Proofs and Computation

Madhu Sudan

Harvard

In this talk: Proofs and Computation

- "Computer Assisted Proofs ?"
 - [Appel-Haken] 4-color theorem
- No!

- [Hales] Kepler Conjecture
- [Petkovsky,Wilf,Zeilberger] "A=B"

Outline of this talk

- I. Prehistoric stuff ($-\infty$ to 1950)
 - Logic & (Theory of) Computing
- II. Ancient history (1950-1980)
 - P, NP, and Optimization
- III. Recent history (1980-2010)
 - Interaction, Randomness
 - Connections to approximate optimization
- IV. Current themes:
 - Unique games conjecture + progress
 - Proving Quantum Behavior
- V. Future?

I. Prehistory Provable statements

Formal Logic

- Attempts to convert reasoning to symbolic manipulation.
- Remarkably powerful.
- Originated independently, and with different levels of impact, in different civilizations ...

"Aristotle Altemps Inv8575" by Copy of Lysippus - Jastrow (2006). Licensed under Public Domain via Commons - https://commons.wikimedia.org/wiki/File:Aristotle_Altemps_Inv8575.jpg#/media/File:Aristotle_Altemps_Inv8575.jpg

George Boole (1815-1864)

- The strange math of $(\{0,1\}; \vee, \wedge, \neg)$
- Typical Derivation:

• Formally: xx = x

Example: Object is Good and Good ≡ Object is Good

Consequence: Principle of Contradiction

"... it is impossible for any being to possess a quality and at the same time to not possess it."

Proof: $x^2 = x \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0$ $\Rightarrow x = 0$ or $\neg x \stackrel{\text{def}}{=} 1 - x = 0$ (page 34) $\Rightarrow x$ or $\neg x$ does not hold

Whither Computing?

How well does the logic capture mathematics?

Cantor\1890: Logic may face some problems?

Hilbert '1900: Should capture everything!

Godel '1920s: Incompleteness

Church-Turing 1930s: Incompleteness holds for any effective reasoning procedure.

Turing's Machine

Encodings of other machines

Computing

Mathematics

Model of computer - Universal!→ von Neumann architecture

Finite
STRUE
Control
R/W

One machine to rule them all!

Proofs

Proofs: Story so far

- Proof: Has to be mechanically verifiable.
- Theorem: Statement with a proof.
- Incompleteness: There exist statements consistent with the system of logic that do not admit a proof.
- Unaddressed: What difference does proof make?

II. Ancient History Efficient Verification

Origins of Modern Complexity

[Gödel 1956] in letter to von Neumann: "Is there a more "effective" procedure to find proof of length ℓ if one exists?" (in ℓ² steps? ℓ³ + 10ℓ²?)

- [Cobham, Edmonds, Hartmanis, Stearns 60s]:
 - Time Complexity is a (coarse) measure. $10\ell^2$ = $5\ell^2$! But $\ell^2 > \ell^{1.9}$.
 - $\blacksquare P \stackrel{\text{def}}{=} \text{problems solvable in time } \ell^c \text{ for constant } c$
- Edmonds Conjecture: Travelling Salesman Problem is not solvable in P

Proofs, Complexity & Optimization!

[Cook '71]
Complexity of
Theorem Proving

[Levin '73] Universal Search problems

- Formalized Edmond's Conjecture:
 - \blacksquare NP = Problems w. efficiently verifiable solutions
 - NP-complete = Hardest problem in NP
 - Theorem-Proving NP-Complete
 - SAT (simple format of proofs) NP-complete
 - Domino tiling NP-Complete
 - Godel's question \equiv "Is NP = P?"

Proofs, Complexity & Optimization - 2

[Karp '72] Reducibility among combinatorial optimization problems

- Showed central importance of NP.
 - Nineteen problems NP-Complete!
 - Cover optimization, logic, combinatorics, graph theory, chip design.

Some NP-complete Problems

Map Coloring: Can you color a given map with 3colors, s.t. bordering states have diff. colors?

Some NP-Complete Problems

 Travelling Salesman Problem: (TSP) – Find tour of minimum length visiting given set of cities.

Some NP-Complete Problems

- Biology: Fold DNA sequence so as to minimize energy.
- Economics: Finding optimal portfolio of stocks subject to budget constraint.
- Industrial Engineering: Schedule tasks subject to precedence constraints to minimize completion time.

