Lecture 25 of Adrian Ocneanu

Notes by the Harvard group

Lecture notes for 27 Oct 2017.

Figureshows the graph A,, at level 5 over sl(3). The uppermost point is the trivial representation
of degree 0, which is followed by those of degree 1,2,3,4,5. The corresponding Coxeter number is
the length of the edges of the mirrors; in this case, it is 5+ 3 = 8. This means that we are at the 8th
root of unity. The Young diagrams are not drawn here but can be imagined with 5 columns. The left
line gives the symmetric representations, on polynomials in three variables ey, es, es. The right line
is related to double things like V' AV, with basis e; A e;. By Hodge duality, you can map that into
the missing ey, with what in physics is called the totally anti-symmetric tensor on three coordinates.
At the 8th root of unity, the ones with degree bigger than 5 would be killed. Remember the Weyl
formula for the dimension tells that the dimension is a product of the distances to the mirrors.
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Figure [2|is the first of the exceptionals; these can be classified. The higher Dynkin diagram at
the same Coxeter number is the corresponding graph A,,. The octahedron in the middle has wings
which are fragments of the A-graph. In representation theory, we have the Schur lemma: if you have
the self intertwiner from the representation to itself and if the representation is unitary, then you can
show the adjoint is also an intertwiner, then the square is also an intertwiner, and so on, until you
find a projection that is an intertwiner. If you have a non-trivial matrix A, then A + A* and A — A*
are self-adjoint. You can decompose it into sum of self-adjoint elements. Self-adjoint elements can
take a polynomial to find a projection, and the projection splits unitary representations into two
pieces. That’s why irreducible representations have no self-intertwiners.

(Answering several questions from 11:30 to 24:24. Part of the explanation is goes as follows.)

Pictures in Figure [3| both describe the Cartesian products. Bi-harmonicity is where we use the
edges here. You tensor with a standard representation on the A, graph. At the same time you move
one edge on the exceptional graph F5. We start from a corner with a 1 here (see Figure 4| for more
details). Then we tensor it with a generator. On the graph Es5, we arrive at a neighbour. There are
three edges following the arrows. The product of these edges will be the edges of this ribbon.
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In Figure 5] we have the usual graph D for sl(2). Here the Cartesian product is done in the same
way as in the higher case. We take copies of graph D4 and put it at every point (see the left-hand
side). Then you start from here and go to the neighbors, to form roots. The graph has parity, so
some points will not appear. We must move one on the A4,, graph, and move one on Dy. This is the
product of A, and D,4. This is a root of Dy, the inner product of other roots. The thick red points
of half of the ribbon are points will occur. The reason is that if you move one down or up, you must
move one down or up in the other graph.

In graph [6] the points that do appear are singled out in thick red. You have one vertex of the
graph and the inner product of a particular root. This Cartisian product will be just for si(2).
Remember the formula in the case of sl(2) for finding the inner product of root with other roots. To
do that we took the fusion and summed them in two directions, going up and going down. For sl(3),
we take the fusion and summing in 6 directions. We can see 6 Weyl chambers (the cones have degree
6), which is exactly the order of Weyl group for sl(3). The period inside the blue lines in Figure
separates the ribbon into three.

These modules were found through a technique called conformal inclusion of degree 0 by physicist,
and also by Zhengwei Liu. However, the physicists tried without success to find something looking
like higher Dynkin diagram, namely, to make angles from the edges. The ribbon worked, and gave
the Euclidean root system. The theorems are exactly like the ones for si(2). Namely, you have the
span of the fusion, and the projection of the Dirac mass on the span of fusion gives exactly this
geometric root. The inner product is then computed by simply adding the fusions in 6 directions.
What you see here is a higher root lattice. Every root has length of v/6. In the usual A,, case, roots
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are not abstract but concrete h;;’s with £1 and 0 elsewhere. We are going to construct very concrete
higher h;;’s for types A, B,C, D, and they will give exactly these inner products. This suggests we
should find a vector which has 6 components with +1.

Returning to the left-hand side of Figure [5} you can see two adjacent levels. If you take two
adjacent levels, the inner product of the root in the center with each of the three, is +1. If you
take the negatives, then you get the usual simple roots. The basis for the bi-harmonic functions of
graph D, is four dimensional. This was originally found in the usual representation theory. The
same statement here is that the roots in the highlighted 3 x 2 region are a basis. All the others can
be written uniquely as a linear combination of these. If we take the full ribbon, where we get rid
of parity problem, three components are of this kind. Three sheets do not communicate with each
other. So inner product between the three sheets are 0. The general theorem is that the dimension
of the full ribbon is the number of vertices of the graph times the order of underlying (subjacent)
Weyl group. We have a Euclidean space with elements roots which are vectors of length v/6 and have
integer product with each other. The whole picture is invariant to translations in three directions.
Those translations will appear in the theory: they are the higher analog of the coxeter element.
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Let us check the bi-harmonicity in Figure[7] See video from 41:05 to 44:00 for more details. We
have
HOH’I[O’i [ Ol70'j X 01 X ﬁ],

where o7 is a generator.

(Answering questions from 45:00 to 51:00.)

Finally, what we are going to build is actual representations of these higher matrices. For these
representations what we’ll give is the way a matrix element acts and what will happen with the
involution is (in the case of sl3) a permutation of three elements. From 52:00 to 53:00 in the video,
self-adjointness is explained with the help of a pad. That will happen in the higher case. You have
the representation in the triangular glass pyramid and have an action of the underlying Weyl group
on the matrix element, which is the same as permuting the three observers. The matrix units will
give us instructions on how to change the vectors exactly like our picture of the Gelfand-Tsetlin
representation.

You have something at the base, usually being the actual intertwiner, vectors will grow out of
that. Our higher matrices act on these vector spaces and transform them. However, the higher case
will be non-associative and the usual definitions will not work.



