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Subset Sums in Number Theory

Goldbach’s conjecture

Every even integer at least 4 is the sum of two primes.

Gauss’ Eureka theorem

Every positive integer is the sum of three triangular numbers.

Lagrange’s four square theorem

Every positive integer is the sum of four perfect squares.



Complete sequences

Let A be a sequence of positive integers. Let Σ(A) be the set of
integers representable as a sum of distinct terms of A.

A is complete if every sufficiently large integer is in Σ(A),
and entirely complete if every positive integer is in Σ(A).

Examples:

{2i : i ≥ 0} is entirely complete.

{2i : i ≥ 1} is not complete.

For all k ∈ N, {ik : i ≥ 1} is complete (Sprague 1947).

p, q ≥ 2 coprime ⇒ {piqj : i , j ≥ 0} is complete (Birch 1959).

The set of even numbers is not complete.
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Entirely complete sequences

Proposition: (Graham)

A = {a1 ≤ a2 ≤ . . .} is entirely complete iff

a1 = 1 and ak − 1 ≤
∑

j<k ak for all k > 1.

Proof: ⇒ If ak − 1 >
∑

j<k aj , then ak − 1 is not in Σ(A).

⇐ By induction on k , we get Σ({aj}kj=1) = [
∑k

j=1 aj ].

Lemma: (Graham)

Suppose Σ(A) contains all integers in the interval [x , x + y).

1 If a is a positive integer with a ≤ y and a /∈ A, then

Σ(A ∪ {a}) contains all integers in the interval [x , x + y + a).

2 If a1, . . . , as are positive integers such that ai ≤ y +
∑

j<i aj
and ai /∈ A for i = 1, . . . , s, then Σ(A ∪ {a1, a2, . . . , as})
contains all integers in the interval [x , x + y +

∑s
i=1 ai ).
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Complete polynomial sequences

Let P be a polynomial in one variable and A = {P(n)}n≥1.

If A is complete, then

the leading coefficient of P is positive, and

for every prime p there is n such that p does not divide P(n).

Necessary conditions are sufficient (Roth and Szekeres 1959)

Another proof can be deduced from (Cassels 1962)

Another characterization by (Graham 1964):

For P(x) = αk

(x
k

)
+ αk−1

( x
k−1

)
+ · · ·+ α0

(x
0

)
∈ R[x ],

A is complete iff

αk > 0 and αi = pi/qi rational ∀i with gcd(p0, p1, . . . , pk) = 1.
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Ramsey complete sequences (Burr and Erdős 1985)

Let A(n) = |A ∩ [n]|.

A is r -Ramsey complete if for every partition A = A1 ∪ . . . ∪ Ar ,
every sufficiently large integer is in

⋃r
i=1Σ(Ai ).

∃ a 2-Ramsey complete set A with A(n) = O((log n)3).

If A is 2-Ramsey complete, then A(n) = Ω((log n)2).

Problems

1 Improve these bounds.

2 Prove there is a sparse r -Ramsey complete sequence for r > 2.

3 Determine the r -Ramsey complete polynomial sequences.
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Let A(n) = |A ∩ [n]|.

A is r -Ramsey complete if for every partition A = A1 ∪ . . . ∪ Ar ,
every sufficiently large integer is in

⋃r
i=1Σ(Ai ).

∃ a 2-Ramsey complete set A with A(n) = O((log n)3).

If A is 2-Ramsey complete, then A(n) = Ω((log n)2).

Problems

1 Improve these bounds.

2 Prove there is a sparse r -Ramsey complete sequence for r > 2.

3 Determine the r -Ramsey complete polynomial sequences.



Ramsey complete sequences (Burr and Erdős 1985)

A is r -Ramsey complete if for every partition A = A1 ∪ . . . ∪ Ar ,
every sufficiently large integer is in

⋃r
i=1Σ(Ai ).

∃ a 2-Ramsey complete set A with A(n) = O((log n)3).

If A is 2-Ramsey complete, then A(n) = Ω((log n)2).

Problems

1 Improve these bounds. (Erdős $100)
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We prove a result which solves all of these problems.



Ramsey complete sequences (Burr and Erdős 1985)
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Ramsey complete sequences

Theorem 1

Let r ≥ 2. There exists an r -Ramsey complete sequence A with

A(n) ≤ Cr(log n)2 for all n.

If A is r -Ramsey complete, then A(n) ≥ cr(log n)2 for all large n.

Theorem 2

If degree d polynomial P satisfies {P(n)}n≥1 is complete, then

there is A ⊂ {P(n)}n≥1 with A(n) ≤ Cd r(log n)
2 for all n such

that A is r -Ramsey complete.

Corollary

If A = {P(n)}n≥1 is complete, then A is r -Ramsey complete ∀r .
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Ramsey complete sequences

Theorem 1

For r ≥ 2, there is an r -Ramsey complete sequence A with

A(n) ≤ Cr(log n)2 for all n.

