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Prime number theorem:

#{prime numbers < n}
iMoo - =1
logn

Limit multiplicity:

multiplicity

von Neumann dimension

O An Example:
SL(2,Z) and Discrete Series of SL(2,R)
@ From Discrete Series to Bounded Subsets of Irrep(G).
© The Trace & the Arthur-Selberg Trace Formula
Q The Results on Limits Multiplicities
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The Multiplicity Problem: finite groups

e G: a finite group;
e [ C G: a subgroup of G;
o the quasi-regular representation R: G ~ L?(I'\G),

(R(g)o)(x) = ¢(xg), g € G.

G-module
° L2(r\G) = @ﬂ'elrrep(G)
e Question 1: the multiplicity m, =7

o Answer 1: [2(T'\G) = Ind®(1r) (the induced rep).

My - T.

= m, = dimc Hom¢(Indf (1r), 7)

= dim¢ Homp (15, ResS () (Frobenius reciprocity)

= dim¢ 7.

Here " := {v € H.|n(y)v = v,Vy € T}

3/21



The Multiplicity Problem: SL(2,7Z) C SL(2,R)

e G =SL(2,R);
o [ =SL(2,Z);
o the quasi-regular representation R: G ~ L?(T'\G)

(R(g)o)(x) = ¢(xg).
e Question 2: What is the decomposition of R?
e Answer 2: It is NOT a direct sum, R # &m, -«

Theorem (Selberg 1950s)
Lz(r\G) dISC r\G @ Lcont r\G

dlscrete spectrum continuous spectrum

(®rmy -7 EB/ msdv(s

A
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The Multiplicity Problem: SL(2,7Z) C SL(2,R)

L2 (T\G) = &, mr(r) - ™ with each multiplicity mr(7) < oo.

e Question 3: mp(m) =7

e Answer 3: Unknown for most 7 (No Frobenius reciprocity)
o Irrep(G) =7 or the unitary dual G =?

O the discrete series {7 |k > 2};

@ the principal series {7|t € R};

© the complementary series {os|s € (0,1)};

Q the limits of discrete series d; , d; ;

@ the trivial rep C.
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Visualize lrrep(SL(2,R)) or SL(2,R)

G = {mc k= 2}| |{milt € R}| |{osls € (0. 1)} {55} | [{C}

discrete series principal series

the remaining irreps

~ Uy o{klk > 2}| | @ | ] 1) J{=1}] J{1}

discrete series principal series

the remaining irreps

rincipal series

Complementary

series Discrete series

Trivial representation Limits of discrete
series

Figure: The unitary dual of SL(2,R) by P. Hochs
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The Multiplicity for SL(2,7Z) C SL(2,R) and Discrete

Series

L3 (T\G) = &, mr(r) - ™ with each mr(7) < co.
o A few mp(m) are known! They are related to cusp forms.

Definition

Let k € Z. A cusp form of weight k with respect to [ is a
holomorphic function f : H — C satisfying

Q f(2) :(cz—f—d)_k-f(izz—ig), z e H, (?Z) erl,

@ f vanishes at each cusp of I < |f(x 4 iy)| < C -y =/

Denote by Si(I") the space of cusp form of weight k.

Theorem (Gelfand et al. 1960s)

For 7k, mr(mx) = dim S, ()= dim of cusp forms of weight k.
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The Limit Multiplicity Problem

) mr(ﬂ'k) = dim Sk(l') .
e the principal congruence subgroups

F(n): ={geSL(2,Z)|g= ((1) (1)) mod n}.
o mrn)(mi) = dim S (I'(n)) =

(k=1=8) g Mya(l— p2),

n 24
(by Riemann-Roch theorem for modular curves).

o — Iim,,_m mr(,,)(TF) = 0.

e Question 4: Find some “nice” 7: Z — R such that
mr(n) (™) _ 1

im0
which is the limit multiplicity problem.
e Answer 4: f can be given by von Neumann dimensions!
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The Von Neumann Dimensions

o L: T /2(r), the left regular rep of a discrete group I;
e the group von Neumann algebra of I,

LM =L(1)""" c B(A(T)).
o “the trace” on LI: tr(x) = (xde,de)r2(r).-

e Given a LI-module H, there is an isomorphism
LT-module

H o= p(AN e FN)),
for some projection p € LI N B(/?(T) ® I(N)).
e the von Neumann dimension dim;r H: = (tr® Tr)(p).

