Lecture 38 of Adrian Ocneanu’s Course “Higher
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Notes by the Harvard Group

Lecture notes for 1 December 2017.

Relations for plates and (codim 1) blades

When we had a plate [[1, 2,3, ...,n]], it is the plate that z1 > 0,212 > 0, .... The basis of the plates
are the plates which have 1 in first lump. By the way, the permutohedron are generated by plates.

The first type of relation is bring to basis. In this case, if you have a plate like [[5,4, 3,1, 2]],
which could be replaced by lumps, the lumps by unions. What I mean by this is that you can have 1
be replaced by (234), this is a lump; and then 2 replaced by (57), and then the lump (12) replaced
by (23457). All relations are invariant to such things.

[[5,4,3,1,2]) = Y _(—1)lAHumping sien Jyupn ' (AT shu f fle' B)
Where A = (5,4,3) and B = (1,2). shuf fle’ means that 1 is in the first lump. And lump’ is

(see video 8:05). What is a shuffle in mathematics, you have a few sets, and you take their union,
such that when you restrict the order to each of them then you get it in this order. So if you shuffle
1,2,3, with 4,5,6, you need to have always 1,2,3 in the order 4,5,6 in order, and the rest is the same.
So this is exactly shuffling cards.



This a apply to x,..,y,1,a,...,b to bring it to the base, which starts with 1. This is the relation of
the plates to the base. The proof of this which will discuss will involve writing them in terms of trees
that’s I found it that was a reason or going to those trees, because if you want the values of the plate
at the point, that point depends on the, I mean if you want to a shards depends on the knowledge to
shards on the shards are unclassifibly. No many mathematics.

Apply to 1,2, ...,y,2,a,....b =z,...,y,2,a,...,b,1 to bring it to base 2,...,1 = 1,2, .... This gives
you an arbitrary blade or plate in terms of things which are in the base. Once you have that you can
bring anything to the base. Now the last one will all the a,b’s are in the lump, this lump may not
contain 1, and in that case you continue inductive. So this is the blade relations to a base. But the
blades have a simplify, I mean, the understanding of that this prog things is. There is a big matrix
which has a blades in all the codimensions. And this big matrix is invertible. So relation between
blades like this one, corresponds to constructing a higher codimension blade. if you do this to the
full blades that we described last time, then you get the higher codimension blades.
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These are the functions in mathematica. If you have a permutation with 5 cycles, that must be
the identity. These are stirling S1. The second kind are very interesting. They give you the following,
if you have a, in our case, if you have a set of coordinates, so in this case the coordinates are the
vertexes of the simplex. So you see how many coordinates do you have. Here we have 4 coordinates.
We are in 3-d space but we have 4 coordinates because the sum of the coordinates is 0. So this is
the rot lattice. When you have degenerated a blades, for instance a degenerated blade can be a
horizontal one. Now that one, if you have all instances horizontal plane like this, means that you
take the bottom 3 points you grow up them into a single one. So you take the simplex like this,
you group the bottom ones into one, the top into one, so then you have a simplex like this, which
has only 2 coordinates. Here you take a blade, which is just a point in this case. And this blade
gives you a blade here. Now the number of ways to degenerate the lump together, k valuables into 1
subsets, that is the stirling number of the second kind. So this will be the ones which group 4 into 2.
So this will be a part of the stirling 4,2, how many do we have, we have 4 of them of this kind, will
we have 1 and the other 3, then we have 3 which we have 2 on the other 2. If you have 2 on the
other 2, here you have 2 of them on the other 2. You see again you group them, exactly like before.
Now you going to group 2, 1, 2. And the point here if going to give you a triangle. Here which is
just another kind of a higher intertwiner. So this is a degenerate intertwiner. And you have 7 of
them, of the stirling these 2 kind. Now the number of points in a simplex is a binomial. These are
exactly binomial numbers. So the elements on the line is n+1 if you have an segments in the plane
you have something like (n+1)(n+2)/2. Because for a triangle, you take a triangle, and you a second
one like that, and now you have (n+1)(n+2) points. And it’s over 2 because you have 2 triangles. So
the number of elements in a simplex of integer coordinate points are binomial numbers. When you
put together the stirling guess 1, the stirling guess 1 gives you the number of degrees of freedom, for
every point. It’s known that the sum of the stirling guess 1 is a factorial. If you take that factorial,
and you take this binomials, so this is here, (n+2)!/(2!n!). For instance here of independent blades

