

if the state has a high fidelity such as neural quantum states,
e using shadow overlap E[w]




Training/Certifying NN tomography

Represent |y)

Neural

Network = =Ry

for |w)

Standard Neural Quantum State



Training/Certifying NN tomography

Represent |y)

(Dolw)
(b1 |w)

Network

Relative Neural Quantum State



Training/Certifying NN tomography

Represent |y)

(Dolw)
(b1 |w)

Use NN 7 times
to get (b|y)

Network *

Relative Neural Quantum State



Training/Certifying NN tomography

We consider learning a class of 120-qubit states with
exponentially high circuit complexity.

Ground Truth Randomly Init. NQS

> 1.0
5
a
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Subsystem ={1, 2, ..., i}



Training/Certifying NN tomography

Trained using
shadow-overlap-based loss
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Training/Certifying NN tomography

We consider learning a class of 120-qubit states with
exponentially high circuit complexity.

Ground Truth Randomly Init. NQS
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Training/Certifying NN tomography

We consider learning a class of 120-qubit states with
exponentially high circuit complexity.

Ground Truth Randomly Init. NQS Trained NQS (Fidelity = 1.00)
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Subsystem ={1, 2, ..., i}



Applications

What can we use this new certification protocol for?

Example 1 Example 2
Benchmarking ML tomography

Train/certity ML models,

Shadow overlap E[w] certities

if the state has a high fidelity such as neural quantum states,
e using shadow overlap E[w]




Applications

What can we use this new certification protocol for?

Example 1 Example 2 Example 3
Benchmarking ML tomography Optimizing circuits

Shadow overlap E[w] certifies Train/certity ML models, To prepare a target state |y),

if the state has a high f|de||ty such as neural quantum states, we can optimize the circuit
using shadow overlap E[w] to max shadow overlap E[w]
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Optimizing state-preparation circuit
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Optimizing state-preparation circuit
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Conclusion

® \We prove that almost all quantum states can be efficiently certified
from few single-qubit measurements.

® Are there states not certifiable with few single-qubit measurements?




