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The Multiplicity Problem: finite groups

G : a finite group;

Γ ⊂ G : a subgroup of G ;

the quasi-regular representation R : G ↷ L2(Γ\G ),

(R(g)ϕ)(x) = ϕ(xg), g ∈ G .

L2(Γ\G )
G -module

=
⊕

π∈Irrep(G) mπ · π.
Question 1: the multiplicity mπ =?

Answer 1: L2(Γ\G ) = IndGΓ (1Γ) (the induced rep).

⇒ mπ = dimC HomG (Ind
G
Γ (1Γ), π)

= dimC HomΓ(1Γ,Res
G
Γ (π)) (Frobenius reciprocity)

= dimC π
Γ.

Here πΓ := {v ∈ Hπ|π(γ)v = v ,∀γ ∈ Γ}
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The Multiplicity Problem: SL(2,Z) ⊂ SL(2,R)

G = SL(2,R);
Γ = SL(2,Z);
the quasi-regular representation R : G ↷ L2(Γ\G )

(R(g)ϕ)(x) = ϕ(xg).

Question 2: What is the decomposition of R?

Answer 2: It is NOT a direct sum, R ̸= ⊕mπ · π

Theorem (Selberg 1950s)

L2(Γ\G ) = L2disc(Γ\G )︸ ︷︷ ︸
discrete spectrum

⊕
L2cont(Γ\G )︸ ︷︷ ︸

continuous spectrum

= (⊕πmπ · π)
⊕∫ ⊕

(0,∞)

πsdν(s).
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The Multiplicity Problem: SL(2,Z) ⊂ SL(2,R)

Theorem

L2disc(Γ\G ) = ⊕πmΓ(π) · π with each multiplicity mΓ(π) <∞.

Question 3: mΓ(π) = ?

Answer 3: Unknown for most π (No Frobenius reciprocity)

Irrep(G ) =? or the unitary dual Ĝ =?

1 the discrete series {π±
k |k ≥ 2};

2 the principal series {π±
it |t ∈ R};

3 the complementary series {σs |s ∈ (0, 1)};
4 the limits of discrete series δ+1 , δ

−
1 ;

5 the trivial rep C.

5 / 21



Visualize Irrep(SL(2,R)) or ̂SL(2,R)

Ĝ = {π±
k |k ≥ 2}︸ ︷︷ ︸

discrete series

⊔
{π±

it |t ∈ R}︸ ︷︷ ︸
principal series

⊔
{σs |s ∈ (0, 1)}

⊔
{δ±1 }

⊔
{C}︸ ︷︷ ︸

the remaining irreps

≈ ⊔1,2{k |k ≥ 2}︸ ︷︷ ︸
discrete series

⊔
⊔1,2R︸ ︷︷ ︸

principal series

⊔
(0, 1)

⊔
{±1}

⊔
{1}︸ ︷︷ ︸

the remaining irreps

Figure: The unitary dual of SL(2,R) by P. Hochs
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The Multiplicity for SL(2,Z) ⊂ SL(2,R) and Discrete
Series

L2disc(Γ\G ) = ⊕πmΓ(π) · π with each mΓ(π) <∞.

A few mΓ(π) are known! They are related to cusp forms.

Definition

Let k ∈ Z. A cusp form of weight k with respect to Γ is a
holomorphic function f : H→ C satisfying

1 f (z) = (cz + d)−k · f ( az+b
cz+d ), z ∈ H,

(
a b
c d

)
∈ Γ,

2 f vanishes at each cusp of Γ ⇔ |f (x + iy)| ≤ C · y−k/2.

Denote by Sk(Γ) the space of cusp form of weight k .

Theorem (Gelfand et al. 1960s)

For πk , mΓ(πk) = dim Sk(Γ)= dim of cusp forms of weight k.
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The Limit Multiplicity Problem

mΓ(πk) = dim Sk(Γ) .

the principal congruence subgroups

Γ(n) : =
{
g ∈ SL(2,Z)|g ≡

(
1 0
0 1

)
mod n

}
.

mΓ(n)(πk) = dim Sk(Γ(n)) =

(k − 1− 6
n
) · n3

24
· Πp|n(1− p−2),

(by Riemann-Roch theorem for modular curves).

⇒ limn→∞mΓ(n)(π) =∞.

Question 4: Find some “nice” f : Z→ R such that

limn→∞
mΓ(n)(π)

f (n)
= 1,

which is the limit multiplicity problem.

Answer 4: f can be given by von Neumann dimensions!
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The Von Neumann Dimensions

L : Γ ↷ l2(Γ), the left regular rep of a discrete group Γ;
the group von Neumann algebra of Γ,

LΓ: = L(Γ)
w.o.t
⊂ B(l2(Γ)).

“the trace” on LΓ: tr(x) = ⟨xδe , δe⟩l2(Γ).
Given a LΓ-module H , there is an isomorphism

H
LΓ-module∼= p(l2(Γ)⊗ l2(N)),

for some projection p ∈ LΓ′ ∩ B(l2(Γ)⊗ l2(N)).
the von Neumann dimension dimLΓ H : = (tr⊗Tr)(p).

