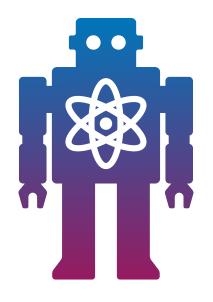
Certifying almost all quantum states with few single-qubit measurements

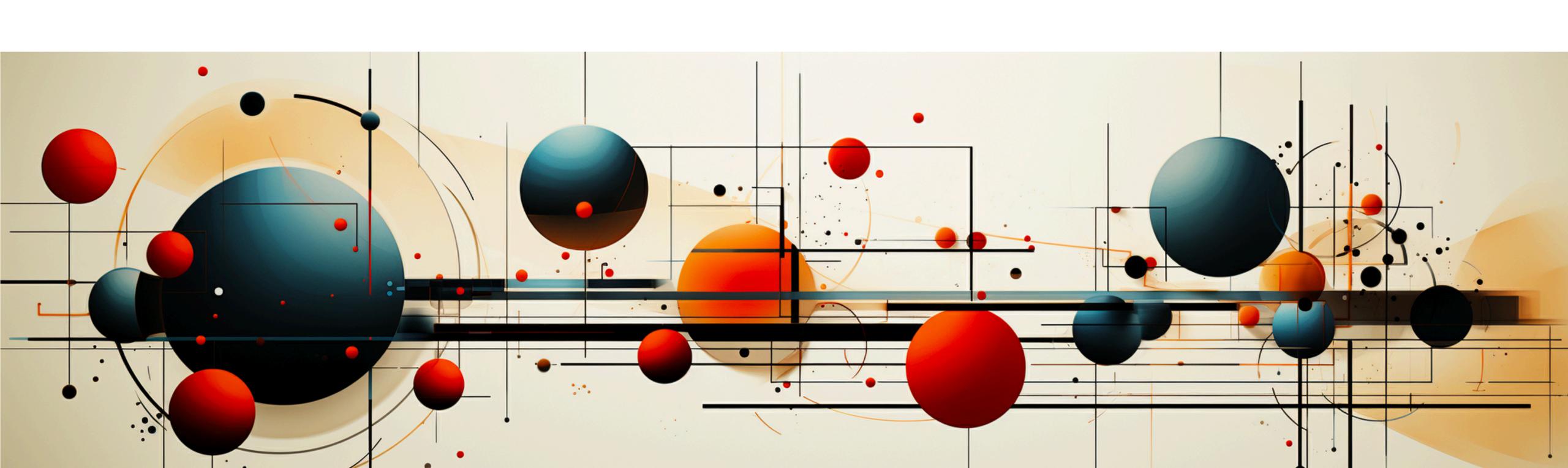
with John Preskill and Mehdi Soleimanifar



Hsin-Yuan Huang (Robert)

Motivation

• Quantum systems with intricate entanglement are pivotal in quantum information science.



Motivation

- quantum information science.
- the lab, we need to perform certification.

• Quantum systems with intricate entanglement are pivotal in

• To understand if we have created the desired quantum system in

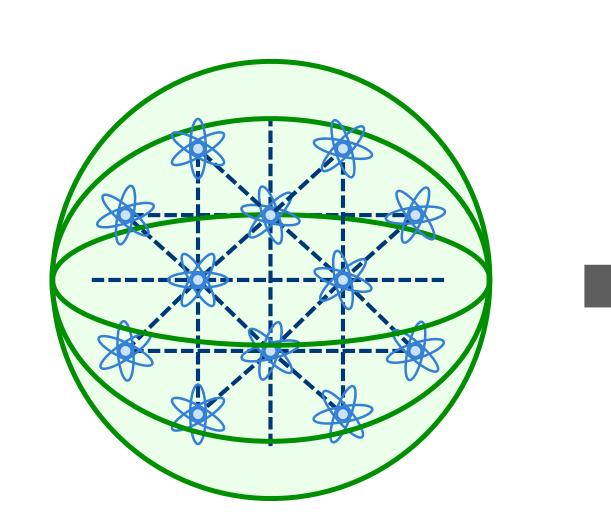
What is Certification?

- We have a desired *n*-qubit state $|\psi\rangle$, which is our target state.
- We have an *n*-qubit state ρ created in the experimental lab.
- Task: Test if ρ is close to $|\psi\rangle\langle\psi|$ or not from data? $(\langle\psi|\rho|\psi\rangle$ is close to 1)
- A fundamental task in data science for quantum.

Motivation

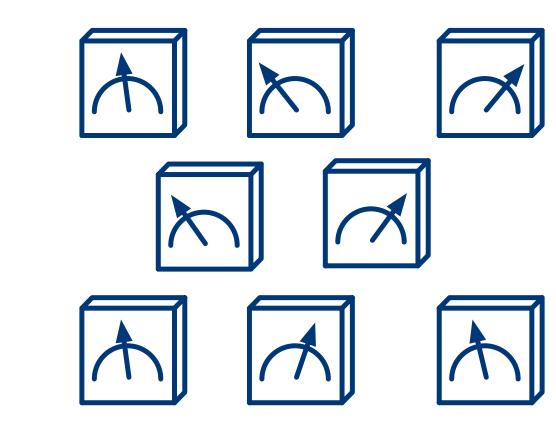
- Many techniques based on statistics & learning theory have been proposed for performing certification.
- However, it remains experimentally challenging to certify highlyentangled quantum many-body systems.

• Approach 1: Random Clifford measurements (classical shadow)



Quantum state

Random Clifford Circuit

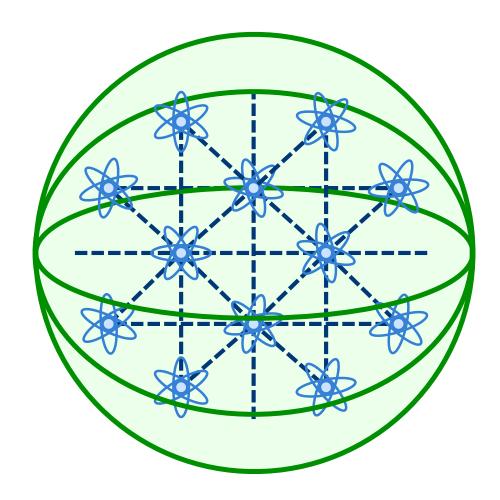


- Advantage: Only needs depth-*n* random Clifford circuits on ρ
- Challenge:

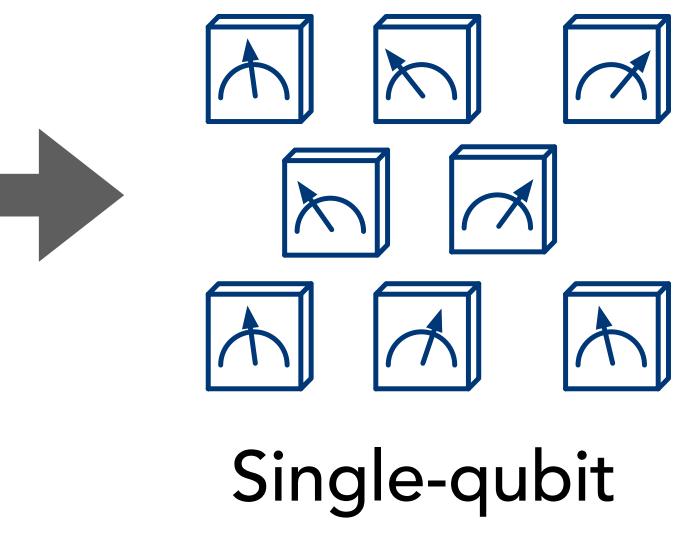
Implementing depth-*n* random Clifford circuits is still experimentally challenging.

• Approach 1: Random Clifford measurements (classical shadow)

• Approach 2: Random Pauli measurements (classical shadow)



Quantum state

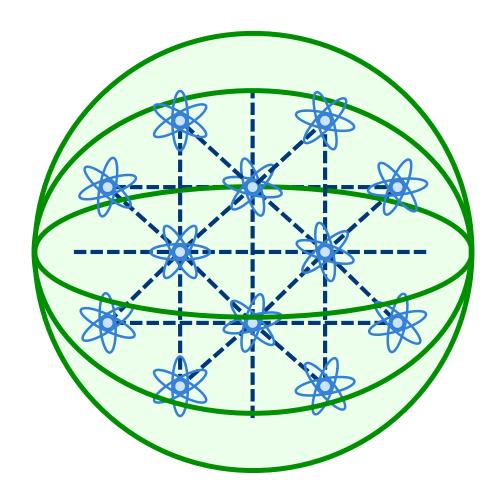


Measurement

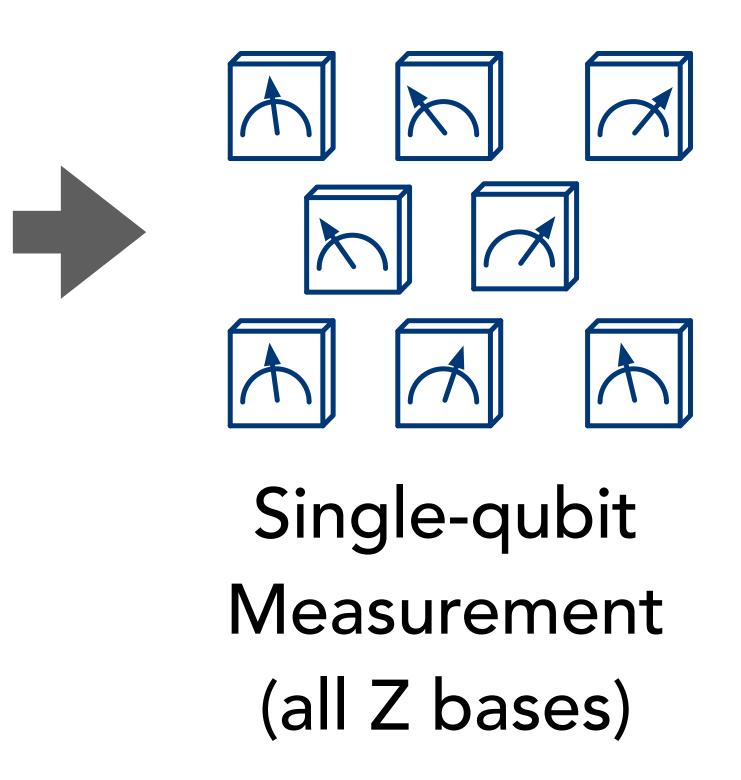
- Approach 2: Random Pauli measurements (classical shadow)
- Advantage: Only needs single-qubit measurements on ρ
- Challenge:

Requires exp(n) measurements for most target $|\psi\rangle$ especially when $|\psi\rangle$ is highly entangled.

• Approach 3: Cross-entropy benchmark (XEB)



Quantum state



- Approach 3: Cross-entropy benchmark (XEB)
- Advantage: Only needs single-qubit measurements (Z-basis) on ρ
- Challenge: Does not rigorously address the certification task. ρ can be far from $|\psi\rangle\langle\psi|$ despite perfect XEB score.

All existing certification protocols either

• All existing certification protocols either

- a. Require deep quantum circuits before measurements

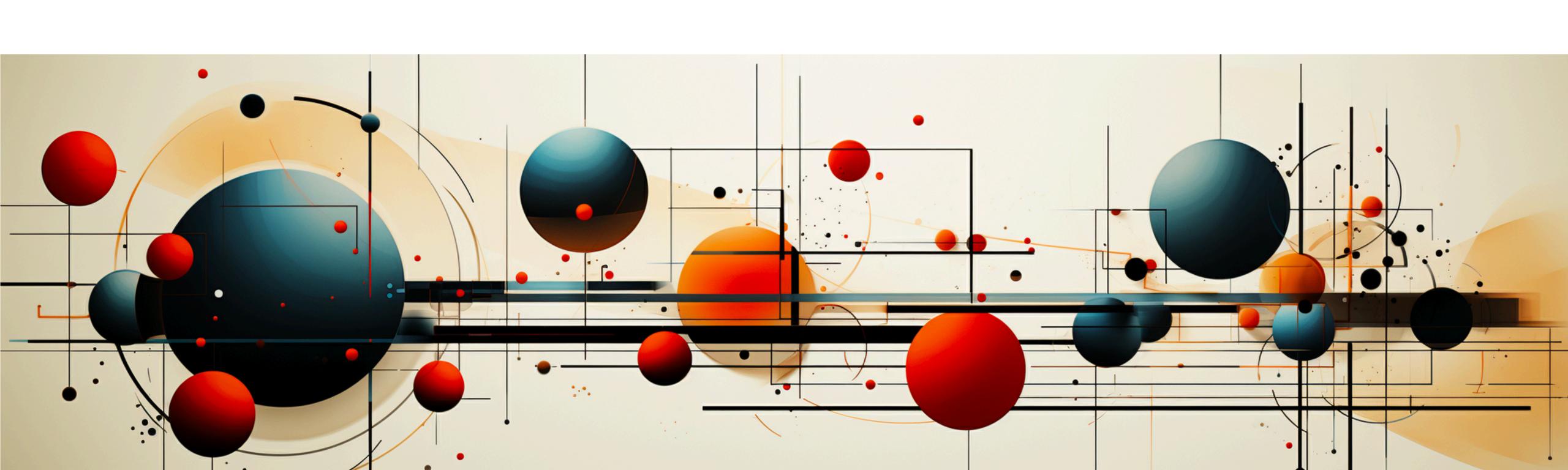
All existing certification protocols either b. Use exponentially many measurements

- a. Require deep quantum circuits before measurements

- All existing certification protocols either a. Require deep quantum circuits before measurements b. Use exponentially many measurements
 - c. Apply only for low-entanglement state $|\psi\rangle$

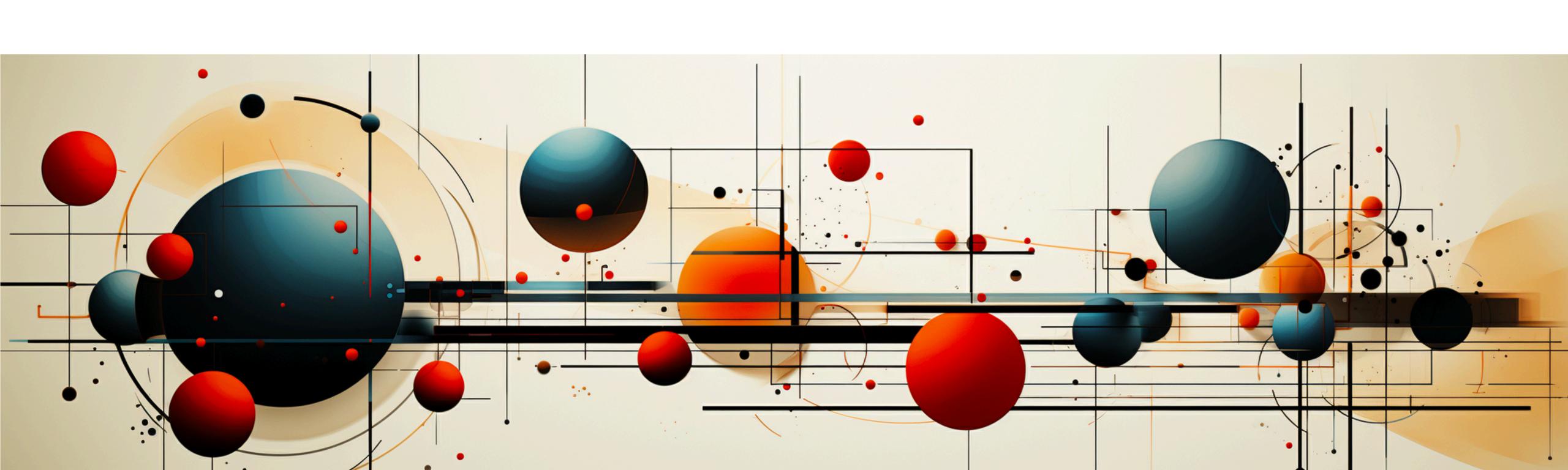
- All existing certification protocols either
 - a. Require deep quantum circuits before measurements
 - b. Use exponentially many measurements
 - c. Apply only for low-entanglement state $|\psi\rangle$
 - d. Lack rigorous guarantees

Question



Can we rigorously certify highly-entangled quantum states from performing few single-qubit measurements?