Consequences to Proof Checking

- NP-Complete problem ≡ Format for proofs.
 - 3-coloring is NP-complete \Rightarrow exists function f $f(T,\ell) = \text{Map with } \ell^c \text{ regions s.t.}$ $T \text{ has proof of length } \ell \Rightarrow \text{Map is 3-colorable}$... no proofs of length $\ell \Rightarrow \text{Map not 3-colorable}$
- Format?
 - Rather than conventional proof, can simply give coloring of map!

Verifier computes $f(T, \ell)$ and verifies coloring is good

Advantage: Error is local (two improperly colored regions)

Is P=NP?

- Don't know ...
- If P=NP ...

"Of all the Clay Problems, this might be the one to find the shortest solution, by an amateur mathematician."

- Devlin, The Millenium Problems (Possibly thinking P=NP)
 - Mathematicians replaced by computers.

"If someone shows P=NP, then they prove any theorem they wish. So they would walk away not just with \$1M, but \$6M by solving all the Clay Problems!"

- Lance Fortnow, Complexity Blog

"P = NP?" is Mathematics-Complete !!

III. Recent History Proofs and Randomness

Randomness & Modern Complexity

- Emphasis on Randomness.
 - Randomness can potentially speed up algorithms.
 - Essential for
 - Equilibrium behavior
 - Coordination among multiple players
 - Cryptography
- But it probably can't help with Logic right?
 - Actually it does!!

Interactive Proofs

- [Goldwasser, Micali, Rackoff], [Babai] ~1985
- Verifier asks questions and Prover responds:
 - Space of questions exponentially large in the length!
 - Prover has to be ready for all!
- Many striking examples:
 - Pepsi ≠ Coke! ("Graphs not isomorphic")
 - Can prove "theorem has no short proof".
 - "IP = PSPACE" [LFKN, Shamir]
- "Zero Knowledge Protocols" Foundations of Secure communication

Probabilistically Checkable Proofs

Do proofs have to be read in entirety to verify?

$$a = b x = (\pi + 3)/2$$

$$a^{2} = ab 2x(\pi - 3) = (\pi + 3)(\pi - 3)$$

$$a^{2} - b^{2} = ab - b^{2} 2\pi x - 6x = \pi^{2} - 9$$

$$(a+b)(a-b) = b(a-b) 9 - 6x = \pi^{2} - 2\pi x$$

$$a+b = b 9 - 6x + x^{2} = \pi^{2} - 2\pi x + x^{2}$$

$$2b = b (3-x)^{2} = (\pi - x)^{2}$$

$$3-x = \pi - x$$

$$2 = 1 \pi = 3$$

Probabilistically Checkable Proofs

- Do proofs have to be read in entirety to verify?
 - Conventional formats for proofs YES!
 - But we can change the format!
- Format ≡ Verification Algorithm
 - Any verifier is ok, provided:
 - If T has proof of length ℓ in standard system, then V should accept some proof of length poly(ℓ)
 - If T has no proofs, then V should not accept any proof with probability $\geq \frac{1}{2}$ \downarrow_{001}
- PCP Theorem [Arora, Lund, Motwani, Safra, Sudan, Szegedy '92]:

A format exists where V reads only constant number of bits of proof!

An Analogy

- Inspecting a building:
 - "Building = O(n) atoms" ... OR
 - "Building = O(1) rooms = O(1) walls"
- Former view:
 - Verifying stability takes $\Omega(n)$ -checks.
- Latter view:
 - Verifying stability takes O(1)-checks +
 - 0(1)-"stability of wall-checks".
- Polynomials ≡ Walls!

10⁶-mile view of PCPs: Polynomials

- A (NP-)complete statement:
 - Graph $G \in \{0,1\}^{n \times n}$ is 3-colorable.
 - Proof: Coloring $(\Theta(n)$ -bits).
 - Verification: Read entire coloring.
- PCP Idea: Glue n bits using polynomials (deg. n)
 - Key fact: Non-zero polynomial usually non-zero.
- Equivalent (NP-)complete statement:
 - Given: Φ local map from poly's to poly's
 - \blacksquare \exists poly's A, B, C, D s.t. $\Phi(A, B, C, D) \equiv 0$
 - Verification:
 - Step 1: Test A, B, C, D are polynomials
 - Step 2: Verify $\Phi(A, B, C, D)[r] = 0$ for random r.

