Limit Multiplicities, Trace Formulas and Von Neumann Dimensions

Jun Yang Harvard University

Mathematical Picture Language Seminar @ Harvard University, Cambridge, US September 12, 2023

Contents

Prime number theorem:

$$\lim_{n\to\infty} \frac{\#\{\text{prime numbers} \le n\}}{\frac{n}{\log n}} = 1$$

Limit multiplicity:

$$\lim_{n\to\infty} \frac{\text{multiplicity}}{\text{von Neumann dimension}} = 1$$

- An Example:
 - $\mathsf{SL}(2,\mathbb{Z})$ and Discrete Series of $\mathsf{SL}(2,\mathbb{R})$
- From Discrete Series to Bounded Subsets of Irrep(G).
- The Trace & the Arthur-Selberg Trace Formula
- The Results on Limits Multiplicities

The Multiplicity Problem: finite groups

- *G*: a finite group;
- $\Gamma \subset G$: a subgroup of G;
- the quasi-regular representation $R: G \curvearrowright L^2(\Gamma \backslash G)$, $(R(g)\phi)(x) = \phi(xg), g \in G$.
- $L^2(\Gamma \backslash G) \stackrel{G\text{-module}}{=} \bigoplus_{\pi \in Irrep(G)} m_{\pi} \cdot \pi$.
- Question 1: the multiplicity $m_{\pi} = ?$
- Answer 1: $L^2(\Gamma \backslash G) = \operatorname{Ind}_{\Gamma}^G(1_{\Gamma})$ (the induced rep).

$$\Rightarrow m_{\pi} = \dim_{\mathbb{C}} \operatorname{Hom}_{G}(\operatorname{Ind}_{\Gamma}^{G}(1_{\Gamma}), \pi)$$

$$= \dim_{\mathbb{C}} \operatorname{Hom}_{\Gamma}(1_{\Gamma}, \operatorname{Res}_{\Gamma}^{G}(\pi)) \quad (Frobenius \ reciprocity)$$

$$= \dim_{\mathbb{C}} \pi^{\Gamma}.$$

Here
$$\pi^{\Gamma} := \{ v \in H_{\pi} | \pi(\gamma)v = v, \forall \gamma \in \Gamma \}$$

The Multiplicity Problem: $SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R})$

- $G = SL(2, \mathbb{R});$
- $\Gamma = SL(2,\mathbb{Z});$
- the quasi-regular representation $R: G \curvearrowright L^2(\Gamma \backslash G)$ $(R(g)\phi)(x) = \phi(xg).$
- Question 2: What is the decomposition of *R*?
- Answer 2: It is NOT a direct sum, $R \neq \bigoplus m_{\pi} \cdot \pi$

Theorem (Selberg 1950s)

$$L^{2}(\Gamma \backslash G) = \underbrace{L^{2}_{disc}(\Gamma \backslash G)}_{discrete \ spectrum} \bigoplus \underbrace{L^{2}_{cont}(\Gamma \backslash G)}_{continuous \ spectrum}$$
$$= (\bigoplus_{\pi} m_{\pi} \cdot \pi) \bigoplus \int_{(0,\infty)}^{\oplus} \pi_{s} d\nu(s).$$

The Multiplicity Problem: $SL(2,\mathbb{Z}) \subset SL(2,\mathbb{R})$

Theorem

$$L^2_{disc}(\Gamma \backslash G) = \oplus_{\pi} m_{\Gamma}(\pi) \cdot \pi$$
 with each multiplicity $m_{\Gamma}(\pi) < \infty$.

- Question 3: $m_{\Gamma}(\pi) = ?$
- Answer 3: Unknown for most π (No Frobenius reciprocity)
- Irrep(G) =? or the unitary dual \widehat{G} =?
- **1** the discrete series $\{\pi_k^{\pm}|k\geq 2\}$;
- ② the principal series $\{\pi_{it}^{\pm}|t\in\mathbb{R}\};$
- **1** the complementary series $\{\sigma_s | s \in (0,1)\}$;
- the limits of discrete series δ_1^+, δ_1^- ;
- the trivial rep C.