Key Lemma

For 0 < ε ≤ 1/2 and n sufficiently large, there is Sn ⊂ [n, 2n) with

|Sn| ≤ 4000ε−1 log n such that for every A′ ⊂ Sn with |A′| ≥ ε|Sn|,
we have [yn, 3yn] ⊂ Σ(A′) with yn = 1000n log n.

Proof of Theorem 1: Apply Key Lemma with ε = 1/r and n = 2i

for each i ≥ i0, and let A =
⋃

i≥i0
S2i . Consider an r -coloring of A.

Let Ai ⊂ S2i consist of the elements of the most common color.
Intervals Ii = [y2i , 3y2i ] cover all large integers and Ii ⊂ Σ(Ai ).
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Ramsey complete sequences

Key Lemma

For 0 < ε ≤ 1/2 and n sufficiently large, there is Sn ⊂ [n, 2n) with

|Sn| ≤ 4000ε−1 log n such that for every A′ ⊂ Sn with |A′| ≥ ε|Sn|,
we have [yn, 3yn] ⊂ Σ(A′) with yn = 1000n log n.

How do we build the set Sn?

At random! (but not in the most obvious way)

Pick Sn ⊂ [n, 2n) uniformly at random of size 4000ε−1 log n so
that no element of Sn has a prime factor less than (log n)/2.

With very high probability, a random A′ ⊂ [n, 2n) with
|A′| = 4000 log n and each element has no prime factor less than
(log n)/2 satisfies [yn, 3yn] ⊂ Σ(A′) .

We then union bound over all A′ ⊂ Sn.
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A recipe for finding intervals in subset sums

Let A be a set of integers.

1 Partition A into ℓ sets A1, . . . ,Aℓ.

2 Main step: Partition Ai = Bi ∪ Ci so that the set of subset

sums of Bi is large modulo each c ∈ Ci .

3 Using the previous step, obtain Σ(Ai ) = Σ(Bi ∪ Ci ) is large.

4 Using that each Σ(Ai ) is large, we get their sumset and hence

Σ(A) contains a long interval.

Claim, helpful for step 3

Let c ∈ N, B ⊂ Z with c /∈ B and the size of Σ(A) considered

modulo c is at least h, then |Σ(A ∪ {c})| ≥ |Σ(A)|+ h.
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Lemma (Lev), helpful for step 4

Let ℓ, q ≥ 1 and n ≥ 3 are integers with ℓ ≥ 2⌈(q − 1)/(n− 2)⌉. If
A1, . . . ,Aℓ ⊂ Z with each |Ai | ≥ n, each Ai a subset of an interval

of at most q + 1 integers and none of which is a subset of an

arithmetic progression of common difference greater than one, then

A1 + · · ·+ Aℓ contains an interval of length at least ℓ(n − 1) + 1.



Density complete sequences

A set A is ε-complete if every A′ ⊂ A with A′(n) ≥ εA(n) for n
sufficiently large is complete.

Question

How sparse can an ε-complete sequence be?

An ε-complete A must satisfy modularity and growth conditions:
1. For each prime p, the multiples of p in A have density ≤ ε.
2. ∃ C such that ak ≤

∑
i<εk+C ai for all k .

Roughly, a random sequence satisfying the modularity and growth
conditions is almost surely ε-complete. In particular, we have:

Theorem

Let f1, . . . , ft ∈ N for t ≥ 1/ε and fm =
∑

i≤εm fi for m > t.

If A is ε-complete, then ak = O(fk).

There exists an ε-complete sequence A with ak = Θ(fk).
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Conjecture

Conjecture

Let 1 < p1 < . . . < pr+1 be pairwise relatively prime.

The sequence {pi11 p
i2
2 · · · pir+1

r+1}i1,...,ir+1≥0 is Ramsey r -complete.

Remark: The sequence is not (r + 1)-Ramsey complete:

Assign pi11 p
i2
2 · · · pir+1

r+1 a color j for which ij is nonzero and j ≤ r ,
and color r + 1 otherwise.



Conjecture

Conjecture

Let 1 < p1 < . . . < pr+1 be pairwise relatively prime.

The sequence {pi11 p
i2
2 · · · pir+1

r+1}i1,...,ir+1≥0 is Ramsey r -complete.

Remark: The sequence is not (r + 1)-Ramsey complete:

Assign pi11 p
i2
2 · · · pir+1

r+1 a color j for which ij is nonzero and j ≤ r ,
and color r + 1 otherwise.



Conjecture

Conjecture

Let 1 < p1 < . . . < pr+1 be pairwise relatively prime.

The sequence {pi11 p
i2
2 · · · pir+1

r+1}i1,...,ir+1≥0 is Ramsey r -complete.

Remark: The sequence is not (r + 1)-Ramsey complete:

Assign pi11 p
i2
2 · · · pir+1

r+1 a color j for which ij is nonzero and j ≤ r ,
and color r + 1 otherwise.



Sure monochromatic subset sums

Definition

Let f (n) be the minimum r such that there is an r -coloring of

[n − 1] such that no monochromatic subset sums to n.

Example: f (23) ≤ 3 given by the coloring

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

More generally, the greedy coloring uses ∼
√
n/2 colors.