Question



Can we rigorously certify almost all quantum states from performing few single-qubit measurements?

• Theorem

Protocol

Applications

Outline

• Theorem

Protocol

Applications

Outline

Theorem 1

to $|\psi\rangle\langle\psi|$ using only $\mathcal{O}(n^2)$ single-qubit measurements.

For almost all *n*-qubit state $|\psi\rangle$, we can certify that ρ is close

Theorem 1

to $|\psi \rangle \langle \psi |$ using only $\mathcal{O}(n^2)$ single-qubit measurements.

• The certification procedure applies to any ρ .

For almost all *n*-qubit state $|\psi\rangle$, we can certify that ρ is close

Theorem 1

to $|\psi \rangle \langle \psi |$ using only $\mathcal{O}(n^2)$ single-qubit measurements.

- The certification procedure applies to any ρ .
- $\mathcal{O}(n^2)$ is enough even when $|\psi\rangle$ has $\exp(n)$ circuit complexity.

For almost all *n*-qubit state $|\psi\rangle$, we can certify that ρ is close

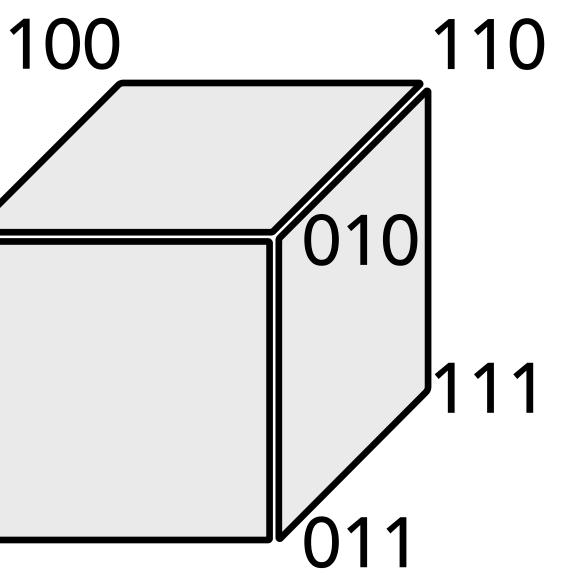
- Consider an *n*-qubit target state $|\psi\rangle$.
- Choose a basis $|b\rangle$, where $b \in \{0,1\}^n$ is a bitstring.

000

001

• Let $\pi(b) = |\langle b|\psi\rangle|^2$ be the measurement distribution.

Boolean Hypercube



• Let $\pi(b) = |\langle b|\psi\rangle|^2$ be the measurement distribution.

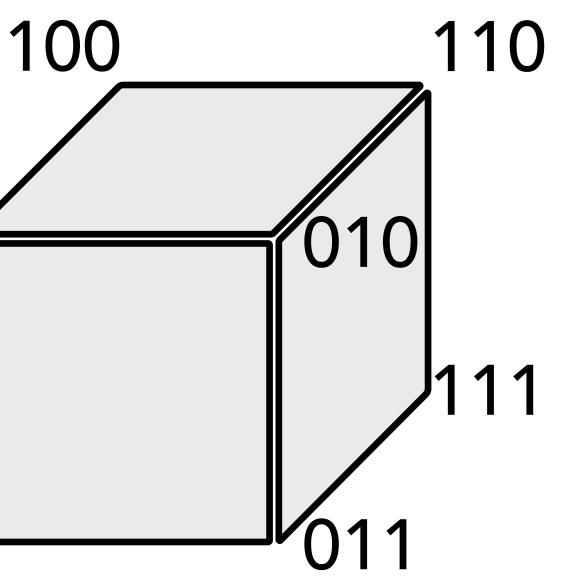
Boolean

Hypercube

• Consider a random walk on *n*-bit Boolean hypercube.

000

001



• Let $\pi(b) = |\langle b|\psi\rangle|^2$ be the measurement distribution.

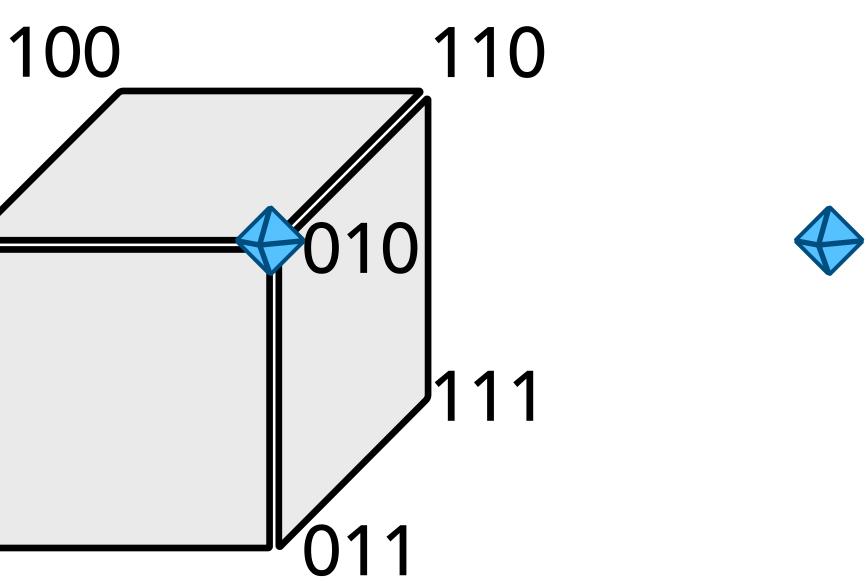
Boolean

Hypercube

• Consider a random walk on *n*-bit Boolean hypercube.

000

001



= b

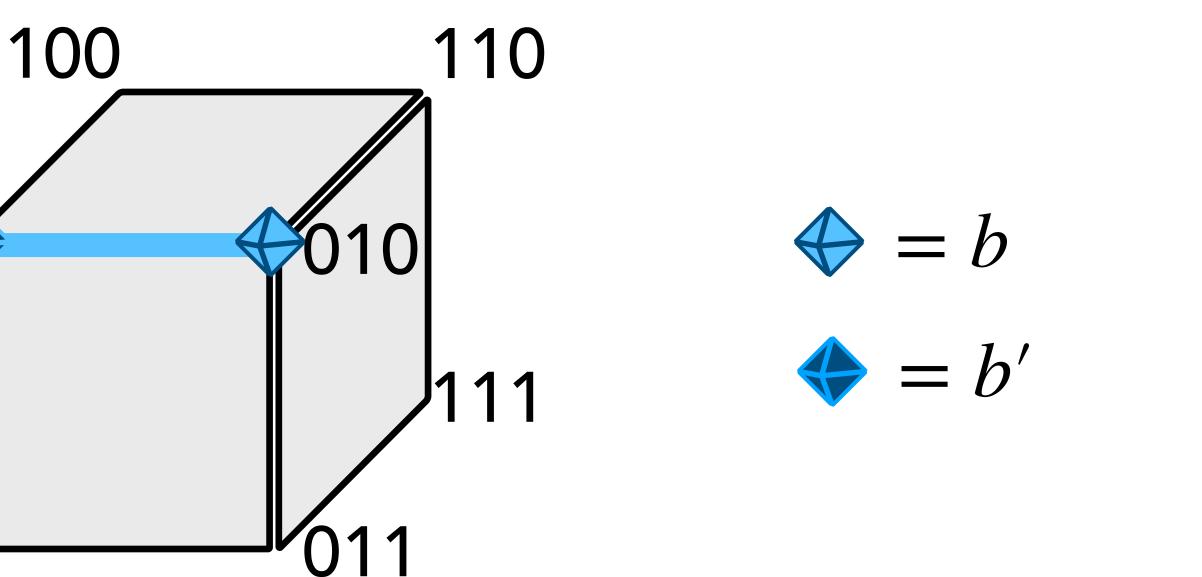
• Let $\pi(b) = |\langle b|\psi\rangle|^2$ be the measurement distribution.

• Consider a random walk on *n*-bit Boolean hypercube.

000

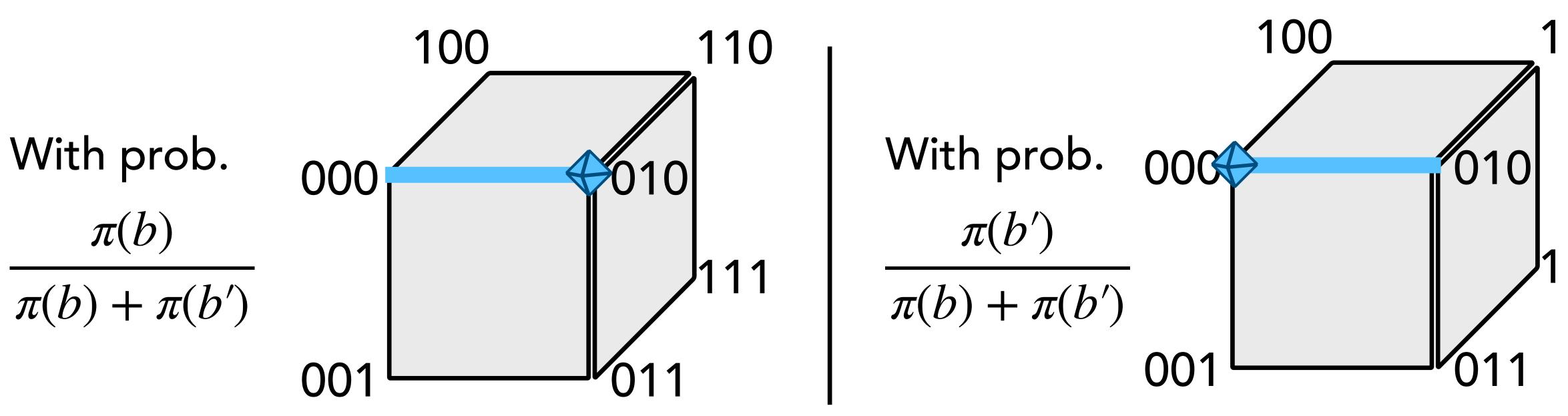
001

Boolean Hypercube

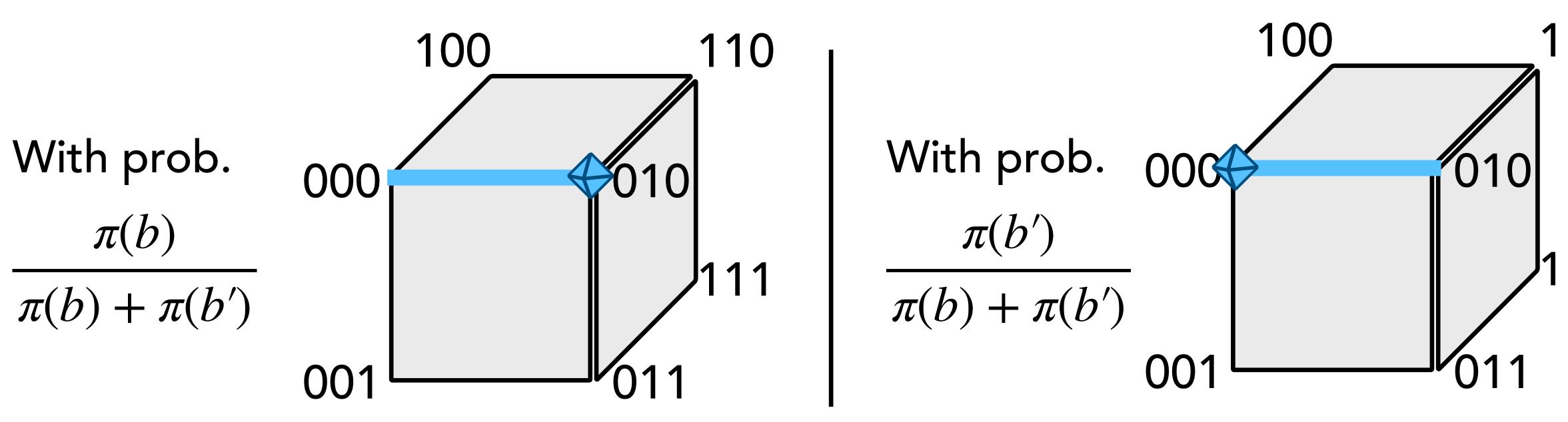


• Let $\pi(b) = |\langle b|\psi\rangle|^2$ be the measurement distribution.

• Consider a random walk on *n*-bit Boolean hypercube.



• Let $\pi(b) = |\langle b|\psi\rangle|^2$ be the measurement distribution.



- Let τ be the time the random talk takes to relax to stationary π .

Theorem 2

 When restricted to independent Pauli-basis measurements, we need $\mathcal{O}(\tau^2)$ single-qubit measurements.

For an *n*-qubit state $|\psi\rangle$ with relax. time τ , we can certify that ρ is close to $|\psi\rangle\langle\psi|$ with $\mathcal{O}(\tau)$ single-qubit measurements.