Visualize Irrep($SL(2,\mathbb{R})$) or $SL(2,\mathbb{R})$

$$\begin{split} \widehat{G} &= \underbrace{\{\pi_k^{\pm} | k \geq 2\}}_{\text{discrete series}} \underbrace{\bigsqcup_{\substack{\{\pi_{it}^{\pm} | t \in \mathbb{R}\}\\ \text{principal series}}}}_{\text{principal series}} \underbrace{\{\sigma_s | s \in (0,1)\} \bigsqcup_{\substack{\{\delta_1^{\pm}\}\\ \text{the remaining irreps}}}}_{\text{the remaining irreps}} \\ &\approx \underbrace{\sqcup_{1,2} \{k | k \geq 2\}}_{\text{discrete series}} \underbrace{\sqcup_{1,2} \mathbb{R}}_{\text{principal series}} \underbrace{\sqcup_{\substack{\{0,1\}\\ \text{the remaining irreps}}}}_{\text{the remaining irreps}} \end{split}$$

Figure: The unitary dual of $SL(2,\mathbb{R})$ by P. Hochs

The Multiplicity for $SL(2, \mathbb{Z}) \subset SL(2, \mathbb{R})$ and Discrete Series

$$L^2_{\operatorname{disc}}(\Gamma \backslash G) = \bigoplus_{\pi} m_{\Gamma}(\pi) \cdot \pi$$
 with each $m_{\Gamma}(\pi) < \infty$.

• A few $m_{\Gamma}(\pi)$ are known! They are related to cusp forms.

Definition

Let $k \in \mathbb{Z}$. A cusp form of weight k with respect to Γ is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ satisfying

2 f vanishes at each cusp of $\Gamma \Leftrightarrow |f(x+iy)| \leq C \cdot y^{-k/2}$.

Denote by $S_k(\Gamma)$ the space of cusp form of weight k.

Theorem (Gelfand et al. 1960s)

For π_k , $m_{\Gamma}(\pi_k) = \dim S_k(\Gamma) = \dim$ of cusp forms of weight k.

The Limit Multiplicity Problem

- $m_{\Gamma}(\pi_k) = \dim S_k(\Gamma)$.
- the principal congruence subgroups

$$\Gamma(n)$$
: = $\{g \in SL(2,\mathbb{Z}) | g \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod n \}$.

• $m_{\Gamma(n)}(\pi_k) = \dim S_k(\Gamma(n)) =$ $(k-1-\frac{6}{2}) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1-p^{-2}),$

(by Riemann-Roch theorem for modular curves).

- $\Rightarrow \lim_{n\to\infty} m_{\Gamma(n)}(\pi) = \infty$.
- Question 4: Find some "nice" $f: \mathbb{Z} \to \mathbb{R}$ such that

$$\lim_{n\to\infty}\frac{m_{\Gamma(n)}(\pi)}{f(n)}=1$$
,

which is the limit multiplicity problem.

Answer 4: f can be given by von Neumann dimensions!

The Von Neumann Dimensions

- $L: \Gamma \curvearrowright l^2(\Gamma)$, the left regular rep of a discrete group Γ ;
- the group von Neumann algebra of Γ,

$$L\Gamma$$
: = $\overline{L(\Gamma)}^{\text{w.o.t}} \subset B(I^2(\Gamma))$.

- "the trace" on $L\Gamma$: $tr(x) = \langle x\delta_e, \delta_e \rangle_{l^2(\Gamma)}$.
- Given a $L\Gamma$ -module H, there is an isomorphism

$$H \stackrel{\text{L1-module}}{\cong} p(I^2(\Gamma) \otimes I^2(\mathbb{N})),$$
 for some projection $p \in L\Gamma' \cap B(I^2(\Gamma) \otimes I^2(\mathbb{N})).$

• the von Neumann dimension $\dim_{L\Gamma} H$: = $(\operatorname{tr} \otimes \operatorname{Tr})(p)$.

Lemma

- $2 \dim_{L\Gamma}(H_1 \oplus H_2) = \dim_{L\Gamma} H_1 + \dim_{L\Gamma} H_2;$
- **3** If $Z(L\Gamma) = \mathbb{C}$ ($L\Gamma$ is a factor),

$$\dim_{L\Gamma} H_1 = \dim_{L\Gamma} H_2 \Leftrightarrow H_1 \cong H_2$$
 as $L\Gamma$ -modules.