0 dim[_r I2(F) = 1,‘
Q dier(Hl ©® H2) =dimyr H; + dim;r Hy;
© IfZ(LI) =C (LT is a factor),

dim;r H; =dim;r H, & H; =2 H, as LI -modules.

Q ... /
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The Von Neumann Dimensions

e a Lie group G, a lattice I C G: vol(l'\G) < oo,
o a discrete series (m, H) of G := an irrep < L?(G).

Theorem (Atiyah & Schmid, 1970s)

dimer H = vol(N\G) - d(x).

e d(m): = the formal dimension of 7:

d(ﬂ_) ’ <CL71r,v7 C)7<r,y>L2(G) = <U7X>H ’ <V7y>Hy
for all u,v,x,y € H, where c] ,(g) = (n(g)u, v) € L*(G).

@ Take I'(n) C G =SL(2,R).

@ Take the discrete series (7, Hy) of G.
© Gauss-Bonnet = vol(I'(n)\G).

@ Harish-Chandra = d(m).

@ dimir(ny(He) = (k—1) - = - Mya(1 — p~2).
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The Limit Multiplicity for SL(2,Z) C SL(2,R) and

Discrete Series

Let us collect the data!
o A family of lattices {I'(n)},>1 in G = SL(2,R),
o (mx, Hk): the discrete series of G,
e For the multiplicity,
mry(mi) = (k=1 —=8) - 2 Mya(1 = p2).

e For the von Neumann dimension,
3

dimr(ny(Hi) = (k= 1) - & - Tpa(1 — p72).
o Take the quotient and then the limit:
e () e (k1= 5) 5 Mpn(1 = p?)

Im —————— = |im
n—o0 dler(n)(Hk) n—o0 (k _ ]_) . 5 . np\n(l _ p72)
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The Limit Multiplicity in General

o For {I'(n)},>1 in G =SL(2,R), we have

mr(m (7
lim M -1
n—=00 d|mLF(n)(Hk)
e Question 5: Is this true “in general”?
e Some difficulties for the generalization:

@ Most mp(w) are unknown (different from the d.s. of SL(2,R))
@ Some Lie groups have no discrete series:

(Harish-Chandra) G has d.s iff rank G = rank K
@ If (m, H) is NOT a ds,
H is NOT a LT-module. = No dim;r H.

e discrete series — “bounded subsets of the unitary dual”
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Bounded Subsets of the Unitary Dual

the embedding: Irrep(SL(2,R)) — RZ.
G ={milk>2}| [{milt e R}Y| [{osls € (0,1)}| [{oi}|_J{C}

discrete series principal series

the remaining irreps

~ Uy o{klk > 2}| | % | ] 1) J{=1}] [}

discrete series principal series

the remaining irreps

rincipal series

Complementary

series Discrete series

Trivial representation Limits of discrete
series

Figure: The unitary dual of SL(2,R) by P. Hochs
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Bounded Subsets of the Unitary Dual of a Lie group

e G: a semisimple real Lie group,
o the embedding: G — | |, .. R™™C (as a set).

o X C G is bounded : if it is bounded in | |, .. R™"™C.
e & relatively compact in the Fell topology.

Definition
For a bounded X C G, mr(X): = Y wex mr(m).

Question 6: Is mr(X) finite?

Theorem (Borel & Garland 1980s)
For a bounded X, only finitely many = € X occur in L2, (T'\G)

disc

= mp(X): =) xmr(7), a finite sum of finite numbers.
= Answer 6: mp(X) is finite and well-defined!
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Bounded Subsets of the Unitary Dual

Theorem (Plancherel Theorem)

There is a measure v on G (Plancherel measure) such that

G—G—bimod
~J

[2(G) = [2H,® H- dvg(r),
where the isomorphism given by the Fourier transform:

f|—>f fG Ddg.