• Theorem

Protocol

Applications

Outline

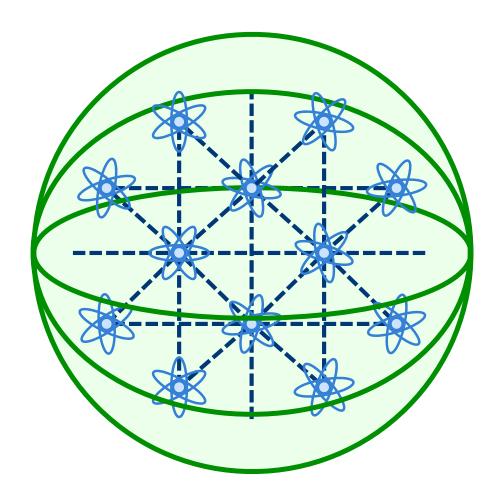
• Theorem

Protocol

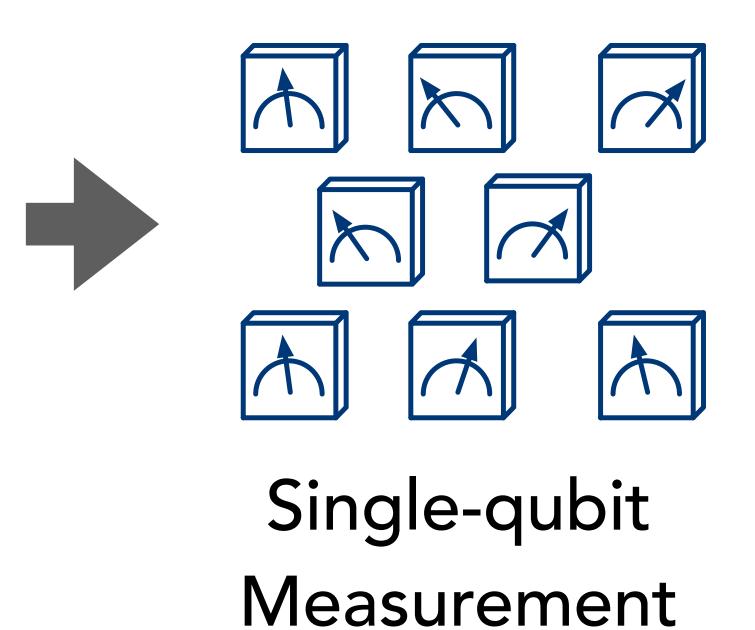
Applications

Outline

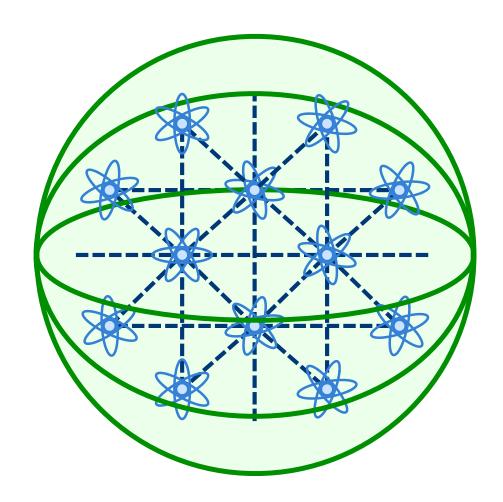
• Repeat the following measurement a few times.



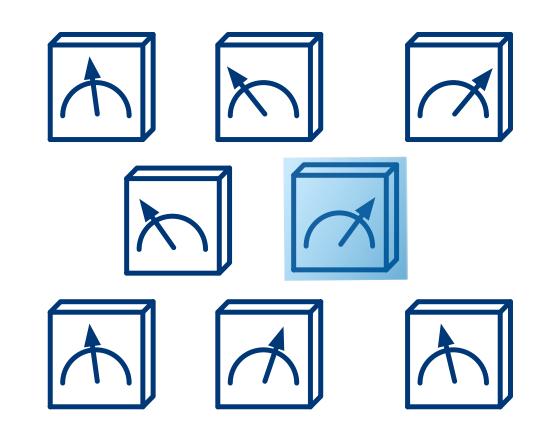
Quantum state



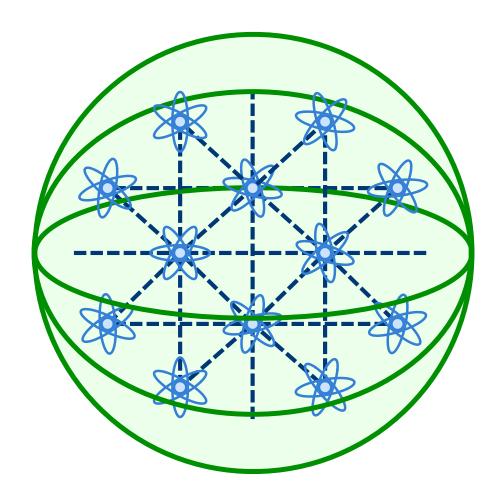
• Pick a random qubit *x*.



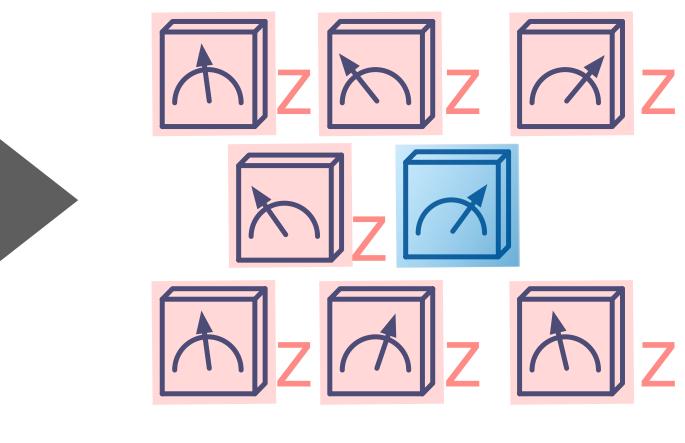
Quantum state



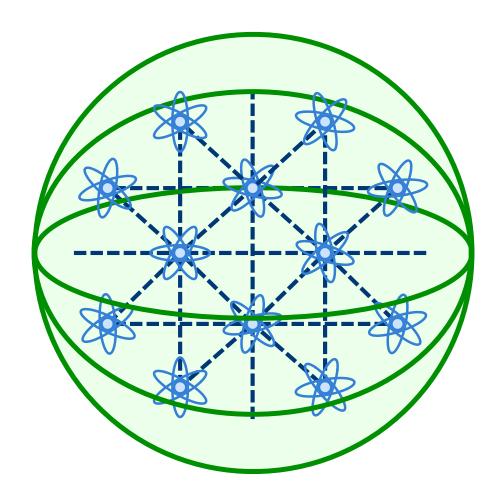
• Pick a random qubit x. Measure all except qubit x in Z basis.



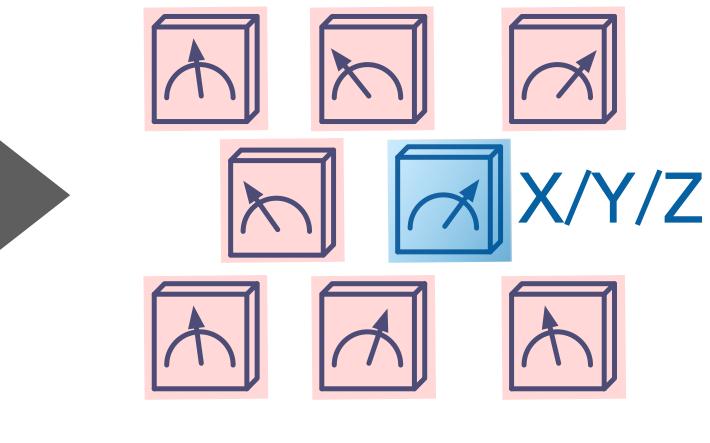
Quantum state



• Pick a random qubit *x*. Measure *x* in random X/Y/Z basis.

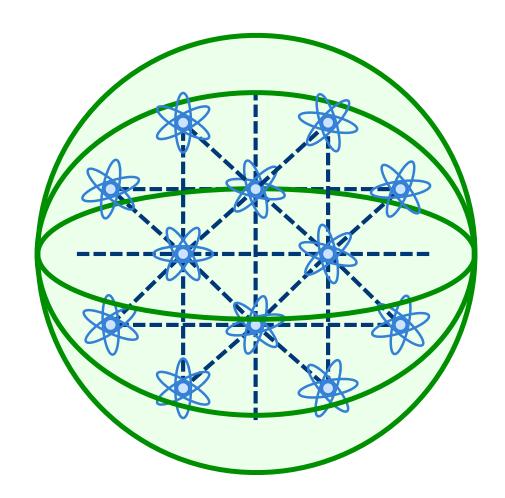


Quantum state

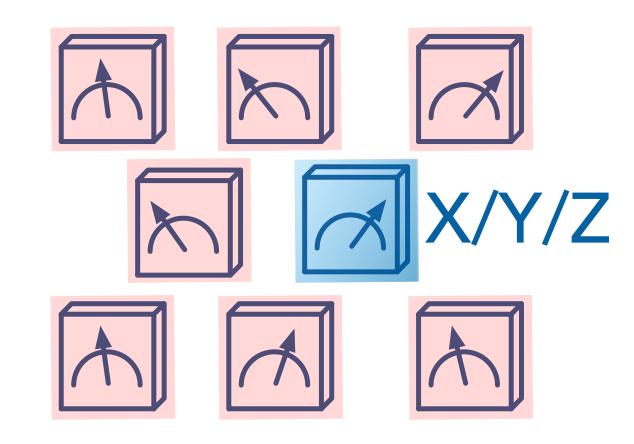


Measurement Protocol

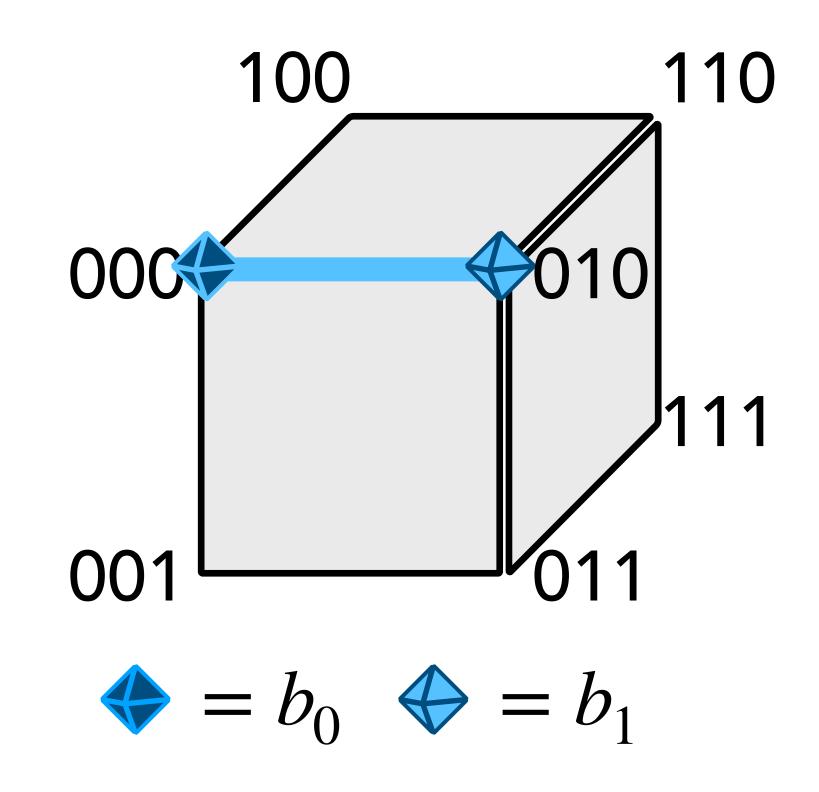
• That's it.



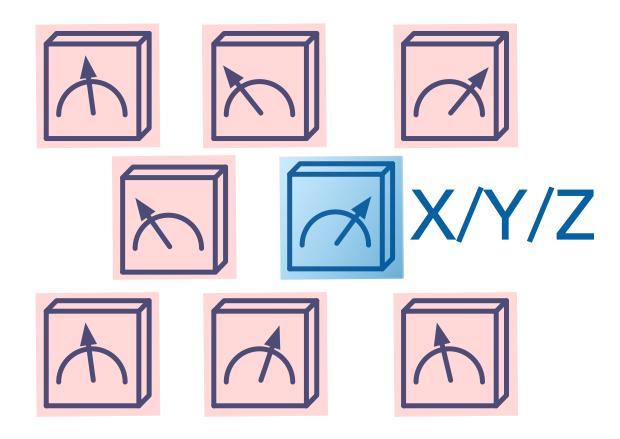
Quantum state



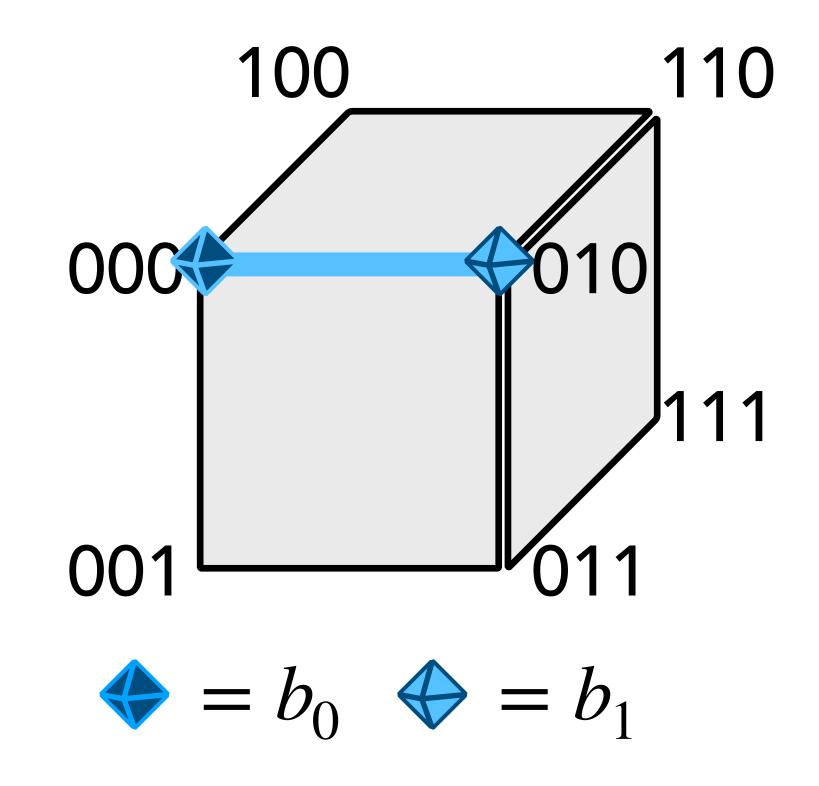
The measurement outcomes on the Boolean hypercube.