4 . . .

The Von Neumann Dimensions

- a Lie group G, a lattice $\Gamma \subset G$: vol $(\Gamma \backslash G) < \infty$,
- a discrete series (π, H) of $G := \text{an irrep} \leq L^2(G)$.

Theorem (Atiyah & Schmid, 1970s)

 $\dim_{L\Gamma} H = \operatorname{vol}(\Gamma \backslash G) \cdot d(\pi).$

• $d(\pi)$: = the formal dimension of π : $d(\pi) \cdot \langle c_{u,v}^{\pi}, c_{x,y}^{\pi} \rangle_{L^{2}(G)} = \langle u, x \rangle_{H} \cdot \overline{\langle v, y \rangle_{H}},$ for all $u, v, x, y \in H$, where $c_{u,v}^{\pi}(g) = \langle \pi(g)u, v \rangle \in L^{2}(G).$

Example

- Take $\Gamma(n) \subset G = SL(2, \mathbb{R})$.
- 2 Take the discrete series (π_k, H_k) of G.
- **3** Gauss-Bonnet \Rightarrow vol($\Gamma(n) \setminus G$).
- **4** Harish-Chandra $\Rightarrow d(\pi_k)$.

The Limit Multiplicity for $SL(2,\mathbb{Z})\subset SL(2,\mathbb{R})$ and Discrete Series

Let us collect the data!

- A family of lattices $\{\Gamma(n)\}_{n\geq 1}$ in $G=\mathsf{SL}(2,\mathbb{R})$,
- (π_k, H_k) : the discrete series of G,
- For the multiplicity,

$$m_{\Gamma(n)}(\pi_k) = (k-1-\frac{6}{n}) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1-p^{-2}).$$

For the von Neumann dimension,

$$\dim_{L\Gamma(n)}(H_k) = (k-1) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1-p^{-2}).$$

• Take the quotient and then the limit:

$$\lim_{n \to \infty} \frac{m_{\Gamma(n)}(\pi_k)}{\dim_{L\Gamma(n)}(H_k)} = \lim_{n \to \infty} \frac{(k - 1 - \frac{6}{n}) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1 - p^{-2})}{(k - 1) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1 - p^{-2})}$$

$$= \lim_{n \to \infty} \frac{k - 1 - \frac{6}{n}}{k - 1} = \mathbf{1}$$

The Limit Multiplicity in General

• For $\{\Gamma(n)\}_{n\geq 1}$ in $G=\mathsf{SL}(2,\mathbb{R})$, we have

$$\lim_{n\to\infty}\frac{m_{\Gamma(n)}(\pi_k)}{\dim_{L\Gamma(n)}(H_k)}=1.$$

- Question 5: Is this true "in general"?
- **Some difficulties** for the generalization:
 - **1** Most $m_{\Gamma}(\pi)$ are unknown (different from the d.s. of $SL(2,\mathbb{R})$)
 - 2 Some Lie groups have no discrete series:

(Harish-Chandra)
$$G$$
 has d.s iff rank G = rank K

 \bullet If (π, H) is NOT a d.s,

$$H$$
 is NOT a $L\Gamma$ -module. \Rightarrow No dim $_{L\Gamma}$ H .

discrete series → "bounded subsets of the unitary dual"

Bounded Subsets of the Unitary Dual

the embedding: $Irrep(SL(2,\mathbb{R})) \hookrightarrow \mathbb{R}^2$.

$$\begin{split} \widehat{G} &= \underbrace{\{\pi_k^{\pm} | k \geq 2\}}_{\text{discrete series}} \underbrace{\bigsqcup_{\substack{\{\pi_{it}^{\pm} | t \in \mathbb{R}\}\\ \text{principal series}}}}_{\text{principal series}} \underbrace{\{\sigma_s | s \in (0,1)\} \bigsqcup_{\substack{\{\delta_1^{\pm}\}\\ \text{the remaining irreps}}}}_{\text{the remaining irreps}} \\ \approx \underbrace{\sqcup_{1,2} \{k | k \geq 2\}}_{\text{discrete series}} \underbrace{\sqcup_{1,2} \mathbb{R}}_{\text{principal series}} \underbrace{\sqcup_{\substack{(0,1)\\ \text{the remaining irreps}}}}_{\text{the remaining irreps}} \end{split}$$

