Proofs and Computation

Madhu Sudan

Harvard

In this talk: Proofs and Computation

- "Computer Assisted Proofs ?"
- [Appel-Haken] - 4-color theorem

No!

- [Hales] - Kepler Conjecture
- [Petkovsky,Wilf,Zeilberger] - "A=B"

Outline of this talk

- I. Prehistoric stuff ($-\infty$ to 1950)
- Logic \& (Theory of) Computing
- II. Ancient history (1950-1980)
- P, NP, and Optimization
- III. Recent history (1980-2010)
- Interaction, Randomness
- Connections to approximate optimization
- IV. Current themes:
- Unique games conjecture + progress
- Proving Quantum Behavior
- V. Future?

I. Prehistory Provable statements

Formal Logic

- Attempts to convert reasoning to symbolic manipulation.
- Remarkably powerful.
- Originated independently, and with different levels of impact, in different civilizations ...

George Boole (1815-1864)

- The strange math of $(\{0,1\} ; \vee, \wedge, \neg)$
- Typical Derivation:

- Axiom: Repetition does not add knowledge
- Formally: $x x=x$
- Example: Object is Good and Good \equiv Object is Good
- Consequence: Principle of Contradiction
- "... it is impossible for any being to possess a quality and at the same time to not possess it."
- Proof: $x^{2}=x \Rightarrow x^{2}-x=0 \Rightarrow x(x-1)=0$
$\Rightarrow x=0$ or $\neg x \stackrel{\text { def }}{=} 1-x=0$ (page 34)
$\Rightarrow x$ or $\neg x$ does not hold

Whither Computing?

- How well does the logic capture mathematics?

Cantor'1890: Logic may face some problems?

Hilbert '1900: Should
capture
everything!

Godel `1920s:
Incompleteness

Church-Turing 1930s: Incompleteness holds for any effective reasoning procedure.

Turing's Machine

Proofs: Story so far

- Proof: Has to be mechanically verifiable.
- Theorem: Statement with a proof.
- Incompleteness: There exist statements consistent with the system of logic that do not admit a proof.
- Unaddressed: What difference does proof make?

II. Ancient History Efficient Verification

Origins of Modern Complexity

- [Gödel 1956] in letter to von Neumann: "Is there a more "effective" procedure to find proof of length ℓ if one exists?" (in ℓ^{2} steps? $\ell^{3}+10 \ell^{2}$?)
- [Cobham, Edmonds, Hartmanis, Stearns - 60s]:
- Time Complexity is a (coarse) measure. $10 \ell^{2}$ $=5 \ell^{2}!$ But $\ell^{2}>\ell^{1.9}$.
- $P \stackrel{\text { def }}{=}$ problems solvable in time ℓ^{c} for constant c
- Edmonds Conjecture: Travelling Salesman Problem is not solvable in P

Proofs, Complexity \& Optimization!

[Cook '71]
Complexity of Theorem Proving

[Levin "73]
Universal Search problems

- Formalized Edmond's Conjecture:
- $N P=$ Problems w. efficiently verifiable solutions
- NP-complete $=$ Hardest problem in NP
- Theorem-Proving NP-Complete
- SAT (simple format of proofs) NP-complete
- Domino tiling NP-Complete
- Godel's question \equiv "Is $N P=P$?"

Proofs, Complexity \& Optimization - 2

[Karp '72] Reducibility among
combinatorial optimization problems

- Showed central importance of $N P$.
- Nineteen problems NP-Complete!
- Cover optimization, logic, combinatorics, graph theory, chip design.

Some NP-complete Problems

- Map Coloring: Can you color a given map with 3colors, s.t. bordering states have diff. colors?

Some NP-Complete Problems

- Travelling Salesman Problem: (TSP) - Find tour of minimum length visiting given set of cities.

Some NP-Complete Problems

- Biology: Fold DNA sequence so as to minimize energy.
- Economics: Finding optimal portfolio of stocks subject to budget constraint.
- Industrial Engineering: Schedule tasks subject to precedence constraints to minimize completion time.

Consequences to Proof Checking

- NP-Complete problem \equiv Format for proofs.
- 3-coloring is NP-complete \Rightarrow exists function f $f(T, \ell)=$ Map with ℓ^{c} regions s.t. T has proof of length $\ell \Rightarrow$ Map is 3-colorable ... no proofs of length $\ell \Rightarrow$ Map not 3-colorable
- Format?
- Rather than conventional proof, can simply give coloring of map!