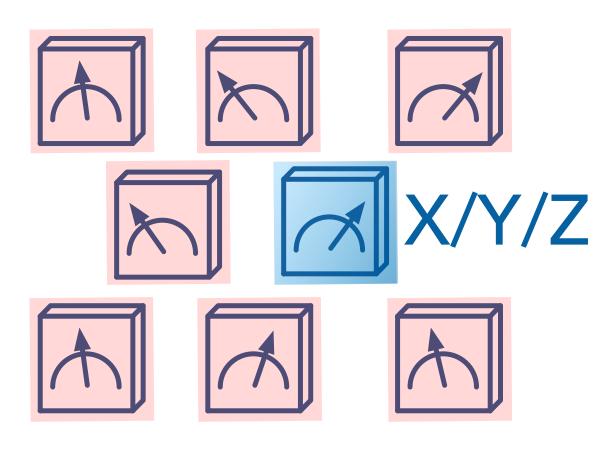


• The measurement outcomes on $\overline{\mathbb{M}}$ specifies an edge (b_0, b_1) on

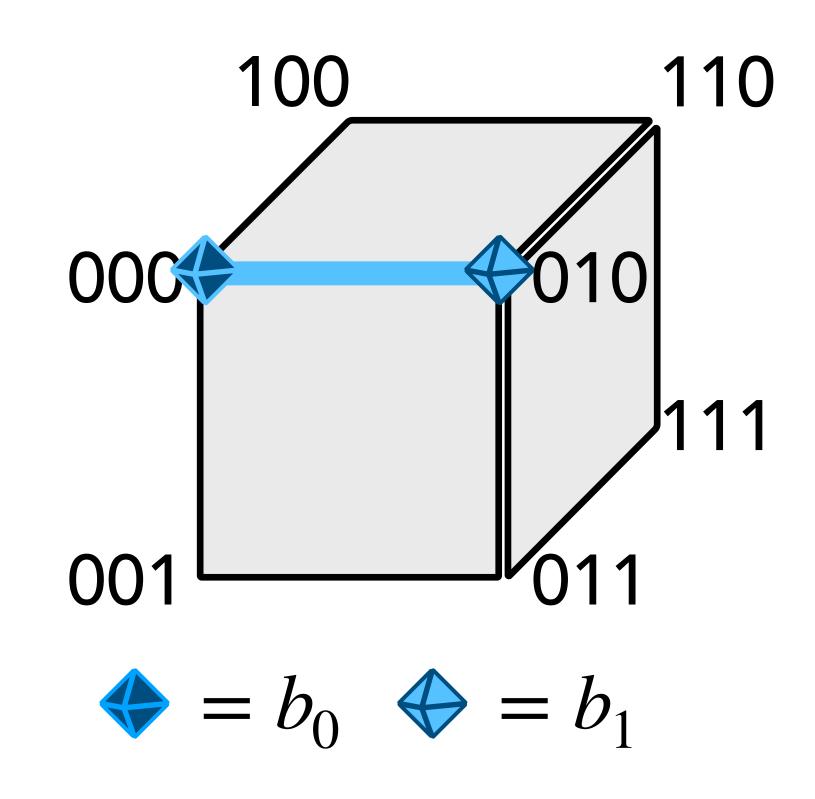


• The ideal post-measurement 1-qubit state $|\psi_{b_0,b_1}\rangle$ on qubit x is proportional to $\langle b_0 | \psi \rangle | 0 \rangle + \langle b_1 | \psi \rangle | 1 \rangle$.

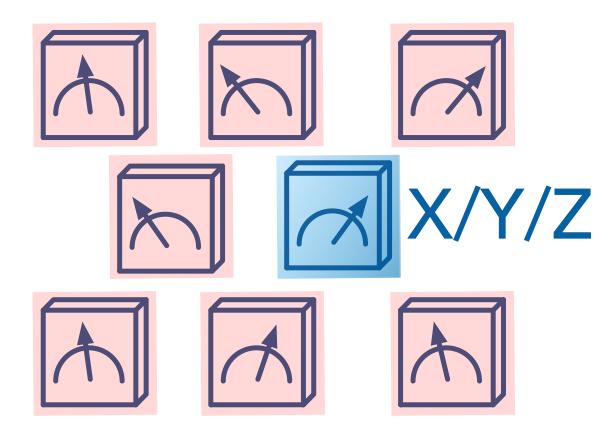




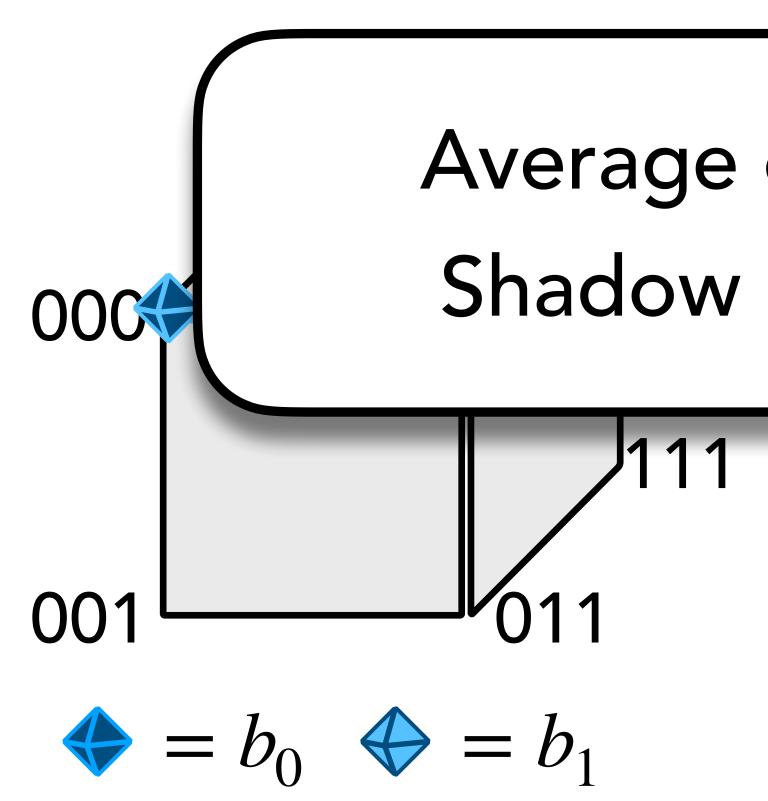
• Use randomized Pauli measurement (classical shadow) on qubit x



to predict the fidelity ω with the ideal 1-qubit state $|\psi_{b_0,b_1}\rangle$.



• Use randomized Pauli measurement (classical shadow) on qubit x to predict the fidelity ω with the ideal 1-qubit state $|\psi_{b_0,b_1}\rangle$.



Average over ω to get Shadow overlap $\mathbb{E}[\omega]$

Key Feature

Shadow overlap $\mathbb{E}[\omega]$ accurately tracks the fidelity $\langle \psi | \rho | \psi \rangle$.

au is the time the random talk takes to relax to stationary π

Key Feature

Shadow overlap $\mathbb{E}[\omega]$ accurately tracks the fidelity $\langle \psi | \rho | \psi \rangle$.

$\mathbb{E}[\boldsymbol{\omega}] \ge 1 - \epsilon \text{ implies } \langle \boldsymbol{\psi} | \rho | \boldsymbol{\psi} \rangle \ge 1 - \tau \epsilon$

au is the time the random talk takes to relax to stationary π

Key Feature

Shadow overlap $\mathbb{E}[\omega]$ accurately tracks the fidelity $\langle \psi | \rho | \psi \rangle$.

$\mathbb{E}[\boldsymbol{\omega}] \ge 1 - \epsilon \text{ implies } \langle \boldsymbol{\psi} | \boldsymbol{\rho} | \boldsymbol{\psi} \rangle \ge 1 - \tau \epsilon$ $\langle \boldsymbol{\psi} | \boldsymbol{\rho} | \boldsymbol{\psi} \rangle \ge 1 - \epsilon \text{ implies } \mathbb{E}[\boldsymbol{\omega}] \ge 1 - \epsilon$

au is the time the random talk takes to relax to stationary π

Physical Intuition Shadow overlap $\mathbb{E}[\omega] = \frac{1}{n} \sum_{i=1}^{n} \sum_{b_{\neq i} \in \{0,1\}^{n-1}} \operatorname{Tr}\left(\langle b_{\neq i} | \rho | b_{\neq i} \rangle \frac{\langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}{\operatorname{Tr} \langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}\right)$

• $+ \ldots + \times + \cdots + |$ and $| - \ldots - \times - \cdots - |$ has fidelity 0. • | + ... + | + ... + | and | - ... - | + ... - | has $E[\omega] = 0$.

Physical Intuition

Shadow overlap $\mathbb{E}[\omega] = \frac{1}{n} \sum_{i=1}^{n} \sum_{b_{\neq i} \in \{0,1\}^{n-1}} \operatorname{Tr}\left(\langle b_{\neq i} | \rho | b_{\neq i} \rangle \frac{\langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}{\operatorname{Tr} \langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}\right)$

• + ... + X + ... + | and | + ... + - X + ... + - | has fidelity 0. • | + ... + | + ... + | and | + ... + - | + ... + - | has $\mathbb{E}[\omega] = \frac{n-1}{n}$.

Physical Intuition

Shadow overlap $\mathbb{E}[\omega] = \frac{1}{n} \sum_{i=1}^{n} \sum_{b_{\neq i} \in \{0,1\}^{n-1}} \operatorname{Tr}\left(\langle b_{\neq i} | \rho | b_{\neq i} \rangle \frac{\langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}{\operatorname{Tr} \langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}\right)$

- + ... + X + ... + | and | + ... + X + ... + | has fidelity 0.
- Shadow overlap has a Hamming distance nature.

Physical Intuition

Shadow overlap $\mathbb{E}[\omega] = \frac{1}{n} \sum_{i=1}^{n} \sum_{b_{\neq i} \in \{0,1\}^{n-1}} \operatorname{Tr}\left(\langle b_{\neq i} | \rho | b_{\neq i} \rangle \frac{\langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}{\operatorname{Tr}\langle b_{\neq i} | \psi \rangle \langle \psi | b_{\neq i} \rangle}\right)$

• | + ... + | + ... + | and | + ... + - | + ... + - | has $\mathbb{E}[\omega] = \frac{n-1}{n}$.

• Theorem

Protocol

Applications

Outline

• Theorem

Protocol

Applications

Outline

Applications

What can we use this new certification protocol for?

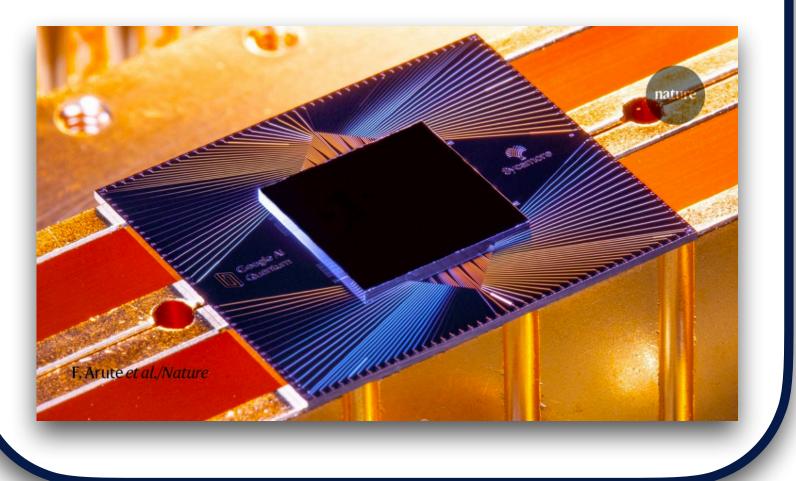
Applications

What can we use this new certification protocol for?

