
Lecture 32 of Adrian Ocneanu

Notes by the Harvard Group

Lecture notes for 13 November 2017.
See the picture for bi-harmonicity in Figure 1. In the case An, remember that the ribbon is a
Cartisian product between a weight and an element of the graph, the higher Dynkin diagram. First,
the weight is where you put the center of mirrors (the center is right in the middle in Figure 1). Then
we take an element of the An graph which is a point in the principal Weyl chamber, which is not on
the mirrors, and we reflect it. The points which are mirrored are given by blue one, red one and
purple one. What appear on the ribbon are +1’s and −1’s, with +1 down and then alternating signs.
Here we keep in the same point of the weights, but we take the sum of neighbors on the graph of An

(the graph of An is not pictured in Figure 1). We take three neighbors of the arrow, i.e. three hexes
which have the same center. They give you exactly identical hexes, the orange, the light blue and
the dark blue one, which are translated. The left side of the ribbon gives the position of the mirror.
And you have three neighbors on the graph G which is An here.

Figure 1: Figure 1 Figure 2: Figure 2

In picture 2 there are three hexes which are identical in shape. This means that they come from
the same point of the graph An, but are centered in three different ways. They give you exactly the
same thing (this is just translation). If you do the denominators of the power series (which we did),
you find the sum of four hexes, which is trivial, with the same max. The sum of the blue and the
yellow, is the same with the sum of the other two (see Figure 3). There are some identities satisfied
by these hexes.

Let us see how matrices are done in the usual case. Here we have some matrices (see Figure
4). We will see the matrix elements as arrows on diagonal. The red arrow on this element, say e14,
is hij . The product of the matrices then is matching: here you have an element of the red matrix
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Figure 3: Figure 3 Figure 4: Figure 4

and an element of the blue matrix, i.e., e14 and e46, respectively. So e14 times e46 equals e16. So
the product of matrices is done by putting arrows. Now, arrows may have integer multiplicity. For
example, if we have 2 red arrows and 3 blue arrows here; in this case then the product would have
each arrow with every other arrow (every red arrow with every blue arrow). So the coefficient is
2× 3 = 6 for the black arrow. This is how you make diagonal into matrices. The product of matrices
is the compositions of the arrows on the diagonal.

Figure 5: Figure 5

In Figure 5, one may see Hij on the ribbon, some mirrors and the graph An. The matrix itself is
in light green. It is the matrix on which we work. From the graph An, we use every other vertex for
the matrix. The diagonal is using the roots of sl(2), while the mirrors are on weights of sl(2) that
are half integers. In this case, the length here is the correct one for the length for root, i.e.

√
2, and

the weight length is
√

2/2. If we move the largest point in Figure 5 on the ribbon, we gain all the
matrix elements.

How about B,C, and D? This part is also new. The usual basis for the B,C,D’s are different
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from this one. The matrix here is twice as big, but you have another mirror, in the middle of graph
An. Remember that the B,C,D’s are obtained by folding the graph An in various ways: you can
fold the graph An after you build the roots, and then projecting on the plane of symmetry. The
roots that lie on the plane of the symmetry remain long. Others are perpendicular and are projected,
becoming shorter. There is also another way, in which you think of mathematical objects such as
vector spaces on the vertices of graph An. In that case, when you have a usual orbit, you get just
one of them, and when you have something of Z/2Z or Z/3Z acting on the middle one, it breaks
into eigenspaces and Dn appears. This should be something like either of the B,C,D’s up to this
point. What appears in the middle of the room all of a sudden is a new mirror, the magenta mirror.
It has the property that it preserves the sign. The blue here is reflected into blue, and the red to
red. This mirror also appears in the middle of the graph An. It is the symmetry with respect to
Z/2Z. Because of this new mirror, we get twice as many points on the diagonal, and we half the
period. This is exactly how you learn about orthogonal symplectic matrices. They are not build out
of Dynkin diagram, but are represented as usual matrices, which may be twice bigger and subject to
some symmetry. Now the period is half the previous period. In the symplectic case, for instant, the
two red points are iq’s, and the blue are pi’s. There is a matrix element made of the product of pi
and qj . Please see the video from 13:50 to 15:04 to find how they moves and enter the sign-preserving
mirror. There are two possibilities. One is that the pi and pj which enter give you p2i . Before, you
have something like (−1, 1, . . .), where the first two digits are on position pi, pj . The length of this
is
√

2. Now when they come together we get −2 in the middle, i.e., (0, 0, 2, 0, . . .). The length is
2 =
√

2 ·
√

2, which is bigger.
This is the symplectic case, and its graph Cn is a quotient of An, obtained by projecting the roots

on the plane of symmetry as in Figure 6(a). Notice the direction, the two points on the left of the
graph An are orthogonal to each other. The roots in the plane of symmetry keep the same length.

