Lecture 26 of Adrian Ocneanu

Notes by the Harvard group

Lecture notes for 30 Oct 2017.

Today we are going to talk about higher roots. Let g_N be (semi) simple Lie group (with adjacent or underlying Lie group sl(2) for usual math) at the N-th root of 1 (also known as quantum group). Let Gb e a module of g_N and the vertices of G, vert G, be the irreducibles of g_N and graphs G^{α} for every generating irrep α of g (thus, for any representation α G.) Note that the representation ring of g at the N-th root of unity is a quotient.

Basically, our approach is to use, for instance, mirrors. This is the case of sl(3), which we have looked at last time, and are shown in Figure 1.

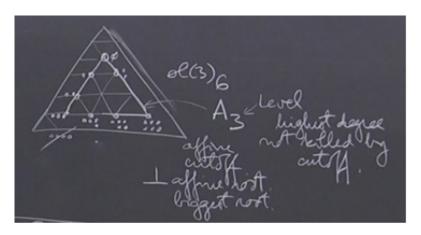


Figure 1: Higher roots for sl(3).

Definition 0.1. The full ribbon is the cartesian product, Weights of $g \times Vert G$, where Weights of g indicates the weight lattice.

On this graph we have fusion. We have

function
$$(i, \alpha)(j, \beta) = \dim \operatorname{Hom}[\sigma_{i-i} \otimes \alpha, \beta]$$

where σ_{j-i} is the j-i weight, $\alpha, \beta \in \text{Vert}G$. This extends to tensoring with any representation since we are starting with a module.

The map

 $fusion(i, \alpha) : ribbon \to \mathbb{Z}$

is a biharmonic function.

Let k be the fundamental representation of g. Then

$$\operatorname{Hom}[\sigma_{j-i} \otimes \alpha, \sigma_k \otimes \beta] \cong \operatorname{Hom}[\bar{\sigma}_k \otimes \sigma_{j-i} \otimes \alpha, \beta] \cong \operatorname{Hom}[\sigma_{\bar{k}+j-i} \otimes \alpha, \beta].$$

by Frobenius reciprocity, where $\sigma_k \otimes \beta$ can be decomposed as

$$\sum_{l \in \text{weight of } \sigma_k} \sigma_l \otimes \beta$$

and $\sigma_{\bar{k}+j-i}$ is the neighbors of j on the weight of g. This is the Laplacian $\Delta_g^{\bar{k}}$ on the weight lattice and Δ_G^k on the veritces (this ensures biharmonicity).

In general, we take a period of weights of g in a multiple of the $N \times \cdots \times N$ torus, so that each higher root appears only once. In the case of sl(2), the period is 2N. For sl(3), the period is N^2 .

Theorem 0.2. The orthogonal projection of the unit vector $\delta_{(i,\alpha)}$ onto the span of the fusion (j,β) , multiplied by the size of the period, has entry on (j,β) . Said entry is the inner products of the projection of (i,α) and (j,β) and equals the sum

$$\sum_{w \in \text{Weyl } G} \epsilon(w) \operatorname{fusion}((i - \rho + w\rho, \alpha), (j, \beta))$$
(1)

where ρ is the Weyl vector of g.

We call $root(i, \alpha)$, the normalized projection. We have

$$|\operatorname{root}(i,\alpha)|^2 = |W_g|.$$

We will prove that these power series will generalize Chebyshev polynomials.

Theorem 0.3. There are unitaries $u_{\alpha} \in End[\mathbb{C}^{VertG}]$ for α highest weights of the fundamental representation of g, so that extending u: weights $g \to End[\mathbb{C}^{VertG}]$, $\alpha \to u_{\alpha}$ multiplicatively, we have $G^{\alpha} = \sum_{\alpha \in wei} \sigma_{\alpha} u_{\alpha}$.

In the Weyl chamber (cone), we have

$$\sum \operatorname{fusion}_{0,j} t^j = \sum_{w \in W_g} \epsilon(w) \left(\prod_{\alpha \in \operatorname{fund}g} \frac{u_{w\alpha}}{1 - t_\alpha u_{w\alpha}} \right) \left(\sum_{w \in W_g} \epsilon(w) \prod_{\alpha \in \operatorname{fund}g} u_{w\alpha} \right),$$

where fusion_{0,j} is defined as the matrix $(fusion_{(0,\alpha),(j,\beta)})_{\alpha,\beta}$.

$$\sum \langle \operatorname{root}_{0,j}, \cdot \rangle = \sum_{w \in W_g} \prod_{\alpha \in \text{fund}g} 1/(1 - t_\alpha u_{w\alpha}).$$

In the case of g = sl(2), $G = E_8$

$$\Delta_{E_8}^1 = u + u^{-1}. (2)$$

where σ_1 is the fundamental representation of su_2 (spin 1/2). For $\alpha, \beta \in Vert E_8$

$$\mathrm{fusion}_{0,j} = \mathrm{fusion}_{(0,\alpha),(j,\beta)_{\alpha,\beta}} = (\frac{u}{1-tu} - \frac{u^{-1}}{1-tu^{-1}})/(u-u^{-1}).$$

$$\langle \operatorname{root}_{0,j}, \cdot \rangle = (\langle \operatorname{root}_{0,\alpha}, root_{j,\beta} \rangle)_{\alpha,\beta} = \frac{1}{1 - tu} + \frac{1}{1 - tu^{-1}}.$$