Figure: The unitary dual of $SL(2,\mathbb{R})$ by P. Hochs

Bounded Subsets of the Unitary Dual of a Lie group

- *G*: a semisimple real Lie group,
- the embedding: $\widehat{G} \hookrightarrow \bigsqcup_{\text{finite}} \mathbb{R}^{\text{rank } G}$ (as a set).
- $X \subset \widehat{G}$ is bounded: if it is bounded in $| |_{\text{finite}} \mathbb{R}^{\text{rank } G}$.
- ullet relatively compact in the Fell topology.

Definition

For a bounded $X \subset \widehat{G}$, $m_{\Gamma}(X)$: $= \sum_{\pi \in X} m_{\Gamma}(\pi)$.

Question 6: Is $m_{\Gamma}(X)$ finite?

Theorem (Borel & Garland 1980s)

For a bounded X, only finitely many $\pi \in X$ occur in $L^2_{disc}(\Gamma \backslash G)$

 $\implies m_{\Gamma}(X)$: $= \sum_{\pi \in X} m_{\Gamma}(\pi)$, a finite sum of finite numbers.

 \implies Answer 6: $\overline{m_{\Gamma}(X)}$ is finite and well-defined!

Bounded Subsets of the Unitary Dual

Theorem (Plancherel Theorem)

There is a measure ν_G on \widehat{G} (Plancherel measure) such that

$$L^2(G) \overset{G-G-\mathrm{bimod}}{\cong} \int_{\widehat{G}}^{\oplus} H_{\pi} \otimes H_{\overline{\pi}} \ d\nu_G(\pi),$$

where the isomorphism given by the Fourier transform:

$$f\mapsto \widehat{f}(\pi)=\int_G f(g)\pi(g^{-1})dg$$
.

- ② π is a d.s. iff it is an atom: $\nu(\{\pi\}) > 0$. $\nu(\{\pi\}) = d(\pi)$.
- $\widehat{G} = \widehat{G}_{temp} \bigsqcup \widehat{G}_{untemp}.$
- $\widehat{\mathsf{SL}}(2,\widehat{\mathbb{R}})_{\mathsf{temp}} = \{ \text{ discrete seires, principal series } \}.$
- Wassermann, Plymen, Clare-Crisp-Higson: decompositions of $C^*_{red}(G)$ (the reduced C^* -algebra)

Plancherel Measure on the Unitary Dual

• X = a bounded subset of \widehat{G} ,

$$H_X$$
: $=\int_X^{\oplus} H_{\pi} d\nu(\pi)$

• $\Rightarrow H_X$ is a module over G, Γ and also $L\Gamma$.

Theorem (Y, 2022)

Given a lattice $\Gamma \subset G$,

$$\dim_{L\Gamma} H_X = \operatorname{vol}(\Gamma \backslash G) \cdot \nu(X).$$

- (Kyed, Petersen & Vaes) dim_{LG}H
 ← a faithful normal tracial weight on LG.
- $X = X_{\text{temp}} \coprod X_{\text{untemp}}$, only X_{temp} contributes to $\nu(X)$.
- reduces to the Atiyah-Schmid Thm if $X = \{\pi\} = a$ d.s.

The Results on Limits Multiplicities

Let us collect the data again!

- Recall $m_{\Gamma}(\pi) = \dim_{\mathbb{C}} \operatorname{Hom}_{G}(H_{\pi}, L^{2}_{\operatorname{disc}}(\Gamma \setminus G)),$ the multiplicity $m_{\Gamma}(X) := \sum_{\pi \in X} m_{\Gamma}(\pi).$
- Recall $H_X = \int_X^{\oplus} H_{\pi} d\nu(\pi)$, the von Neumann dimension $\dim_{I\Gamma} H_X$.