However, this is not close to best possible.

Erdős first proved f (n) = o(n1/3) and asked if f (n) = n1/3−o(1).
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Erdős first proved f (n) = o(n1/3) and asked if f (n) = n1/3−o(1).



Sure monochromatic subset sums

Definition

Let f (n) be the minimum r such that there is an r -coloring of

[n − 1] such that no monochromatic subset sums to n.

Example: f (23) ≤ 3 given by the coloring

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

More generally, the greedy coloring uses ∼
√
n/2 colors.

However, this is not close to best possible.
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Sure monochromatic subset sums

Definition

Let f (n) be the minimum r such that there is an r -coloring of

[n − 1] such that no monochromatic subset sums to n.

Theorem: (Alon and Erdős 1996)

There are positive constants c, C such that

cn1/3

log4/3 n
≤ f (n) ≤ Cn1/3(log log n)1/3

(log n)1/3
.

They conjectured that f (n) grows more like the upper bound.
Vu improved the lower bound to f (n) ≥ cn1/3/ log n.

Theorem: (Conlon-F.-Pham)

f (n) = Θ

(
n1/3(n/ϕ(n))

(log n)1/3(log log n)2/3

)
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The Alon-Erdős coloring

Theorem: (Alon and Erdős 1996)

For r := Cn1/3(log n)−1/3(log log n)1/3, there is an r -coloring of

[n − 1] such that no monochromatic subset sums to n.

Type 1: For j ∈ [r/2], color integers in [n/(j + 1), n/j) color j .

Type 2: For each of the first r/4 primes p that do not divide n,
color the multiples of p using one color.

Type 3: We can group the remaining uncolored elements in [n − 1]
into r/4 color classes each with sum less than n.

Example: f (39) ≥ 4. Four color classes: [20, 38] and [13, 19] are
type 1, {2, 4, 6, 8, 10, 12} is type 2, and {1, 3, 5, 7, 9, 11} is type 3.
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A new coloring

Theorem: (Conlon-F.-Pham)

For r := Cn1/3(log n)−1/3(log log n)−2/3(n/ϕ(n)), there is an

r -coloring of [n− 1] such that no monochromatic subset sums to n.

Type 1: For j ∈ [r/2], color integers in [n/(j + 1), n/j) color j .

Type 2: For each of the first r/4 primes p that do not divide n,
color the multiples of p using one color.

Let d be maximum such that (d , n) = 1 and ϕ(d) < r/16.
For each t ∈ (Z/dZ)×, let xt ∈ [d ] with xt ≡ nt−1 (mod d). .

If
∑s

i=1 ai = n and each ai ≡ t (mod d), then s ≡ xt (mod d).

One color class consists of those a ≡ t (mod d) with a ≥ n/xt ,
and one for those a ≡ t (mod d) with a ∈ [n/(xt + d), n/xt).

If a is uncolored, then a < n/d . Group into size d color classes.
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Long arithmetic progressions in subset sums

Theorem: (Szemerédi-Vu 2006)

If A ⊂ [n] and |A| ≥ C
√
n, then Σ(A) contains an n-term AP.

An AP a, a+ d , . . . , a+ (k − 1)d is homogeneous if d |a.

Theorem: (Freiman 1993, Sárközy 1994)

If A ⊂ [n] and |A| ≥ C
√
n log n, then Σ(A) contains an n-term HAP

Conjecture: (Sárközy and Tran-Vu-Wood)

If A ⊂ [n] and |A| ≥ C
√
n, then Σ(A) contains an n-term HAP.
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Non-averaging subsets

Definition

A set A of numbers is non-averaging if no element is the average

of some of the other elements of the set.

It was known that
every non-averaging subset of [n] has size O(n1/2 log n),
and there is a non-averaging subset of [n] of size Ω(n1/4).
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√
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Theorem: (Conlon-F.-Pham)

If A ⊂ [n], k > 1, and |A| ≥ Cn1/k , then there is d < k such that

Σ(A) contains a proper homogeneous generalized arithmetic

progression of dimension d of size at least c|A|d+1.
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Erdős distinct subset sum problem

Erdős Distinct Subset Sum Conjecture

If a1 < . . . < ak has distinct subset sums, then ak = Ω(2k).

The sequence with ak = 2k−1 shows this would be optimal.

The pigeonhole principle implies 2k ≤ kak , so ak ≥ 2k/k .

Erdős and Moser: ak ≥ 1
42

k/
√
k by the second moment method.

Consider random sum X = ε1a1 + · · ·+ εkak with each εi ∈ {0, 1}.
4Var[X ] = a21 + · · ·+ a2k ≤ ka2k and use Chebyshev’s inequality.

Theorem (F.-Dubroff-Xu)

If a1 < . . . < ak has distinct subset sums, then ak ≥
( k
⌊k/2⌋

)
.

Two proofs: One uses Harper’s vertex isoperimetric inequality.
Another shows that the sequence either satisfies Erdős’ conjecture
or the random sum X is close to a normal distribution.
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Thank you!