Example 1

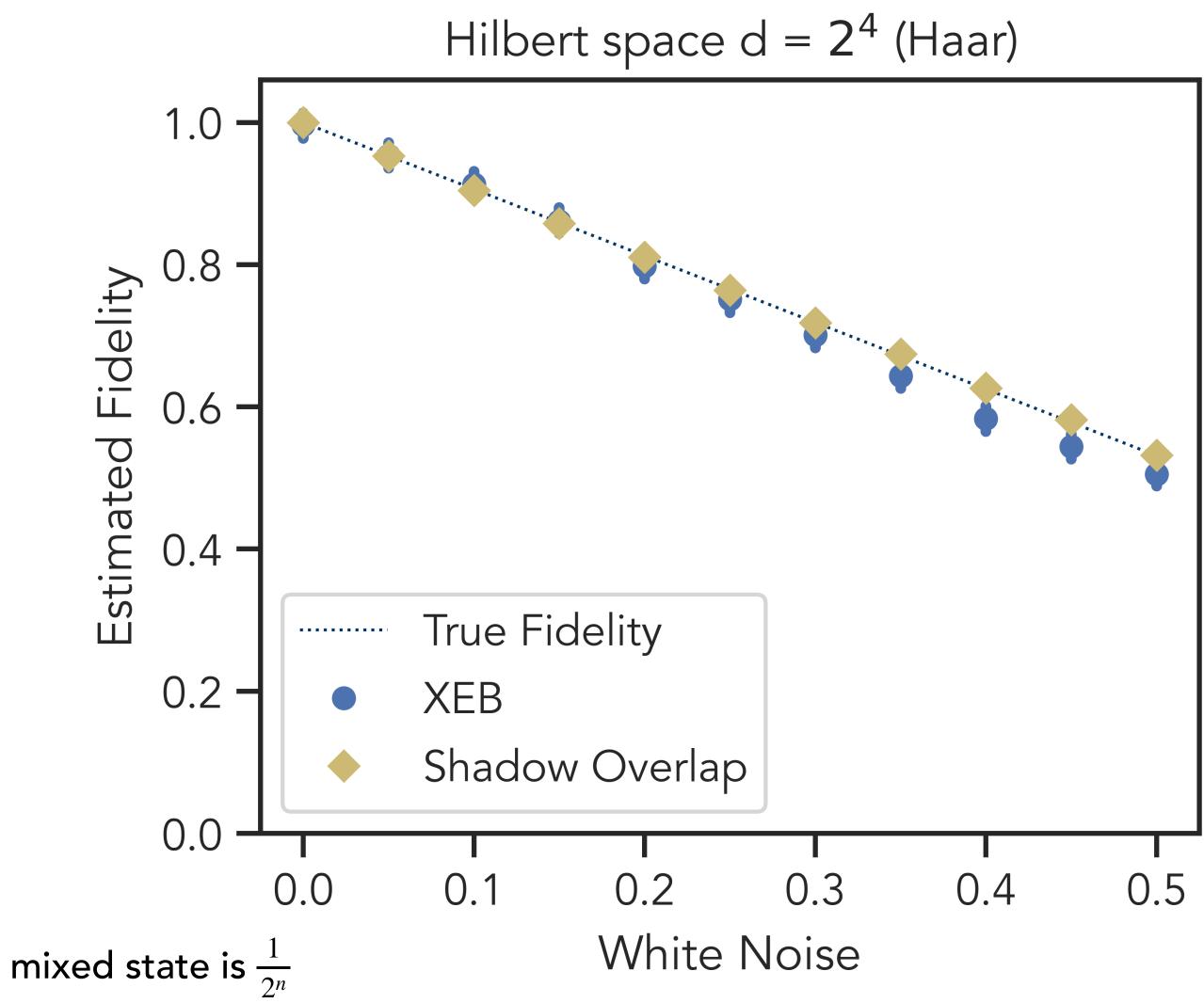
Benchmarking

Shadow overlap $\mathbb{E}[\omega]$ certifies if the state has a high fidelity



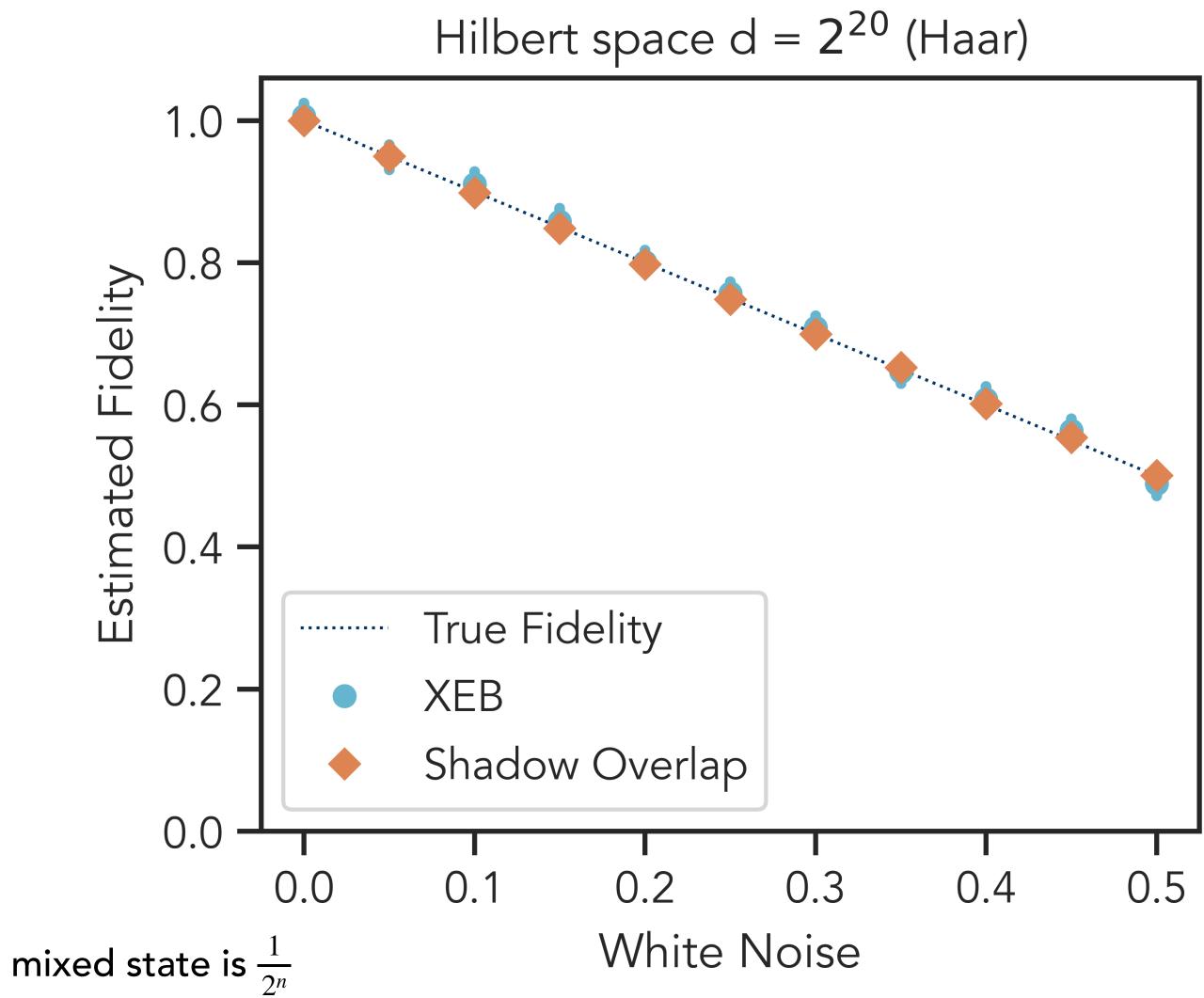
4-qubit Haar random state White Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



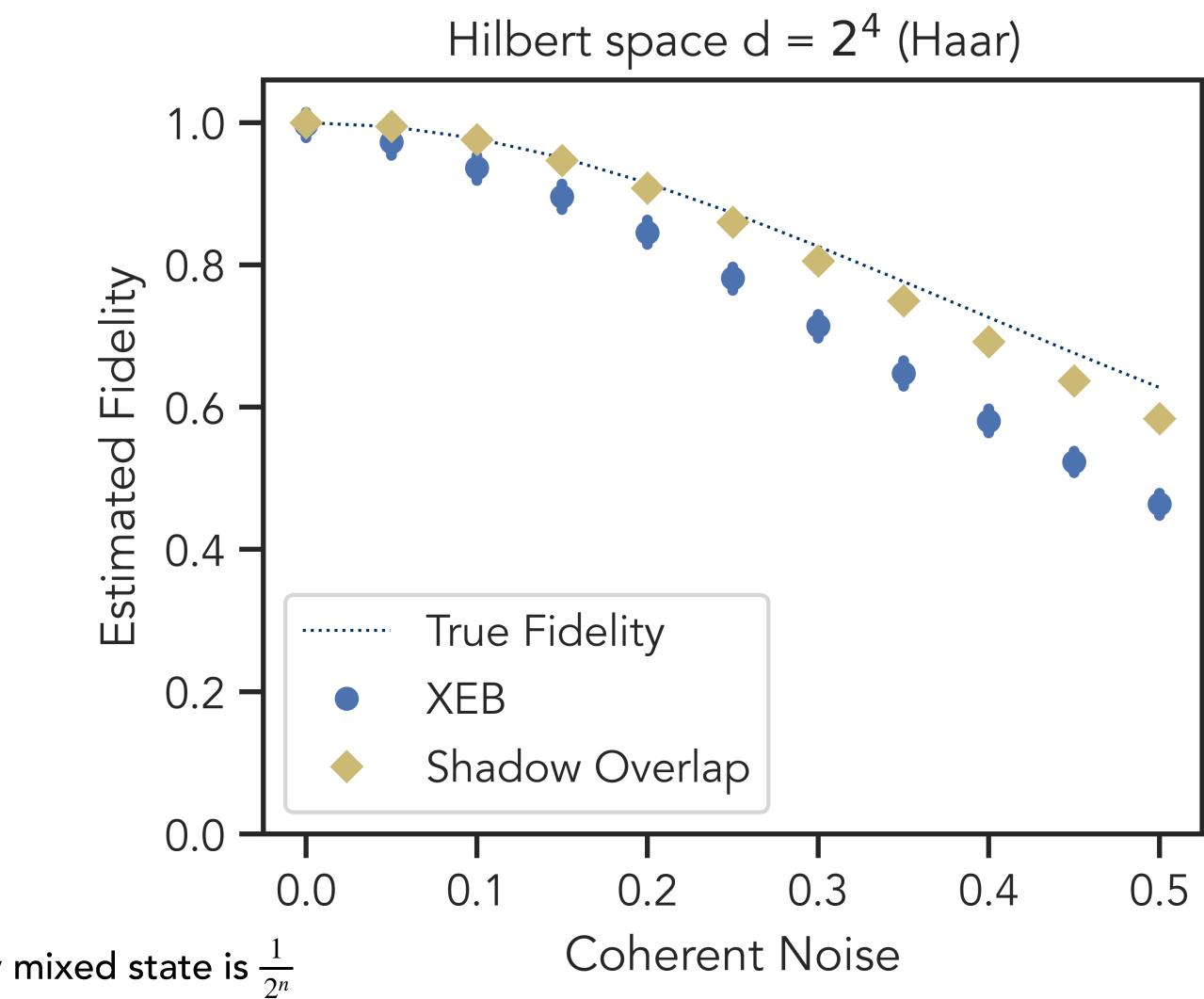
20-qubit Haar random state White Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



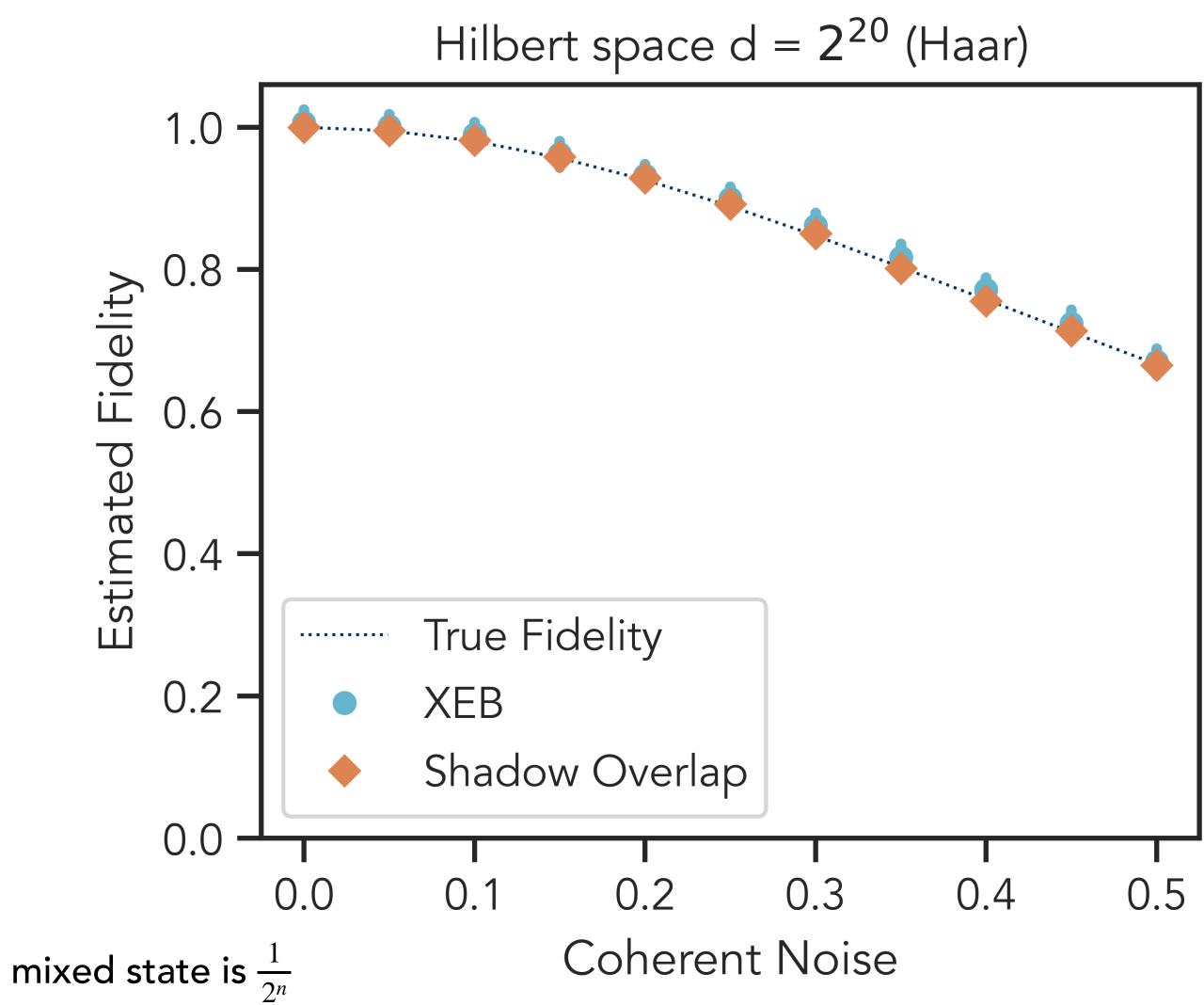
4-qubit Haar random state **Coherent Noise**

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



20-qubit Haar random state **Coherent Noise**

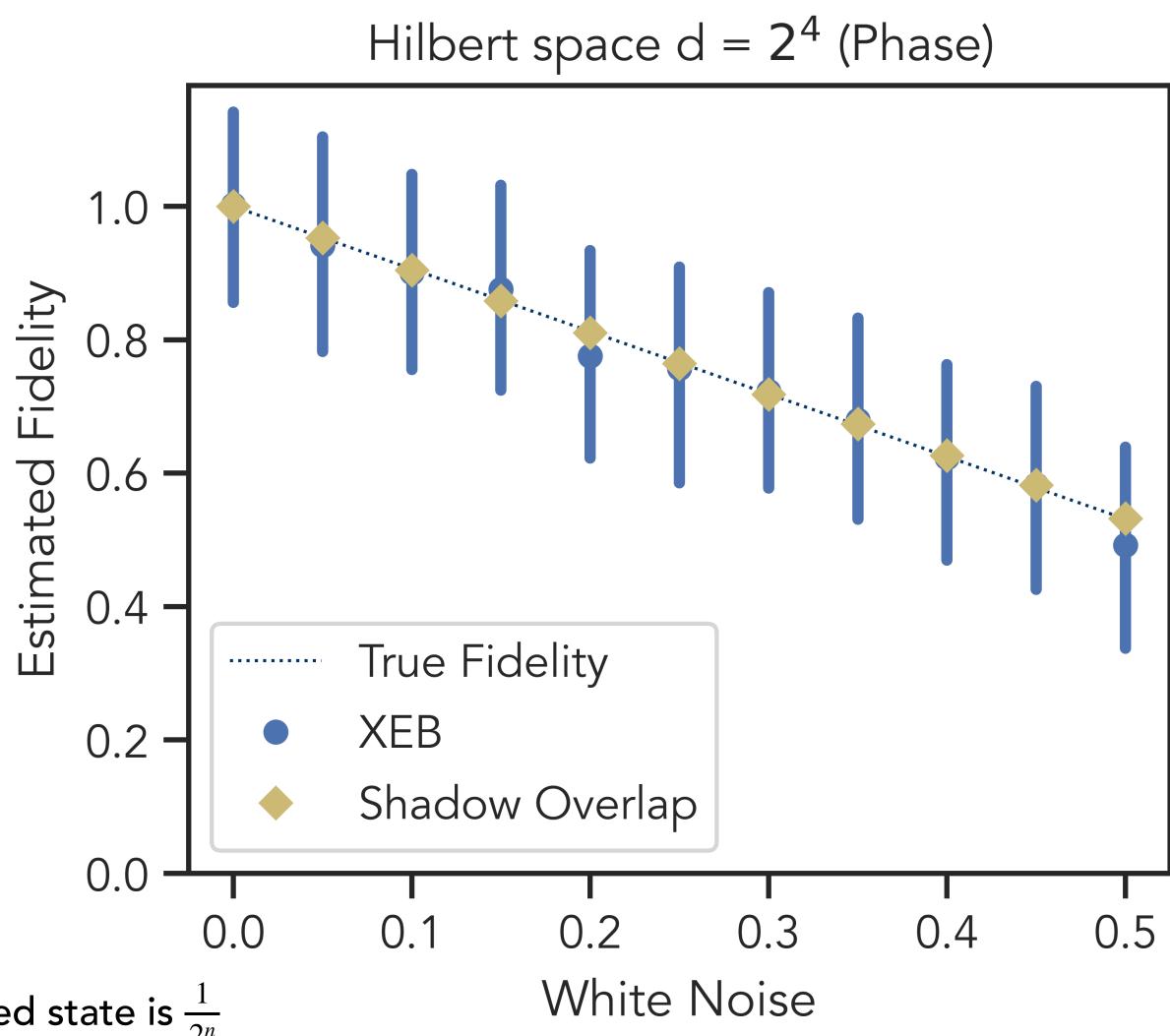
*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