Verifier computes $f(T, \ell)$ and verifies coloring is good

- Advantage: Error is local (two improperly colored regions)

Is $P=N P$?

- Don't know ...
- If $\mathrm{P}=\mathrm{NP}$...
"Of all the Clay Problems, this might be the one to find the shortest solution, by an amateur mathematician."
- Devlin, The Millenium Problems (Possibly thinking P=NP)

Mathematicians replaced by computers.
"If someone shows $P=N P$, then they prove any theorem they wish. So they would walk away not just with $\$ 1 M$, but $\$ 6 \mathrm{M}$ by solving all the Clay Problems!"'

- Lance Fortnow, Complexity Blog
"P = NP?" is Mathematics-Complete !!

III. Recent History Proofs and Randomness

Randomness \& Modern Complexity

- Emphasis on Randomness.
- Randomness can potentially speed up algorithms.
- Essential for
- Equilibrium behavior
- Coordination among multiple players
- Cryptography
- But it probably can't help with Logic - right?
- Actually - it does!!

Interactive Proofs

- [Goldwasser, Micali, Rackoff], [Babai] ~1985
- Verifier asks questions and Prover responds:
- Space of questions exponentially large in the length!
- Prover has to be ready for all!
- Many striking examples:
- Pepsi $=$ Coke! ("Graphs not isomorphic")
- Can prove "theorem has no short proof".
- "IP = PSPACE" [LFKN, Shamir]
- "Zero Knowledge Protocols" - Foundations of Secure communication
October 3, 2023

Probabilistically Checkable Proofs

- Do proofs have to be read in entirety to verify?

$$
\begin{aligned}
x & =(\pi+3) / 2 \\
2 x & =\pi+3 \\
2 x(\pi-3) & =(\pi+3)(\pi-3) \\
2 \pi x-6 x & =\pi^{2}-9 \\
9-6 x & =\pi^{2}-2 \pi x \\
9-6 x+x^{2} & =\pi^{2}-2 \pi x+x^{2} \\
(3-x)^{2} & =(\pi-x)^{2} \\
3-x & =\pi-x \\
\pi & =3
\end{aligned}
$$

Probabilistically Checkable Proofs

- Do proofs have to be read in entirety to verify?
- Conventional formats for proofs - YES!
- But we can change the format!
- Format \equiv Verification Algorithm
- Any verifier is ok, provided:
- If T has proof of length ℓ in standard system, then V should accept some proof of length poly (ℓ)
- If T has no proofs, then V should not accept any proof with probability \geq 苃 .001
- PCP Theorem [Arora, Lund, Motwani, Safra, Sudan, Szegedy '92]:

A format exists where V reads only constant number of bits of proof!

An Analogy

- Inspecting a building:
- "Building $=O(n)$ atoms" $\quad .$. OR
- "Building $=O(1)$ rooms $=O(1)$ walls"
- Former view:
- Verifying stability takes $\Omega(n)$-checks.
- Latter view:
- Verifying stability takes O(1)-checks +
- $O(1)$-"stability of wall-checks".
- Polynomials \equiv Walls!

10^{6}-mile view of PCPs: Polynomials

- A (NP-)complete statement:
- Graph $G \in\{0,1\}^{n \times n}$ is 3 -colorable.
- Proof: Coloring ($\Theta(n)$-bits).
- Verification: Read entire coloring.
- PCP Idea: Glue n bits using polynomials (deg. n)
- Key fact: Non-zero polynomial usually non-zero.
- Equivalent (NP-)complete statement:
- Given: Φ local map from poly's to poly's
- \exists poly's A, B, C, D s.t. $\Phi(A, B, C, D) \equiv 0$
- Verification:
- Step 1: Test A, B, C, D are polynomials
- Step 2: Verify $\Phi(A, B, C, D)[r]=0$ for random r.

Polynomials = Wall - II

- Reduction from 3-coloring to polynomial satisfiability [Ben-Sasson-S.'04]
- $\Phi(A, B, C, D)\left[x_{0}, \boldsymbol{x}, \boldsymbol{y}\right]=\Phi_{E}(A, B, C, D)\left[x_{0}, \boldsymbol{x}, \boldsymbol{y}\right]$

$$
\begin{aligned}
= & \left(A[x](A[x]-1)(A[x]-2)-B[x] \Pi_{v \in V}(x-v)\right) \\
+ & x_{0} \cdot\left(E(x, y) \cdot \Pi_{i \in\{-2,-1,1,2\}}(A[x]-A[y]-i)\right. \\
& \left.-C[x, y] \Pi_{v \in V}(x-v)-D(x, y) \Pi_{v \in V}(\boldsymbol{y}-v)\right)
\end{aligned}
$$