Polynomials = Wall - II

- Reduction from 3-coloring to polynomial satisfiability [Ben-Sasson-S.'04]
- $\Phi(A, B, C, D)[x_0, x, y] = \Phi_E(A, B, C, D)[x_0, x, y]$ $= (A[x](A[x] 1)(A[x] 2) B[x]\Pi_{v \in V}(x v))$ $+ x_0 \cdot (E(x, y) \cdot \Pi_{i \in \{-2, -1, 1, 2\}}(A[x] A[y] i)$ $C[x, y]\Pi_{v \in V}(x v) D(x, y)\Pi_{v \in V}(y v))$

Improved (Optimal) PCPs

- [Raz'94, Hastad'97, Dinur'06, Moshkovitz-Raz'08]: Series of remarkable improvements: Reduced error, reduced #queried bits, Reduced size of PCP:
 - Current: For barely super-linear blowup in size,
 PCP can be verified reading 3 bits to get error ½.
- Ingredients: Fourier analysis, Expander graphs,
 Error-correcting codes, Information Theory

PCPs and Approximate Optimization

- Classical connection: [Cook → Karp]:
 - Solving optimization problems ≡ finding proofs
- New Connection: [Feige et al., Arora et al.]
 - Solving optimization problems <u>approximately</u> ≡ finding <u>nearly valid</u> proofs.
 - Existence of nearly valid proofs ≡ Existence of perfectly valid proofs (due to PCPs)!
 - Conclude: Solving (some/many) optimizations approximately is as hard as solving them exactly!
- 1992-today: PCP-induced revolution in understanding approximability!!

IV. Current Directions

- Given linear equations $Ax = b \pmod{p}$, distinguish:
 - 1 − ϵ fraction of equations satisfiable.
 - $\frac{1}{p} + \epsilon$ fraction of equations satisfiable.
 - Thm [Hastad '97]: NP-hard even if each equation has only 3 variables.
- Unique Game setting: 2 variables/equation
- Conjecture [Khot]: Still NP-hard ...
- Implications: Many!
 - Roughly for very broad class of optimization problems, a natural "convex relaxation and rounding" is best possible.

Unique? Game?

Inspires "2-prover proof system" (game):

UGC \Rightarrow Perfect+Sound Proof system with negligible error Unique? Condition on answer of P_1 answer to P_2 unique + vice versa!

Proofs & Quantumness

 CHSH game: Proving laws of quantum mechanics to a skeptic.

```
V \rightarrow A : x; \qquad V \rightarrow B : y
A \rightarrow V : a; \qquad B \rightarrow V : b
```

- Accept iff $x \land y = a \oplus b$
- Classical strategy wins w.p. ¾
- Quantum strategy (A & B share entanglement) wins w.p. ~.85
- Modern "extensions":
 - [Mahadev]: Classical verification of quantum computation.
 - [Ji,Natarajan,Vidick,Wright,Yuen]: Interactive verification of all computable functions.
 - Ingredient: Alice and Bob can prove to V that they have n qubits of entanglement by consuming tiny number of qubits. (e.g, logloglogloglogn qubits)

V. Future

Some context

- PCPs as method to understand (in)approximability: HUGELY successful
- PCPs as a positive method:
 - Make verification easier ...
 - ... much more limited
 - (Actually used in blockchain/cryptocurrencies)
- Why so limited?

From Theory to Practice

(from Yael Kalai: "Evolution of Proofs")

Proofs: Standard Assumption

Ţ

П

- Small (Constant) Number of Axioms
 - $X \to Y, Y \to Z \Rightarrow X \to Z$, Peano, etc.
- Medium Sized Theorem:
 - $\forall x, y, z, n \in \mathbb{N}, \quad x^n + y^n = z^n \to n \le 2 \dots$
- Big Proof:

The truth

- Mathematical proofs assume large context.
 - By some estimates a proof that 2+2=4 in ZFC would require about 20000 steps ... so we will use a huge set of axioms to shorten our proofs – namely, everything from high-school mathematics"

[Lehman,Leighton,Meyer – Notes for MIT 6.042]

- Context (= huge set of axioms) shortens proofs.
- But context is uncertain!
 - What is "high school mathematics"?
- Need to understand how this works?
 - Context, uncertainty, communication
 - Mind, reasoning, knowledge

Summary and Conclusions

- Computing as a science:
 - Goes to the very heart of scientific inquiry.
 - What big implications follow from local steps?
- Search for proofs captures essence of all search and optimization.
- "Is P=NP?" Central mathematical question.
 - Still open.
- What are proofs?
 - Many implications of randomness & interaction
 - Not yet totally understood ... ⊗
 - © ... Up to us to define and design!

Thank You!