4-qubit random structured state White Noise

$$|\psi\rangle = U_{\text{phase}}\bigotimes_{i=1}^{4} |\psi_i\rangle$$

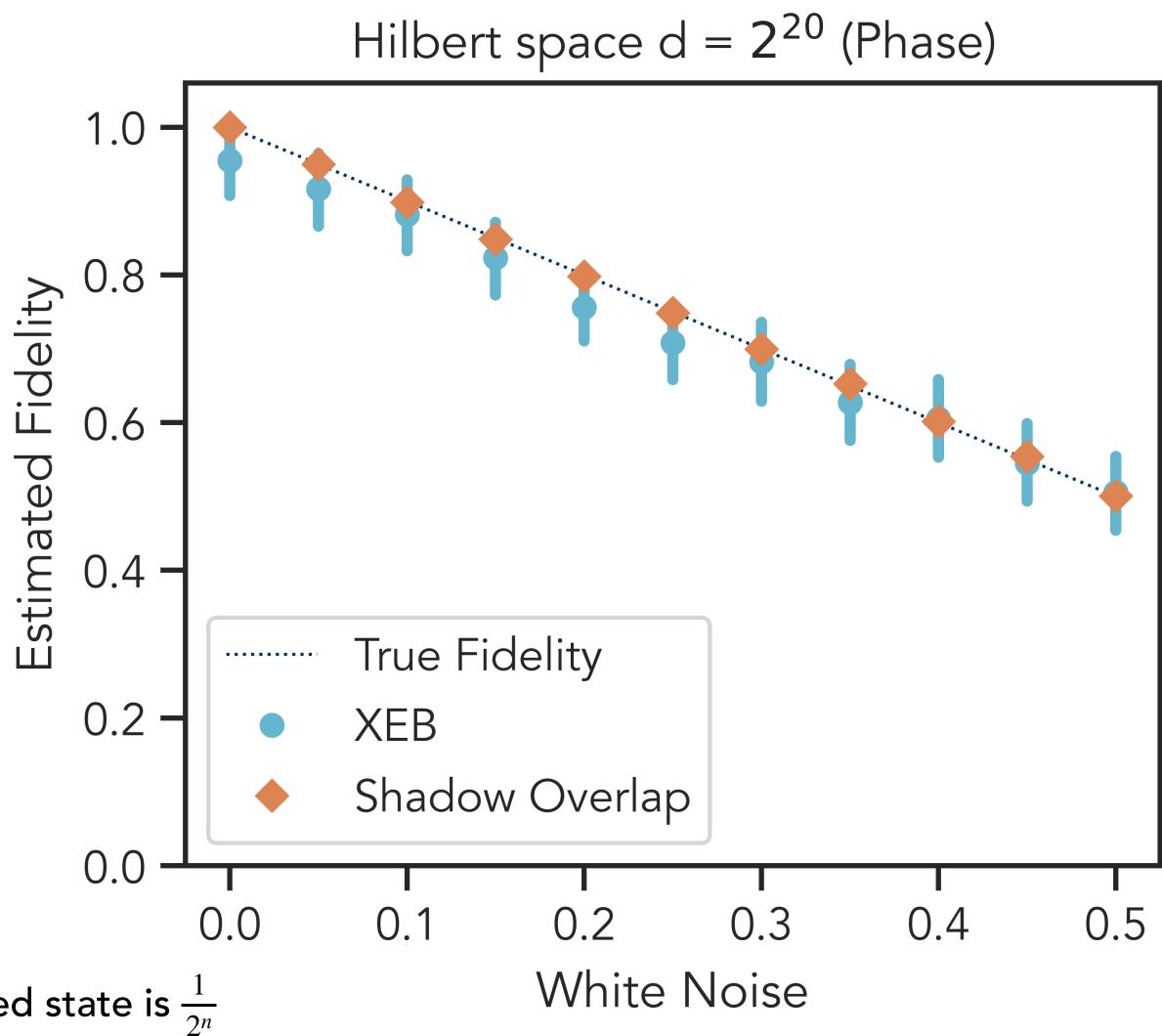
*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



20-qubit random structured state White Noise

$$|\psi\rangle = U_{\text{phase}}\bigotimes_{i=1}^{20} |\psi_i\rangle$$

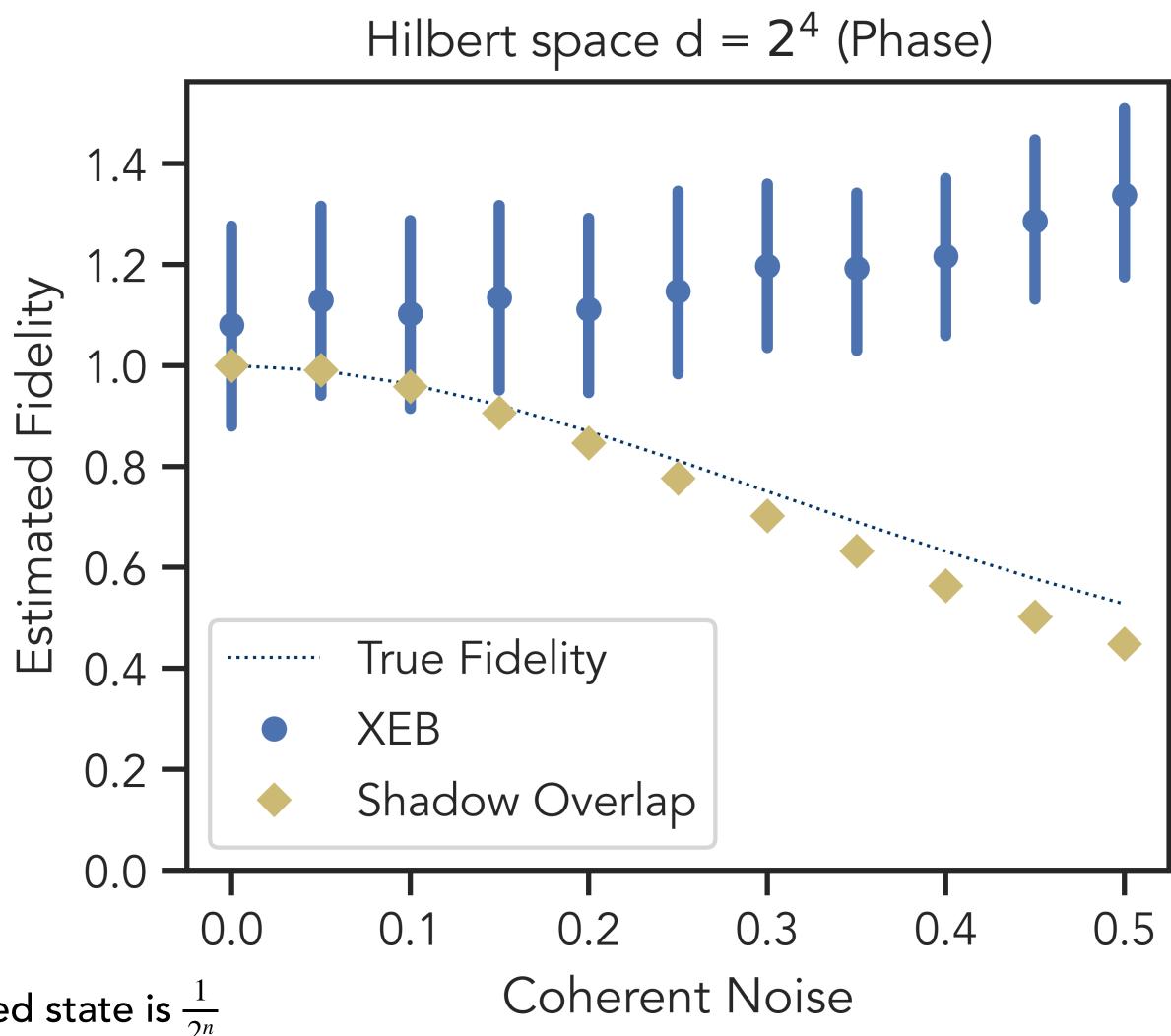
*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



4-qubit random structured state **Coherent Noise**

$$|\psi\rangle = U_{\text{phase}}\bigotimes_{i=1}^{4} |\psi_i\rangle$$

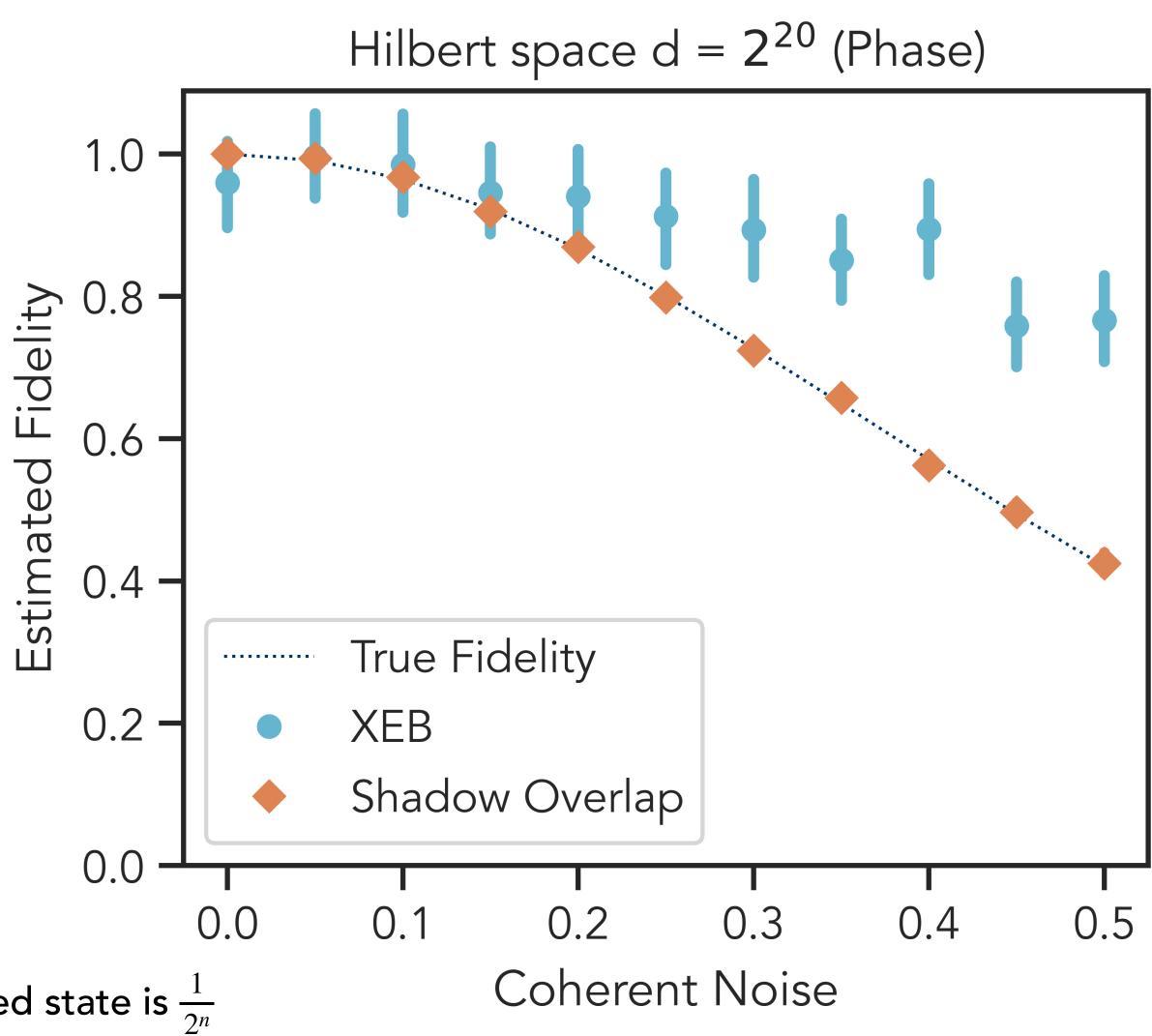
*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



20-qubit random structured state **Coherent Noise**

$$|\psi\rangle = U_{\text{phase}}\bigotimes_{i=1}^{20} |\psi_i\rangle$$

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is $\frac{1}{2n}$



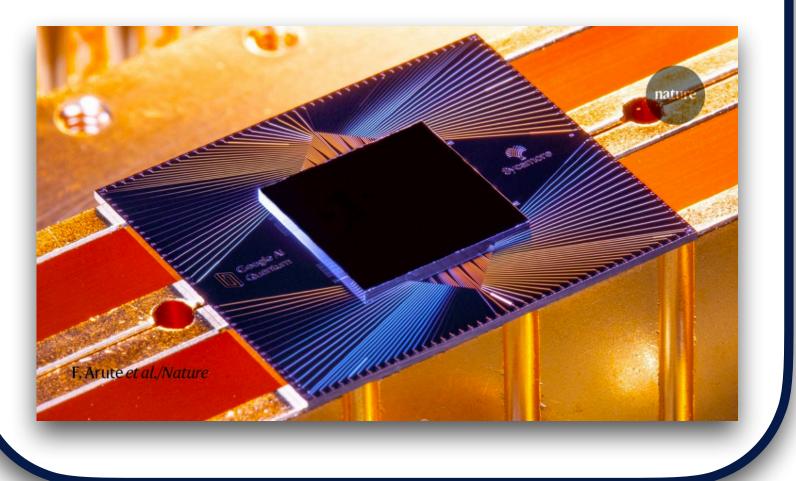
Applications

What can we use this new certification protocol for?