The insteresting question is how to get all the properties of the symplectic group form this
graph. On answer is based on the following. There is one long root, so this a the theory which
has squares and is commutative. You have polynomials in pi and qj . The non-commutativity and
the anti-symmetry would appear from the inner product, in this case the Poisson bracket. In the
orthogonal case, if you enter the middle mirror, the middle mirror has a 1 =

√
2/
√

2. In the case Bn

you will have a root which is shorter. The Bn comes out of the D by projecting the roots onto the
plane of symmetry. These two ones which are orthogonal to each other would be shorter (see Figure
6(b)).

In the Dn case, we have sign reflecting mirrors, between which is a sign preserving mirror. (See
Figure 6(c)) Consider the two red points that come to the mirror. Before this, the length is

√
2.

What happens when them enter the sign preserving mirror? Because Dn is unimodular, all the roots
have length

√
2. What appears is that we have a 1 in the mirror, and the mirror itself has a slot

which is 0 above and is ±1 when a point enters the sign-preserving mirror. The Dynkin graph Dn

has two legs, written by + and −, since they comes out of the action of Z/2Z (the point here is not
just to do the B,C,D here, but to do the higher B,C,D as well). The sign of the mirror is equal to
the product between the sign of the position of the mirror times the sign of the leg of the D-diagram.
The statement is that if you take the sign for the mirror, then the inner products will be exactly the
inner products on the ribbon or inner products of Dn. Remember that Dn is done in a completely
different way. The slot means that you have n+ 1 entries for the vector, in this case the higher Hij .
You have one extra position. That position is 0 unless you are on one of the legs of the Dn. Our
ribbon was the Z/2NZ× Z/2Z with the graph. You have a parity from Z/2NZ and from the leg.
That gives ±1, and you can check that it gives the correct inner products between root.
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Figure 6: Figure 6(a), 6(b), 6(c)

(Answering several questions from 31:30 to 35:20.)
Now we turn to higher matrices in the case of higher A over any semisimple Lie algebra g at the

N -th root of unity. We take a period of roots to be the higher diagonal. With i, j, k, l in the diagonal,
let eijekl = δjkeil and e∗ij = eji. If we work on sl(3), Figure 7 shows a diagonal in the period 4× 4.
The action of the Weyl group is important. In addition to the usual involution, we have an action of
the subjacent Weyl group W .

For A2 or sl3, take the permutahedron as in Figure 8. Edges correspond to switching labels
by position, so switching adjacent labels. The position of a permutation π is π−1 in homogeneous
coordinates. So, you take the inverse of the permutation, and it gives you three coordinates here,
with sum 6. Position switching will be the right action of W on itself. The left action would be given
by geometric reflections (see red line in Figure 8), and it switches labels wherever they are. Both are
used to define involution.

Choose once and for all a product of simple reflections, acting on the left (having as product a
Coxeter element). Given i, j in the diagonal, translate these simple reflections (defined as the main
sequence of reflections) so that they move i onto j. Label i with 1 ∈W . Complete the permutohedron
with the main sequence of reflections. To act with w ∈W , take i′ as the point labeled by w and j′

to be the image through the main sequence of reflections. Then w(i, j) = 〈i′, j′〉. This is actually an
action of the Weyl group and is a fundamental one. If you want to do some unusual multiplication,
you can turn your elements with an element in Weyl group, then multiply and turn back, and you
can have commutators by multiply in various directions. The video, from 54:00 to 56:00, shows how
the higher matrix looks like when we turn it. The following are two examples.
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Figure 7: Figure 7

Figure 8: Figure 8
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Figure 9: Figure 9(a), 9(b)
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