Lecture 34 of Adrian Ocneanu

Notes by the Harvard Group

Lecture notes for 17 November 2017.

This is the operation we showed in class last time: we took a matrix, we took its coproduct (dual of
the product), twist each component with an element w and multiplied back. Then we divided by a
number (N* where ¢ is the number of cycles of the permutation minus 1). This is a random matrix
with nonnegative integers, over sly. The proof only works for certain things, and I explained it last
time. This allows us to axiomatize the higher matrix, which is what we won’t do now. Here are all
the 120 things tested, and the one that work (for which we get a projection). Some of them only
work over sly. As you can see in Figure 77, we color the graph A, in magenta, we choose a point,

Figure 1: The graph A,

and reflect it in the mirrors (together with the affine one). The period for the weights can be seen in
grey and that for the roots in yellow. We can take as a rectangle or as a permutohedron. Either of
them contains exactly 6 points, three +’s and three —’s. This is the higher h;;’s. The graph D is
interesting: in this case we have the mirror in the middle for the h;;’s. Over sl3 we have a rotation
by 180° around the middle point. This is basically the graph D taht you can see on the cover of the
book on CFT, which in that case is folded with the point in the middle separated into three This
way you have 3 times more things, because you start from A,. You also get one third of the period.
What happens if you have a point in the middle? As I was telling you, in the case D you have an
extra slot. So in this case the higher roots they have length /6.

This is what we did: we defined roots starting from the ribbon. In the case A,, we have shown
that they are concrete vectors, with 6 components in this case; the inner products are exactly those
between these mirrors. So in the case D you need 6 more slots (at least over sl3). This is because
when the point is in the middle, you only have 2 points as opposed to 6.

What is a slot? You have a vector, and the space has a basis; the entries are called slots. A few of



Figure 2: The graph D

Figure 3: A point in the middle

them (here for example they are the roots in the period), once you reach the middle, instead of 6 we
only have 2 points. In general we have 6 more slots, and the entries are determined by the parity of
the mirrors, the roots and the weights (roots have a parity too, although it is not often used). So we
are talking of the parity of the legs here. Here is the model of another orbifold. For all the orbifolds
there are vectors that give inner product of the roots. Roots are concrete vectors.

This is what I wanted to say about this. Now we are starting a new chapter, and you can almost
forget about the rest. If you are a mathematician or a physicist, this is a completely new type
of mathematics that you are used to. What we are going to do is introduce plates. A plate is a
permutohedral cone . We take a permutohedron and a nondegenerate cone around a point. (If you
take a point on the edge you get a degenerate cone-we have points with different levels of degeneracy.)
We are going to work now in the root space, which is a d — 1 dimensional root space of si(d). What

we have is a space
{z= ()1, Y ai = s}
i

Typically s = 0, but if you have a simplex you can take it to be the dimension d of the space (e.g. in
the triangle they will sum up to 3). The sum does not matter much, and we can change depending
on what we are working with. We now define the standard plate:



Figure 4: Slots

Figure 5: Trees

Definition .1. The standard plate is defined by

T ZO
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T4+ xg >0
(the last is actually an equality).

We introduce the notation

rg = in,for Scd=1{1,2,..,d},

€S



so that we can introduce the following spaces:

Sl|_|52|_||_|Sk :E,Sl + S+ ...+ S =8,
TS, =81,

rs, +xs, =81 + 82,

TSy |I8aL]... 1Sk =51 T S2+ ... + 5.

We are going to indicate these plates by double brackets as follows:

[(S1)s15 (S1)s2s s (Sk) s ]]-

The S;’s are called lumps. A nondegenerate plate is one such that every lump is a singleton.
Let me give you an overview of what we are doing. You might remember this from Gelfand-Tsetlin.

Definition .2. We identify a plate with (up to higher codimension) with its characteristic function,
and study linear combinations with coefficients in Z,R,C of these plates.

Special hyperplanes and half-planes are of the form

rg=a €7 (1)
rg >a € 7. (2)

Such hyperplanes appeared in the 50’s in the study of retarded potentials.

Special hyperplanes cut space into convex pieces called shards. In the plane,there are only two
kinds of shards, one triangle standing up and the other standing down. In dimension 3,there are ten.
In dimension 8, even up to permutations, there are about forty thousand kinds of shards. We need to
find the relations between these plates, and what I found is that one should go from plates to trees.

How do you define a cone in a sphere? One way to define it is to specify its boundary. We think
of the boundary as a derivative, a jump. (Demonstration at 37 : 00.)

Definition .3. We map the plate

[[(81)817 (51)527 i) (Sk)sk]]

imto a sum of trees as follows:

we call the sequence (S1, 52, ..., Sk) the canopy.
We partition the canopy into parts which are a set compositions (ordered partition into unordered
parts) (Ty,Ts, ..., T;) such that

T; = Si; |_|Sij+1 |_| |_|S¢j+1—1,

tj = Si; + Sij4+1 + ...+ Sijia—1-

Definition .4. A binary layered tree is a binary tree with one node per layer. (These are in a
one-to-one correspondence with permutations.) Given trees T = ((Th), ..., (T1)) we consider linear



combinations

Z Z coef((T1),...,(Ty))

T layered
binary
trees
underneath

where

1
[1;( number of S; in T;)

coef =

This is an expression of a plate in terms of tree. The antisymmetrization of a binary trees is a
sum with signs of the permutations of the tree at every node.

Figure 6:

This way we have expressed every matrix in terms of trees, and now I want to show the opposite
part. That is because shards are much more complicated. With trees, on the other hand, you can
take linear combinations and form functions on the plane. Next time we are goign to see how to go
from trees to blades.