Example 1

Benchmarking

Shadow overlap $\mathbb{E}[\omega]$ certifies if the state has a high fidelity



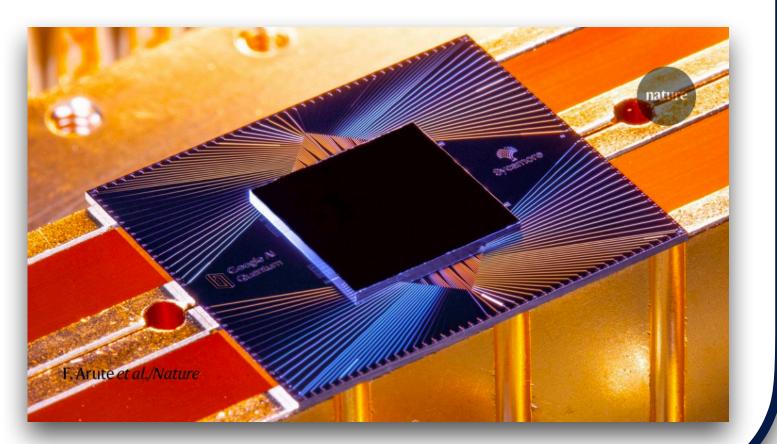
Applications

What can we use this new certification protocol for?

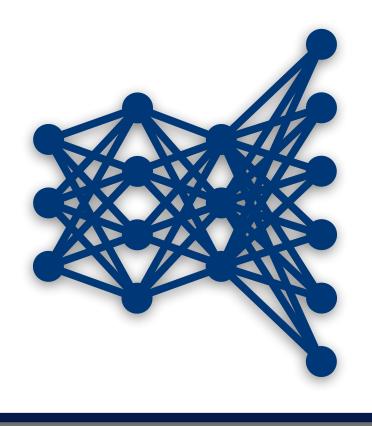
Example 1

Benchmarking

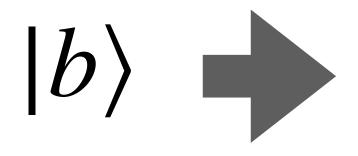
Shadow overlap $\mathbb{E}[\omega]$ certifies if the state has a high fidelity



ML tomography Train/certify ML models, such as neural quantum states, using shadow overlap $\mathbb{E}[\omega]$



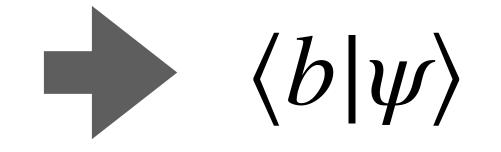
Example 2



Standard Neural Quantum State

Represent $|\psi\rangle$

Neural Network for |ψ)



$|b_0\rangle$

Relative Neural Quantum State

Represent $|\psi\rangle$

 $\frac{\langle b_0 | \psi \rangle}{\langle b_1 | \psi \rangle}$

<section-header><section-header><section-header><section-header>

$|b_0\rangle$

Relative Neural Quantum State

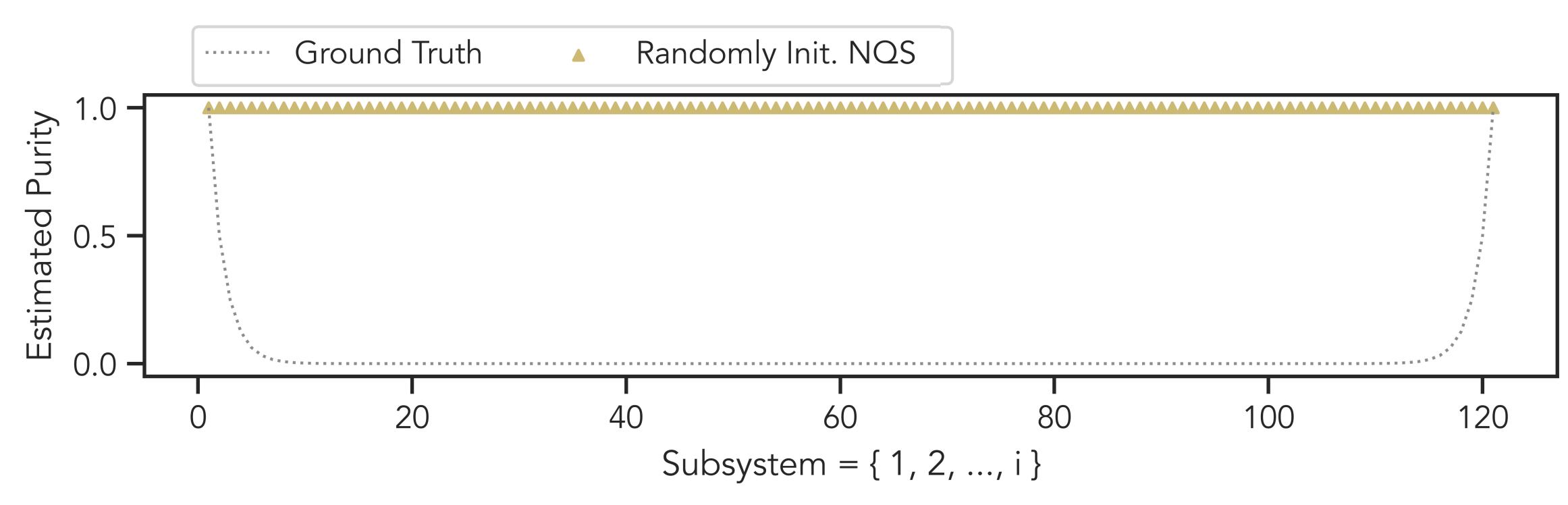
Represent $|\psi\rangle$

 $\frac{\langle b_0 | \psi \rangle}{\langle b_1 | \psi \rangle}$

Use NN *n* times

to get $\langle b|\psi\rangle$

<section-header><section-header><section-header>



We consider learning a class of 120-qubit states with exponentially high circuit complexity.



0.75 -

0.70 -

0.65 -

0.60 -

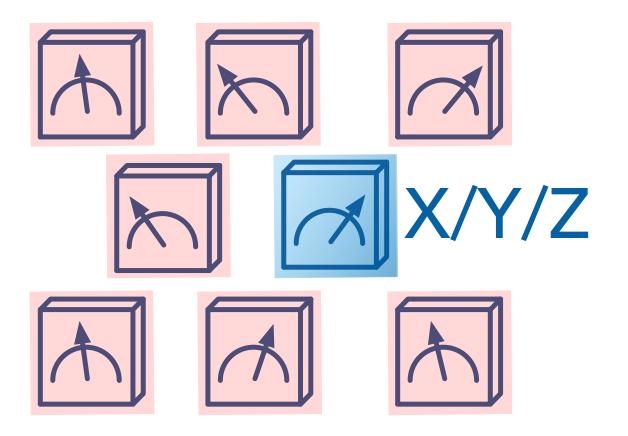
0.55 -

0.50 -

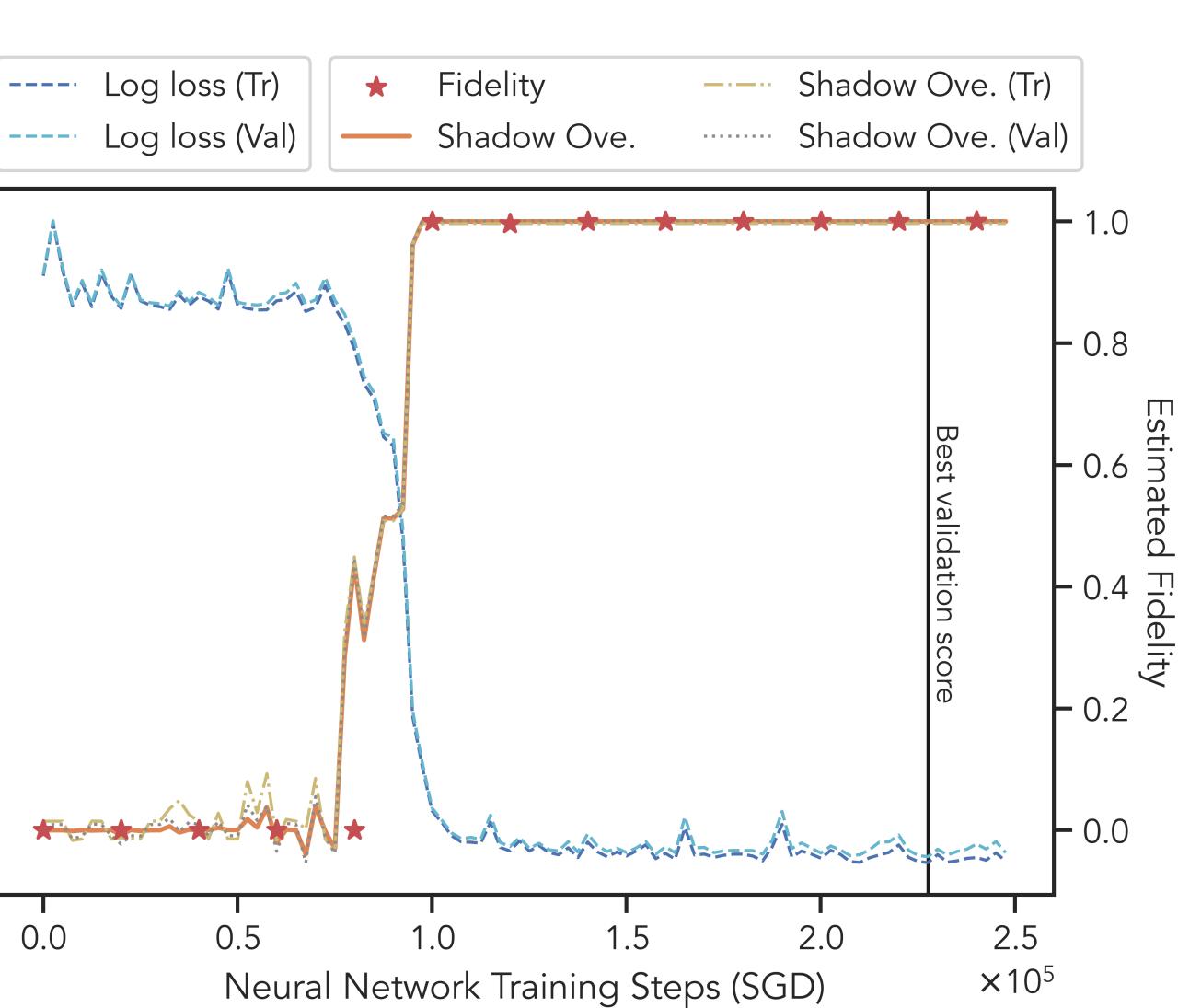
0.45 -

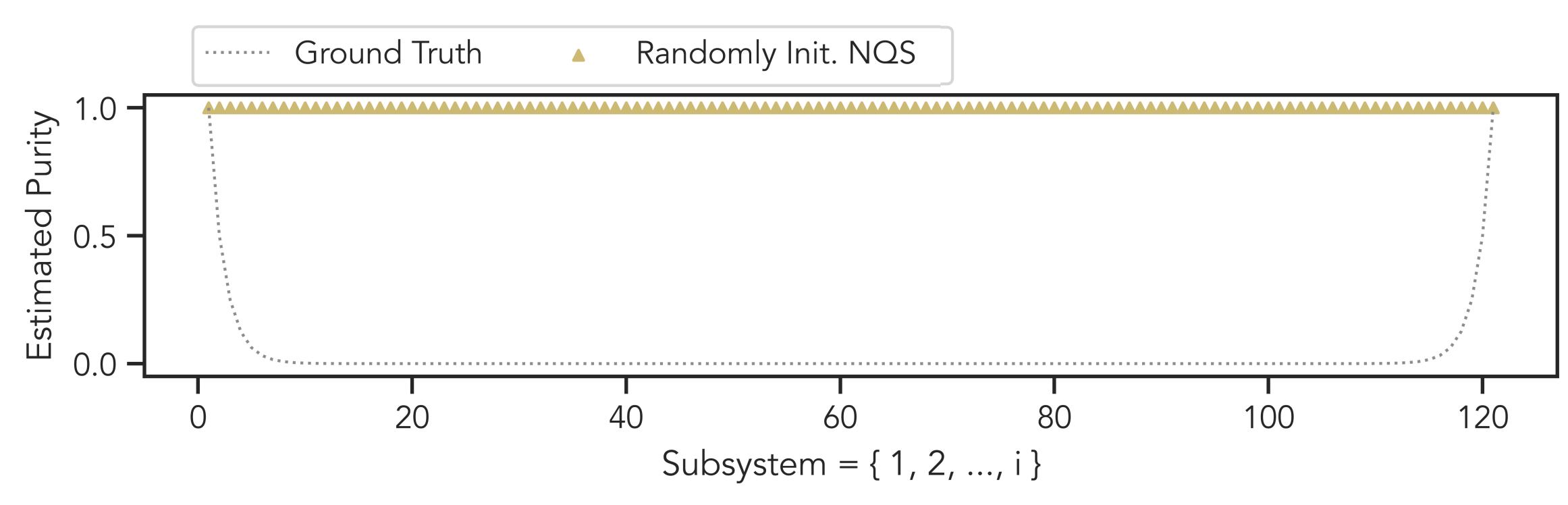
Log Loss

Trained using shadow-overlap-based loss



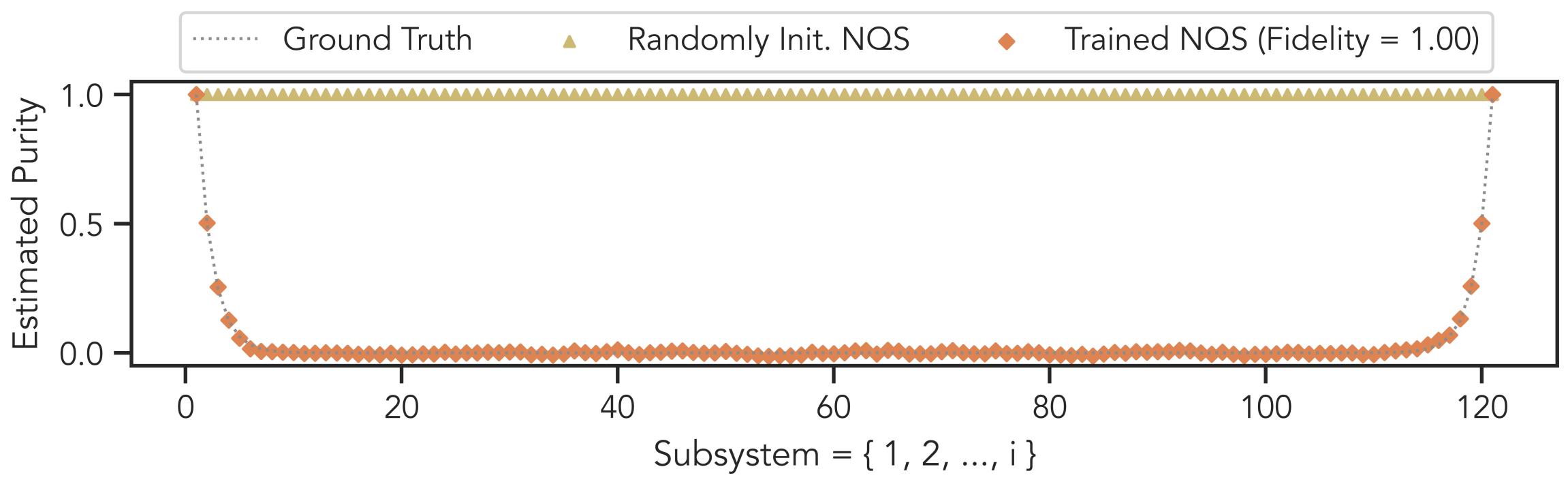
Certified using 0.40 -0.35 shadow overlap





We consider learning a class of 120-qubit states with exponentially high circuit complexity.