Improved (Optimal) PCPs

- [Raz'94, Hastad'97, Dinur'06, Moshkovitz-Raz'08]: Series of remarkable improvements: Reduced error, reduced \#queried bits, Reduced size of PCP:
- Current: For barely super-linear blowup in size, PCP can be verified reading 3 bits to get error $1 / 2$.
- Ingredients: Fourier analysis, Expander graphs, Error-correcting codes, Information Theory

PCPs and Approximate Optimization

- Classical connection: [Cook \rightarrow Karp]:
- Solving optimization problems \equiv finding proofs
- New Connection: [Feige et al., Arora et al.]
- Solving optimization problems approximately \equiv finding nearly valid proofs.
- Existence of nearly valid proofs \equiv Existence of perfectly valid proofs (due to PCPs)!
- Conclude: Solving (some/many) optimizations approximately is as hard as solving them exactly!
- 1992-today: PCP-induced revolution in understanding approximability!!

IV. Current Directions

Unique Games and a Conjecture

- Given linear equations $A x=b(\bmod p)$, distinguish:
- $1-\epsilon$ fraction of equations satisfiable.
$-\frac{1}{p}+\epsilon$ fraction of equations satisfiable.
- Thm [Hastad '97]: NP-hard even if each equation has only 3 variables.
- Unique Game setting: 2 variables/equation
- Conjecture [Khot]: Still NP-hard ...
- Implications: Many!
- Roughly - for very broad class of optimization problems, a natural "convex relaxation and rounding" is best possible.

Unique? Game?

- Inspires "2-prover proof system" (game):
$A x=b \Leftrightarrow\left\{a_{i} \cdot x=b_{i}\right\}_{i}$
Pick random i
$a_{i} \cdot x=b_{i}: x_{q 1(i)}+x_{q 2(i)}=b_{i}$

Accept iff $\alpha+\beta=b_{i}$
UGC \Rightarrow Perfect+Sound Proof system with negligible error Unique? Condition on answer of P_{1} answer to P_{2} unique + vice versa!

Proofs \& Quantumness

- CHSH game: Proving laws of quantum mechanics to a skeptic.
- $V \rightarrow A: x ; \quad V \rightarrow B: y$
- $A \rightarrow V: a ; \quad B \rightarrow V: b$
- Accept iff $x \wedge y=a \oplus b$
- Classical strategy wins w.p. 3/4
- Quantum strategy (A \& B share entanglement) wins w.p, ~. 85
- Modern "extensions":
- [Mahadev]: Classical verification of quantum computation.
- [Ji,Natarajan,Vidick,Wright,Yuen]: Interactive verification of all computable functions.
- Ingredient: Alice and Bob can prove to V that they have n qubits of entanglement by consuming tiny number of qubits. (e.g, $\log \log \log \log \log n$ qubits)

V. Future

Some context

- PCPs as method to understand (in)approximability: HUGELY successful

From Theory to Practice

(from Yael Kalai: "Evolution of Proofs")

- (Actually used in blockchain/cryptocurrencies)
- Why so limited?

Proofs: Standard Assumption

 Π

- Small (Constant) Number of Axioms
- $X \rightarrow Y, Y \rightarrow Z \Rightarrow X \rightarrow Z$, Peano, etc.
- Medium Sized Theorem:
- $\forall x, y, z, n \in \mathbb{N}, \quad x^{n}+y^{n}=z^{n} \rightarrow n \leq 2 \ldots$
- Big Proof:
- Blah blah blah blah blah blah bla blah blah

The truth

- Mathematical proofs assume large context.
- "By some estimates a proof that $2+2=4$ in ZFC would require about 20000 steps ... so we will use a huge set of axioms to shorten our proofs - namely, everything from high-school mathematics"
[Lehman,Leighton,Meyer - Notes for MIT 6.042]
- Context (= huge set of axioms) shortens proofs.
- But context is uncertain!
- What is "high school mathematics"?
- Need to understand how this works?
- Context, uncertainty, communication
- Mind, reasoning, knowledge

Summary and Conclusions

- Computing as a science:
- Goes to the very heart of scientific inquiry.
- What big implications follow from local steps?
- Search for proofs captures essence of all search and optimization.
- "Is P=NP?" Central mathematical question.
- Still open.
- What are proofs?
- Many implications of randomness \& interaction
- Not yet totally understood ... ©
- © ... Up to us to define and design!

Thank You!