Lemma
1 dimLΓ l

2(Γ) = 1;

2 dimLΓ(H1 ⊕ H2) = dimLΓ H1 + dimLΓ H2;

3 If Z (LΓ) = C (LΓ is a factor),

dimLΓ H1 = dimLΓ H2 ⇔ H1
∼= H2 as LΓ-modules.

4 . . .
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The Von Neumann Dimensions

a Lie group G , a lattice Γ ⊂ G : vol(Γ\G ) <∞,
a discrete series (π,H) of G := an irrep ≤ L2(G ).

Theorem (Atiyah & Schmid, 1970s)

dimLΓ H = vol(Γ\G ) · d(π).

d(π) : = the formal dimension of π:

d(π) · ⟨cπu,v , cπx ,y⟩L2(G) = ⟨u, x⟩H · ⟨v , y⟩H ,
for all u, v , x , y ∈ H , where cπu,v (g) = ⟨π(g)u, v⟩ ∈ L2(G ).

Example

1 Take Γ(n) ⊂ G = SL(2,R).
2 Take the discrete series (πk ,Hk) of G .
3 Gauss-Bonnet ⇒ vol(Γ(n)\G ).
4 Harish-Chandra ⇒ d(πk).

5 dimLΓ(n)(Hk) = (k − 1) · n3
24
· Πp|n(1− p−2).
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The Limit Multiplicity for SL(2,Z) ⊂ SL(2,R) and
Discrete Series

Let us collect the data!

A family of lattices {Γ(n)}n≥1 in G = SL(2,R),
(πk ,Hk): the discrete series of G ,

For the multiplicity,

mΓ(n)(πk) = (k − 1− 6
n
) · n3

24
· Πp|n(1− p−2).

For the von Neumann dimension,

dimLΓ(n)(Hk) = (k − 1) · n3
24
· Πp|n(1− p−2).

Take the quotient and then the limit:

lim
n→∞

mΓ(n)(πk)

dimLΓ(n)(Hk)
= lim

n→∞

(k − 1− 6
n
) · n3

24
· Πp|n(1− p−2)

(k − 1) · n3
24
· Πp|n(1− p−2)

= lim
n→∞

k − 1− 6
n

k − 1
=1
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The Limit Multiplicity in General

For {Γ(n)}n≥1 in G = SL(2,R), we have

lim
n→∞

mΓ(n)(πk)

dimLΓ(n)(Hk)
= 1.

Question 5: Is this true “in general”?
Some difficulties for the generalization:

1 Most mΓ(π) are unknown (different from the d.s. of SL(2,R))
2 Some Lie groups have no discrete series:

(Harish-Chandra) G has d.s iff rankG = rankK

3 If (π,H) is NOT a d.s,

H is NOT a LΓ-module. ⇒ No dimLΓ H.

discrete series → “bounded subsets of the unitary dual”
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Bounded Subsets of the Unitary Dual

the embedding: Irrep(SL(2,R)) ↪→ R2.

Ĝ = {π±
k |k ≥ 2}︸ ︷︷ ︸

discrete series

⊔
{π±

it |t ∈ R}︸ ︷︷ ︸
principal series

⊔
{σs |s ∈ (0, 1)}

⊔
{δ±1 }

⊔
{C}︸ ︷︷ ︸

the remaining irreps

≈ ⊔1,2{k |k ≥ 2}︸ ︷︷ ︸
discrete series

⊔
⊔1,2R︸ ︷︷ ︸

principal series

⊔
(0, 1)

⊔
{±1}

⊔
{1}︸ ︷︷ ︸

the remaining irreps

Figure: The unitary dual of SL(2,R) by P. Hochs
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Bounded Subsets of the Unitary Dual of a Lie group

G : a semisimple real Lie group,

the embedding: Ĝ ↪−→
⊔

finiteRrankG (as a set).

X ⊂ Ĝ is bounded : if it is bounded in
⊔

finiteRrankG .

⇔ relatively compact in the Fell topology.

Definition

For a bounded X ⊂ Ĝ , mΓ(X ) : =
∑

π∈X mΓ(π).

Question 6: Is mΓ(X ) finite?

Theorem (Borel & Garland 1980s)

For a bounded X , only finitely many π ∈ X occur in L2disc(Γ\G )

=⇒ mΓ(X ) : =
∑

π∈XmΓ(π), a finite sum of finite numbers.
=⇒ Answer 6: mΓ(X ) is finite and well-defined!
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Bounded Subsets of the Unitary Dual

Theorem (Plancherel Theorem)

There is a measure νG on Ĝ (Plancherel measure) such that

L2(G )
G−G−bimod∼= ∫ ⊕

Ĝ
Hπ ⊗ Hπ dνG (π),

where the isomorphism given by the Fourier transform:

f 7→ f̂ (π) =
∫
G
f (g)π(g−1)dg.