©@ X C G bounded = 1(X) < .

Q@ 7is ad.s. iff it is an atom: v({7r}) > 0. v({r}) = d(n).
(3] supp(uG) tempered irreps := {r|c], € [***(G),Ve > 0}.
o G Gtemp |_| Guntemp

(5] SL(2 R)iemp = { discrete seires, principal series }.

(6) Wassermann, Plymen, Clare-Crisp-Higson:
decompositions of C*,(G) (the reduced C*-algebra)



Plancherel Measure on the Unitary Dual

e X = a bounded subset of 5
Hx: = [y H.dv(r)
e = Hy is a module over G, I and also LT.

Theorem (Y, 2022)

Given a lattice C G,
dier HX = voI(F\G) . l/(X)

o (Kyed, Petersen & Vaes) dim, cH
<— a faithful normal tracial weight on LG.

o X = Xiemp || Xuntemp, ONly Xiemp contributes to v(X).
e reduces to the Atiyah-Schmid Thm if X = {7} = a d.s.
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The Results on Limits Multiplicities

Let us collect the data again!
o Recall mr(m) = dim¢ Homg(H,, L3 (T\G)),
the multiplicity mp(X): = > mp(n).
meX
o Recall Hx = [, H.dv(r),
the von Neumann dimension dim;r Hy.

Theorem (Y, 23)

Let G be a semisimple real Lie group and X is a bounded
subset of G. We have

. mr,(X)
im ———=1
n—00 dIern(Hx)

when G and {I ,},>1 satisfy either one of the following
conditions:

@ cocompact lattices such that N,I, = {1}, [, <y, [[1: T,] < 0.
@ G =SL(n,R) and T, = ker{SL(n,Z) — SL(n,Z/nZ)}.
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The Proof: the Trace & the Arthur-Selberg Trace Formula

-module

o TnI*(G) = P ®L*\G).
——— ~—~—~ ——
restricted left action left regular rep id
— 2
the commutant of LI = RI ®B(L(M'\G))
the right group vN-alg
the trace = tr @ Tr
"the trace”
o R LZ(F\G) AG= R L2(F\G) A~ C5(6)
(Rr(¢) = Jc 0(8)f(xg)dg, & € C5(G)

o If 2(T\G) = @mr( ) -,
Rr(¢) = ®mr(m) - m(9).

o =Take the trace of both side.
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The Proof: the Trace & the Arthur-Selberg Trace Formula

If I\ G is compact,

@ Rr(¢) is a trace-class operator.

Tr(Rr(¢))= the Selberg trace formula.

@ Rr(¢) € the commutant = Rl @ B(L?(T'\G)).

QO = or(Rr(¢)) := (tr@ Tr)(id ® Rr(¢)).
If '\G is NOT compact,

@ Rr(¢) is not in the trace class.

@ the projection P, [2(T\G) — L2, (T\G).

Q P cuspRr(¢)Peusp is in the trace class,

Tr(P cusp Rr(¢) Peusp) = the Arthur trace formula.

0 — or(Rr(9)) == (tr@ Tr)(id @ P cuspRr(¢) Peusp)-
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The Proof: the Trace & the Arthur-Selberg Trace Formula

Another right action of G

G —G-bimodule
~

oI~ I3G) = [ZHw®H.du(r) AR C3(G).
o R(¢) € the commutant, if ¢ € C35(G).
= or(R(¢)) = vol(T\G)¢(1).

Given a tower of lattices{ DT> D ... in G.

R X
if tim B O)) i (X)

% o7, (R(9)) T dimur, (Fh)

Its proof is mainly based on
© Sauvageot's density result: the Fourier transforms of
Coi(G) are dense in integrable functions on Gierp (1997).
@ Finis, Lapid & Miiller's result on Arthur's trace formula
(2011).
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End

Questions?

Thank you!
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