We consider learning a class of 120-qubit states with exponentially high circuit complexity.



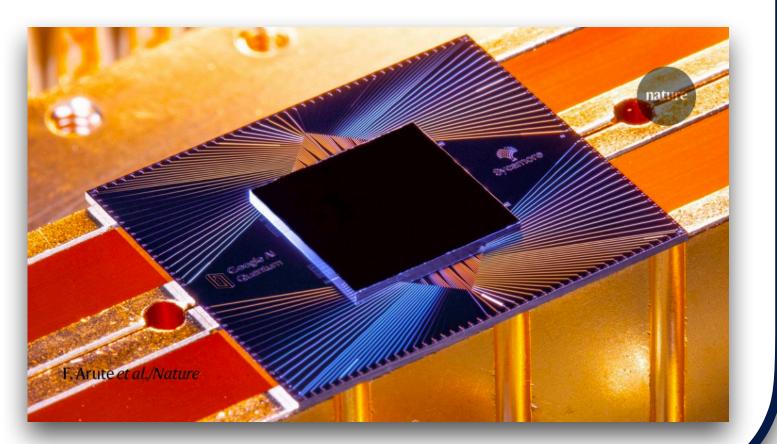
Applications

What can we use this new certification protocol for?

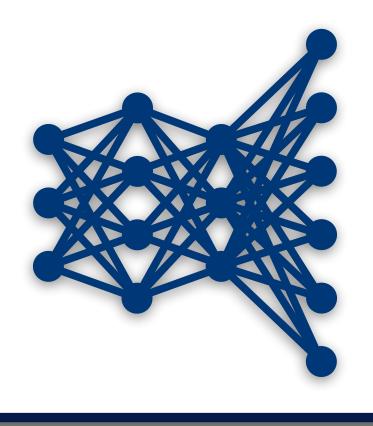
Example 1

Benchmarking

Shadow overlap $\mathbb{E}[\omega]$ certifies if the state has a high fidelity



ML tomography Train/certify ML models, such as neural quantum states, using shadow overlap $\mathbb{E}[\omega]$



Example 2

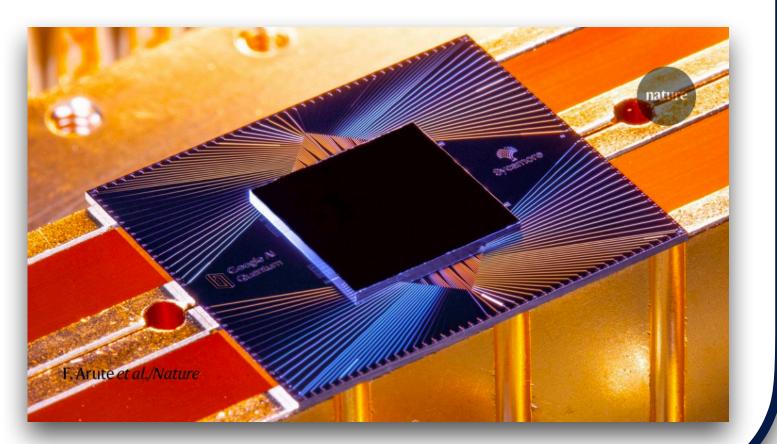
Applications

What can we use this new certification protocol for?

Example 1

Benchmarking

Shadow overlap $\mathbb{E}[\omega]$ certifies if the state has a high fidelity



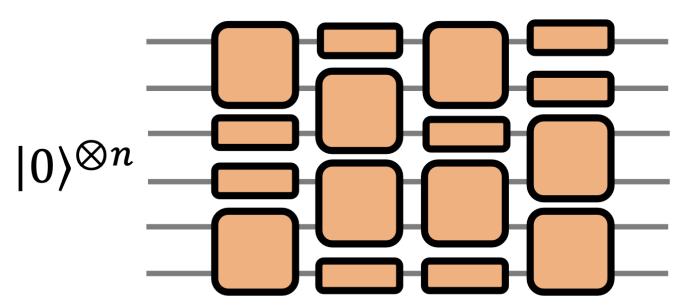
ML tomography Train/certify ML models, such as neural quantum states, using shadow overlap $\mathbb{E}[\omega]$

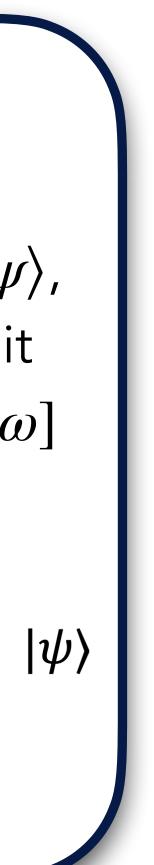
Example 2

Example 3

Optimizing circuits

To prepare a target state $|\psi\rangle$, we can optimize the circuit to max shadow overlap $\mathbb{E}[\omega]$

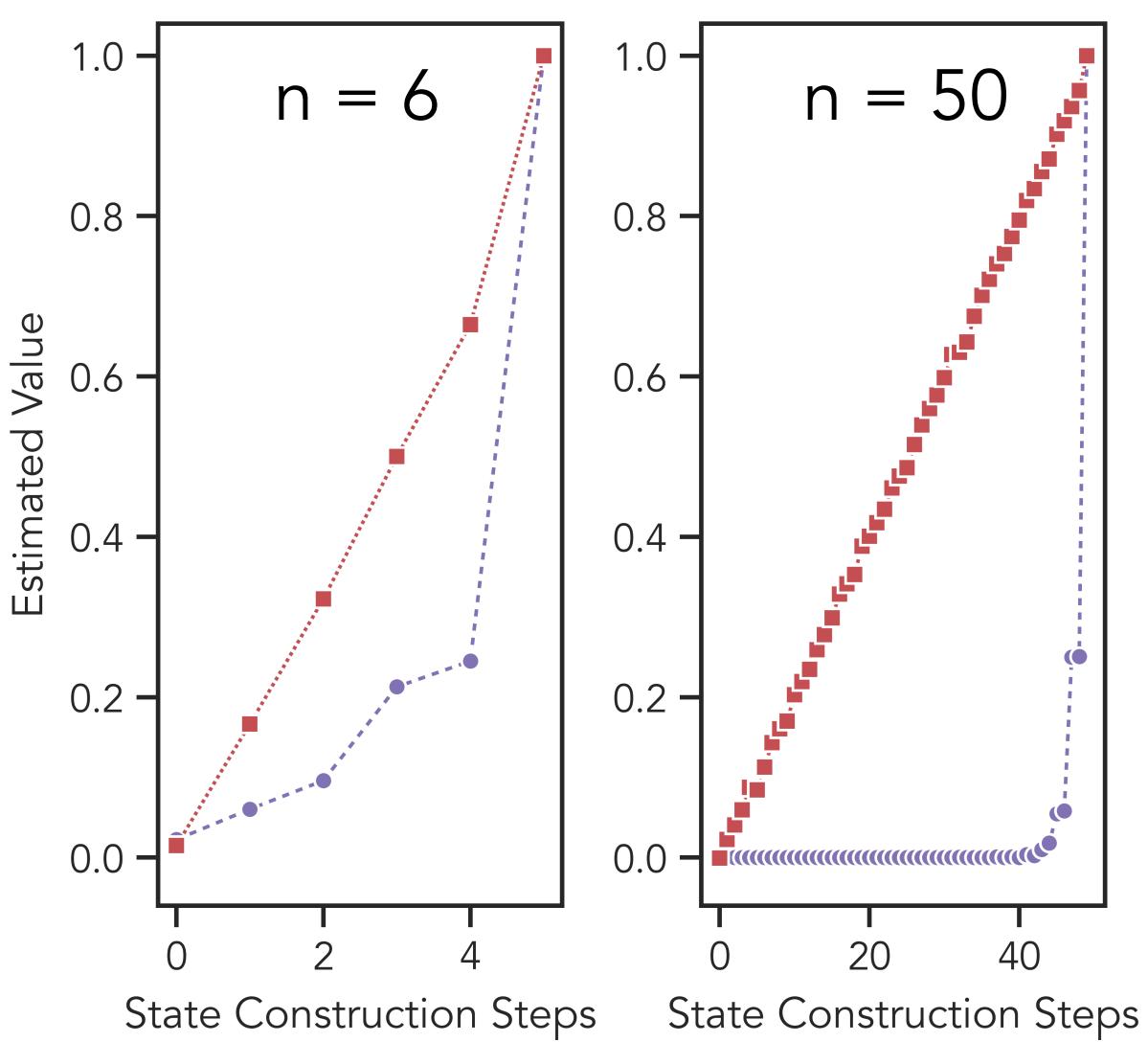




Optimizing state-preparation circuit

Constructing an n-qubit MPS with H, CZ, T gates.





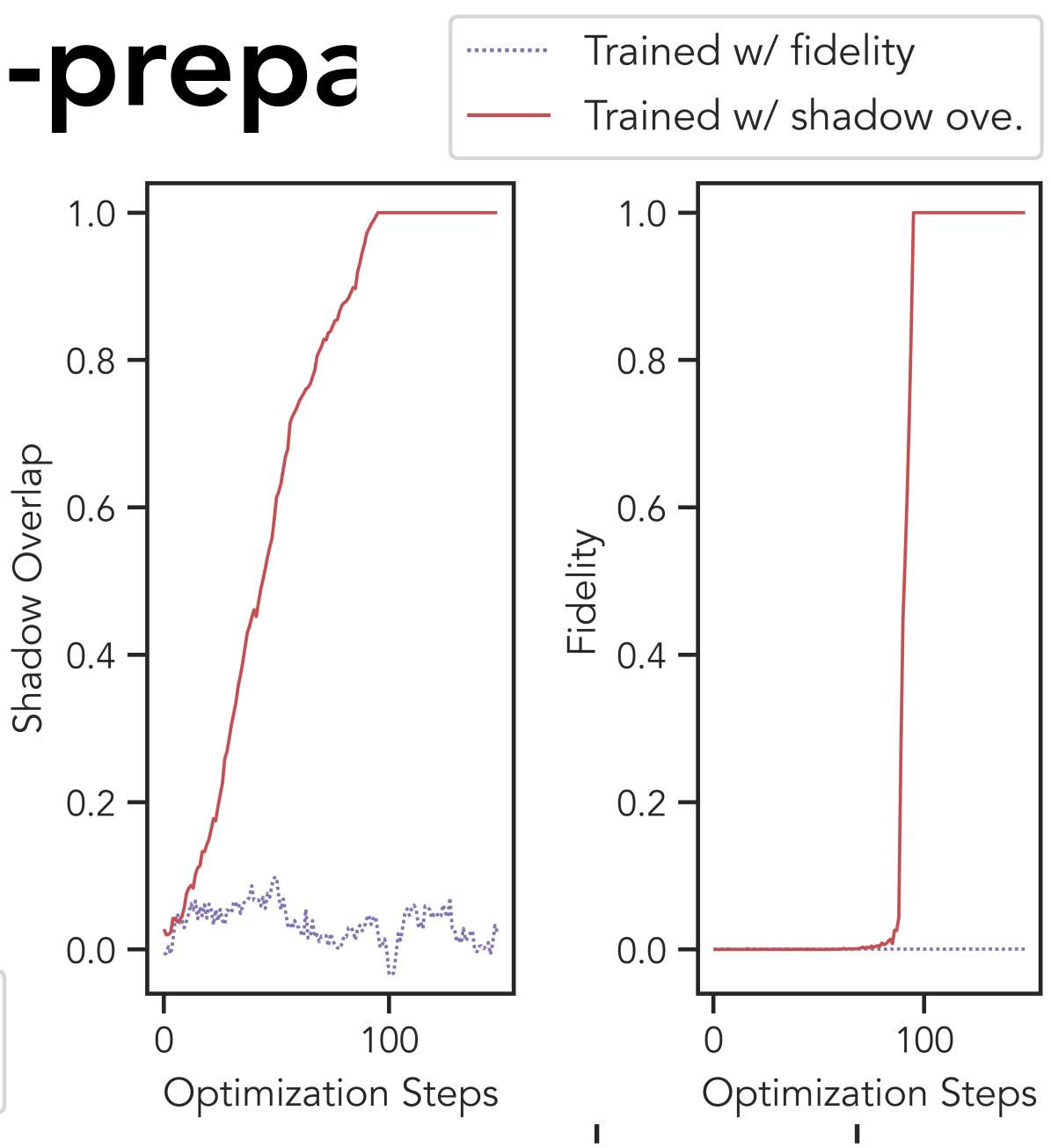
Optimizing state-prepa

Training using Monte-Carlo optimization to prepare a 50-qubit MPS.

.....

Trained w/ fidelity

Trained w/ shadow ove.



Conclusion

- We prove that almost all quantum states can be efficiently certified from few single-qubit measurements.
- Are there states not certifiable with few single-qubit measurements?