at the point. If you take the inner points, then you have in this case, % There are 4! blades of

highe|r codimensions that every point that using a stirling of the first kind. And so what you get is
of an edge, and for a point. So when you sum these, against the stirling 2, of 2 and 1, you sum
these also for all those quotients. The amazing thing that you get is that the total number is exactly
n®m=1_the total blades in all dimensions. This is exactly the number of points on the higher matrix
diagonal. In 2-d case, the number of diagonals of a 2-d matrix is exactly n, which you can see. Now
the importance of this is the fact that when you have a usual representation theory, you have sl(n),
GL(n), GL(n) has n elements of the diagonal, one of them is separated which is the determiner the
sum, if you look at the Lie algebra, the sum of the elements. That because the determinant has its
only representation, it’s separated on the last.

Now when you take this, so this is for the inside. You have a similar formula, for the inside

Local (conservation) relations

Now for the conservation relations. When you have a codim-2 shard,

codim 2 shard = ﬂ hyperplanes
2

where a hyperplane is x4 =n € Z, A is a subset. In this case, x 4c = s — n, because

TAauAe = § = const.



Now if you have A, A° and B, B¢, these are 2 hyperplanes. There are 2 situations here which in the
nontrivial case, namely when all 4 subsets are nonempty. So for instance 1,2,3,4, A=13,B=12. We
call such a intersection nondegenerate. This is the Venn diagram of 2 subsets.

Now when you look at the plates, then you can get

It means that you can generate around the degenerated plate you can generate everything. So no
condition. Around the degenerated plates there are no condition, eh, degenerated intersection there is
no condition for plates. You can generate everything. However, when you look at the nondegenerated
plate, it always have empty or everything.



The sum of this sides, +,-,+,-, you take the multiplicity, this sum is 0. Whenever you take sums
with multiplicity of half planes, if you take around a point, if you take half plane and the other half
plane, for each half plane it satisfy this condition.

The main theorem is that, in the multiplicity on shards of codimension 0, satisfying the relations
on the nondegenerated points, and it’s necessary sufficient for them to be a sum of plates.

What’s equivalent condition for the. I am going to give you the conservation relation for
blades, this is in arbitrary dimension. If you have for instance this blade,
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The conservation relation here is for any special hyperplane, which means hyperplane for some
form, the number of affine roots on one side of the hyperplane is equal to the other side. The proof is
the following: relabel: choose the affine roots to be 12,23,...,(n-1)n,nl. For instance, if A = {2,3,4,6},
then the inner product of A and 12 is -1, and the inner product of A and 45 is 1. So there are equally
many ascents and descents in this, and you get the conservation relation. The big theorem is that
this conservation relation is necessary and sufficient for codimension 1 blades. I haven’t check it but
it’s likely to be true also in the high codimension. This is a local condition which is necessary and
sufficient. Once again if you have hyperplane you look for instance at, eh, you look at it then you



linear convolution of blades the number of, the multiplicity of the things above, see clear above it is
the same as the multiplicity of the things below, no matter what hyperplane you take. For instance
here you have 4 such segments and 4 under knee,

then you can have in any with any answer. So on is as longer as the conservation are satisfied.
So this shows you can speak about as things growing and so on. I have to stop here. And next
week it will be an overview of the representation and I will give the explicity the representation for a
generator. So the way the matrix act on this vegetable. (see video 59;20, Adrian play his toys.)