1 X ⊂ Ĝ bounded ⇒ ν(X ) <∞.
2 π is a d.s. iff it is an atom: ν({π}) > 0. ν({π}) = d(π).
3 supp(νG ) = tempered irreps := {π|cπu,v ∈ L2+ε(G ),∀ε > 0}.
4 Ĝ = Ĝtemp

⊔
Ĝuntemp.

5 ̂SL(2,R)temp = { discrete seires, principal series }.
6 Wassermann, Plymen, Clare-Crisp-Higson:

decompositions of C ∗
red(G ) (the reduced C ∗-algebra)
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Plancherel Measure on the Unitary Dual

X = a bounded subset of Ĝ ,

HX : =
∫ ⊕
X
Hπdν(π)

⇒ HX is a module over G , Γ and also LΓ.

Theorem (Y, 2022)

Given a lattice Γ ⊂ G,

dimLΓ HX = vol(Γ\G ) · ν(X ).

(Kyed, Petersen & Vaes) dimLGH
←− a faithful normal tracial weight on LG .

X = Xtemp

⊔
Xuntemp, only Xtemp contributes to ν(X ).

reduces to the Atiyah-Schmid Thm if X = {π} = a d.s.
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The Results on Limits Multiplicities

Let us collect the data again!
Recall mΓ(π) = dimC HomG (Hπ, L

2
disc(Γ\G )),

the multiplicity mΓ(X ) : =
∑
π∈X

mΓ(π).

Recall HX =
∫ ⊕
X
Hπdν(π),

the von Neumann dimension dimLΓ HX .

Theorem (Y, 23)

Let G be a semisimple real Lie group and X is a bounded

subset of Ĝ . We have

lim
n→∞

mΓn(X )

dimLΓn(HX )
= 1

when G and {Γn}n≥1 satisfy either one of the following
conditions:

1 cocompact lattices such that ∩nΓn = {1}, Γn ◁ Γ1, [Γ1 : Γn] <∞.

2 G = SL(n,R) and Γn = ker{SL(n,Z)→ SL(n,Z/nZ)}.
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The Proof: the Trace & the Arthur-Selberg Trace Formula

Γ ↷ L2(G )︸ ︷︷ ︸
restricted left action

Γ-module∼= l2(Γ)︸︷︷︸
left regular rep

⊗ L2(Γ\G )︸ ︷︷ ︸
id

.

the commutant of LΓ = RΓ︸︷︷︸
the right group vN-alg

⊗B(L2(Γ\G ))

the trace = tr︸︷︷︸
”the trace”

⊗ Tr

RΓ : L
2(Γ\G ) ↶ G ⇒ RΓ : L

2(Γ\G ) ↶ C∞
cpt(G )

(RΓ(ϕ)f )(x) : =
∫
G
ϕ(g)f (xg)dg , ϕ ∈ C∞

cpt(G )

If L2(Γ\G ) = ⊕mΓ(π) · π,
RΓ(ϕ) = ⊕mΓ(π) · π(ϕ).

⇒Take the trace of both side.
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The Proof: the Trace & the Arthur-Selberg Trace Formula

If Γ\G is compact,
1 RΓ(ϕ) is a trace-class operator.

Tr(RΓ(ϕ))= the Selberg trace formula.
2 RΓ(ϕ) ∈ the commutant = RΓ⊗ B(L2(Γ\G )).
3 =⇒ σΓ(RΓ(ϕ)) := (tr⊗Tr)(id⊗ RΓ(ϕ)).

If Γ\G is NOT compact,
1 RΓ(ϕ) is not in the trace class.
2 the projection Pcusp : L

2(Γ\G )→ L2cusp(Γ\G ).
3 P cuspRΓ(ϕ)Pcusp is in the trace class,

Tr(P cuspRΓ(ϕ)Pcusp) = the Arthur trace formula.
4 =⇒ σΓ(RΓ(ϕ)) := (tr⊗Tr)(id⊗ P cuspRΓ(ϕ)Pcusp).
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The Proof: the Trace & the Arthur-Selberg Trace Formula

Another right action of G

Γ ↷ L2(G )
G−G -bimodule∼=

∫ ⊕
Ĝ
Hπ∗ ⊗ Hπdν(π) ↶R C∞

cpt(G ).

R(ϕ) ∈ the commutant, if ϕ ∈ C∞
cpt(G ).

=⇒ σΓ(R(ϕ)) = vol(Γ\G )ϕ(1).

Lemma

Given a tower of lattices Γ1 ⊃ Γ2 ⊃ . . . in G .

If lim
n→∞

σΓn(RΓn(ϕ))

σΓn(R(ϕ))
= 1, =⇒ then lim

n→∞

mΓn(X )

dimLΓn(HX )
= 1.

Its proof is mainly based on
1 Sauvageot’s density result: the Fourier transforms of

C∞
cpt(G ) are dense in integrable functions on Ĝtemp (1997).

2 Finis, Lapid & Müller’s result on Arthur’s trace formula
(2011).
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End

Questions?

Thank you!
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