Theorem (Y, 23)

Let G be a semisimple real Lie group and X is a bounded subset of \widehat{G} . We have

$$\lim_{n\to\infty}\frac{m_{\Gamma_n}(X)}{\dim_{L\Gamma_n}(H_X)}=1$$

when G and $\{\Gamma_n\}_{n\geq 1}$ satisfy either one of the following conditions:

- **1** cocompact lattices such that $\bigcap_n \Gamma_n = \{1\}$, $\Gamma_n \triangleleft \Gamma_1$, $[\Gamma_1 : \Gamma_n] < \infty$.
- ② $G = SL(n, \mathbb{R})$ and $\Gamma_n = \ker\{SL(n, \mathbb{Z}) \to SL(n, \mathbb{Z}/n\mathbb{Z})\}.$

The Proof: the Trace & the Arthur-Selberg Trace Formula

•
$$\Gamma \hookrightarrow L^2(G)$$
 $\stackrel{\Gamma\text{-module}}{\cong}$ $I^2(\Gamma)$ $\otimes L^2(\Gamma \backslash G)$.

the commutant of I^2 I^2

•
$$R_{\Gamma}: L^{2}(\Gamma \backslash G) \curvearrowleft G \Rightarrow R_{\Gamma}: L^{2}(\Gamma \backslash G) \curvearrowleft C_{\mathrm{cpt}}^{\infty}(G)$$

 $(R_{\Gamma}(\phi)f)(x): = \int_{G} \phi(g)f(xg)dg, \ \phi \in C_{\mathrm{cpt}}^{\infty}(G)$

• If
$$L^2(\Gamma \backslash G) = \oplus m_{\Gamma}(\pi) \cdot \pi$$
, $R_{\Gamma}(\phi) = \oplus m_{\Gamma}(\pi) \cdot \pi(\phi)$.

⇒Take the trace of both side.

The Proof: the Trace & the Arthur-Selberg Trace Formula

If $\Gamma \setminus G$ is compact,

- $R_{\Gamma}(\phi)$ is a trace-class operator. $\operatorname{Tr}(R_{\Gamma}(\phi)) =$ **the Selberg trace formula**.
- **2** $R_{\Gamma}(\phi) \in \text{the commutant} = R\Gamma \otimes B(L^2(\Gamma \backslash G)).$

If $\Gamma \setminus G$ is **NOT** compact,

- **1** $R_{\Gamma}(\phi)$ is not in the trace class.
- ② the projection $P_{\text{cusp}}: L^2(\Gamma \backslash G) \to L^2_{\text{cusp}}(\Gamma \backslash G)$.
- **3** $P_{\text{cusp}}R_{\Gamma}(\phi)P_{\text{cusp}}$ is in the trace class, $\text{Tr}(P_{\text{cusp}}R_{\Gamma}(\phi)P_{\text{cusp}}) = \text{the Arthur trace formula}.$

The Proof: the Trace & the Arthur-Selberg Trace Formula

Another right action of *G*

- $\Gamma \curvearrowright L^2(G) \stackrel{G-G\text{-bimodule}}{\cong} \int_{\widehat{G}}^{\oplus} H_{\pi^*} \otimes H_{\pi} d\nu(\pi) \curvearrowleft^{R} C_{\text{cpt}}^{\infty}(G).$
- $R(\phi) \in \text{the commutant, if } \phi \in C^{\infty}_{\text{cpt}}(G)$.

$$\Longrightarrow \sigma_{\Gamma}(R(\phi)) = \operatorname{vol}(\Gamma \backslash G)\phi(1).$$

Lemma

Given a tower of lattices $\Gamma_1 \supset \Gamma_2 \supset \dots$ in G.

If
$$\lim_{n\to\infty} \frac{\sigma_{\Gamma_n}(R_{\Gamma_n}(\phi))}{\sigma_{\Gamma_n}(R(\phi))} = 1$$
, \Longrightarrow then $\lim_{n\to\infty} \frac{m_{\Gamma_n}(X)}{\dim_{L\Gamma_n}(H_X)} = 1$.

Its proof is mainly based on

- Sauvageot's density result: the Fourier transforms of $C_{\text{cot}}^{\infty}(G)$ are dense in integrable functions on $\widehat{G}_{\text{temp}}$ (1997).
- Finis, Lapid & Müller's result on Arthur's trace formula (2011).

End

Questions?

Thank you!