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Lecture notes for 1 November 2017.

Let me bring back what we did last time in a picture (Fig. 1). Here is the statement for su(2):
we have a matrix g1, which stands for the matrix of the graph. In the case of An this matrix has 0’s
on the diagonal and 1’s underneath and so forth:

0 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 1 0

 .

Since the eigenvalues of this matrix are the sum of unitaries and their inverses, this matrix is
written as g1 = u1 + u−1

1 . We are going to look at two formulas: one for the number of essential
paths and one for the inner product of roots. If a and b are two points on the graph, if you look at
the ribbon and travel k levels down (written tk1), you can count the number of essential paths on the
ribbon from a to b. As we said, we write

g1 = u1 + u−1
1 .

Then, at a distance k the power series for the distance is given by the kth coefficient of the power
series (

u1

1− t1u1
− u−1

1

1− t1u
−1
1

)
/(u1 − u−1

1 ) =
1

1− t1g1 + t21

¡++¿

(
u1

1− t1u1
− u−1

1

1− t1u
−1
1

)/(u1 − u−1
1 ) =

1

1− t1g1 + t21
.

In general, for su(N) we sum over the elements of the Weyl group, which in this case has order 2.
This fraction defines a power series. The denominator tells us that if you take a value on the ribbon
and add it to the corresponding value two floors dow, you get the value in the middle multiplied by
the generator g1. This is exactly the biharmonicity condition.

The root inner product is

rt =
1

1− t1u1
+

1

1− t1u
−1
1

.

First of all, we look at the Weyl group.
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u1

spin 1/2

Here u1 is the vector for spin 1/2. We are using here exponential notation (so u−1
1 corresponds to

spin −1/2). In the work of Weyl there is an interplay between vectors in exponential and additive
notations, corresponding to the structure of representations on the one hand and that of roots and
weights on the other hand. We can write the above as follows:

rt =
1

1− t1u1
+

1

1− t1u
−1
1

=
2− t1g1

1− t1g + t21
.

This is the generating function for the inner product of a root with other roots. For the case An, the
corresponding ribbon is represented as follows for n = 4.

11 12 13 14

22 23 24

33 34

44

21

31 32

41 42 43

11 12 13 14

22 23 24

33 34

44

Note that this is the product of A3 and a period. The diagonal is the roots of sl(2), and the
antidiagonal is the rows of the ribbon cut the diagonal at the weights of sl(2).

The ribbon coordinate of eij (viewed as roots hij on the ribbon) is given by the following: the
horizontal (antidiagonal) coordinate is j−i

2 , and the vertical (diagonal) coordinate is i+j
2 .

Given a point eij on the ribbon, in the case of An there is an important property (which holds in
the case of orbifolds too, but is trickier). The corresponding element hij is shown below:

eij

-1

+1

0
0
0
0

Here, hij = eii − ejj or a diagonal ei − ej .
In the matrix itself, you just go horizontally and vertically. According the periodicity, we get the

following matrix. The idea is that you have some mirrors:
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11 12 13 14

0 23 24

+1 34

0

21

31 32

41 42 43

0 12 13 14

-1 23 24

+1 34

0

For the case An (and B, C, D’s ), the roots are explicit (concrete) vectors hij . The formula for
the length of the roots for inner product between roots and so on, is given by the concrete vectors.

11 12 13 14

-1 23 24

+1 34

0

21

31 32

41 42 43

0 12 13 14

-1 23 24

+1 34

0

where denotes the affine Weyl group scaled by N . The affine Weyl mirrors are normally at a
distance of 1 weight. Notice they come on weights, not on roots.

The mirrors are located on i+j
2 , and the next one is located on i+j+N

2 . The distance between
these two mirrors is of N weights.

i+j
2

i+j+N
2

eij

-1

+1

0
0
0
0

The period is therefore N roots of sl(2), starting at an arbitrary points (namely it will be twice
the distance between the mirrors).

This is like a kaleidoscope, especially in the case of sl(3).
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In our particular case, we have a graph A3 in the space between the mirrors. In a way, that’s
what An is: a cutoff of the weights of sl(2). In fact, in our case we would start from spin 1/2 and cut
off the weight at spin 2 and end up with the graph A3.

If we place a red pebble in between two mirrors, it will be reflected by a mirror and become a
blue pebble. We will have the same mechanism in higher representations, where the higher graphs
An will occupy the space between mirrors and these mirrors will be used to reflect pebbles.

Now, for the case An, let us see what the inner product of roots is. Given a root hij (located at
eij on the matrix), the following picture shows the innner product of hij with the others.

hi,·

1

1

1

1

2

1

1

1

1

1

1

h·,j

-1

-2

-1

-1

-1

-1

-1

-1

-1

-1

-1

repeated

In the picture above, the red segment going through hij has constant coordinate i (i.e. roots of
the form hi,·), and the blue segment has constant j (roots of the form h·,j). The inner product with
roots lying on these lines will be 1, since they share one coordinate. When the line reflects across the
mirror, the result will be the same multipied by a factor of −1.

Going back to our formula

2− t1g1
1− t1g1 + t21

,

recall that the denominator expresses the biharmonicity condition. The 2 in the numerator means
that a root times itself is equal to 2. The −t1g1 in the numerator means that a root times its neighbor
on graph is equal to 1. The reason of the minus sign is that we need to expand the fraction as a
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power series. With Mathematica (36:10) we see that the first few terms are

2 + g1t1 + (g21 − 1)t21 + (g3 − 3g)t3 + O(t4).

By going down two rows we see a factor of g21 , which means that we take the neighbor twice (on
paths of length two) and subtract 2. We can do the same for the other series, the one for the essential
paths:

1

1− t1g1 + t2
=1 + gt + (g2 − 1)t2 + (g3 − 2g)t3 + O(t4)

The coefficients of this power series are the Chebyshev polynomials, defined by

Pn(cosx) = cosnx

Qn(cosx) =
sinnx

sinx
.

By the definition we see that |Pn(x)| ≤ 1 for |x| ≤ 1. In the higher case we will have generalizations of
the Chebyshev polynomials, which appear to be new. The Qn polynomials are more or less quantum
numbers. Note tha in Figure 1 (Mathematica slides at 43 : 16), the second example introduces a
second unitary, and the two unitaries correspond to the fundamental weights of su(3). Recall that
we are using exponential notation. The rest follows analogously to the previous case. Since the
Weyl group permutes the weights, the previous formulae are generalized b summing over the Weyl
group. As a result, we are able to write the formulae in terms of the two generators g1 and g2. In
the case of the essential path number formula, we have numerators and signs corresponding to the
vertices of the hexagon, which were not present in the previous case. In general, for the higher cases
we will interpret the denominators as conditions on permutohedra (in the case of sl(2) we had the
biharmonicity condition on perumtohedra for S2, namely segments).
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Figure 1: Higher roots and weights series.
6


