Kazhdan's property (T) for $Aut(\mathbf{F}_n)$ and $EL_n(\mathcal{R})$

Narutaka OZAWA (小澤 登高)

RIMS, Kyoto University

Harvard Math Picture Language Seminar, 2022.10.11

C*-algebras are an esoteric subject — "the most abstract nonsense that exists in mathematics," in Casazza's words. "Nobody outside the area knows much about it."

Quanta Magazine: 'Outsiders' Crack 50-Year-Old Math Problem.

http://www.quantamagazine.org/

 ${\tt computer-scientists-solve-kadison-singer-problem-20151124}$

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**.

 $\,\,\leadsto\,\,\Gamma$ is finitely generated and has finite abelianization.

Definition (for a discrete group Γ)

$$\Gamma$$
 has (T) $\stackrel{\text{def}}{\Longleftrightarrow} \exists S \subset \Gamma$ finite $\exists \kappa > 0$ s.t. $\forall (\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$
$$d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi(s)v\|.$$

 \iff Γ is f.g. & $\forall S \subset \Gamma$ generating $\exists \kappa = \kappa(\Gamma, S) > 0$ s.t. · · · The optimal $\kappa(\Gamma, S)$ is called the **Kazhdan constant** for (Γ, S) .

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T). $\vdots \frac{1}{\sqrt{2k+1}} 1_{[-k,k]} \in \ell^2(\mathbb{Z})$ is asymp. \mathbb{Z} -invariant, but $\ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}$.
- \rightsquigarrow Any f.i. subgroup with property (T) has finite abelianization.

An application of property (T): Expander graphs

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$, X a finite set, and $\Gamma \curvearrowright X$ transitively

- Schreier graph: Vertices = X and Edges $= \{\{x, sx\} : x \in X, s \in S\}$ is a ε -expander for $\varepsilon = \frac{\kappa(\Gamma, S)^2}{2}$. Namely, for $\forall A \subset X$ one has $|\partial A| \ge \varepsilon |A| (1 \frac{|A|}{|X|})$.
- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \varepsilon)^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \varepsilon$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want a large arepsilon-expander with fixed degree and arepsilon.

Expander Sampling Theorem (Gillman 1998):

For
$$\forall f \in \ell_{\infty}(X)$$
 with $||f||_{\infty} \leq 1$ and $m = \frac{1}{|X|} \sum f(x)$,

Simple Random Walk x_0, x_1, \ldots on X satisfies

$$\mathbb{P}(|\frac{1}{T}\sum_{k=0}^{T-1}f(x_k)-m|>\delta)<\exp(-C_{d,\varepsilon}\delta^2T).$$

(Non-)example of

an expander graph

Some examples of property (T) groups

- $SL_n(\mathbb{Z})$, $n \geq 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.
 - $\mathsf{EL}_n(\mathcal{R}) = \langle e_{ij}(r) : i \neq j, r \in \mathcal{R} \rangle \subset \mathsf{GL}_n(\mathcal{R}), \ n \geq 3,$ where \mathcal{R} finitely generated ring and $e_{ij}(r) := I_n + rE_{ij}$ (Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).
 - Aut(\mathbf{F}_n), $n \geq 4$. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20). Aut(\mathbf{F}_n) is the noncommutative analogue of $\mathrm{GL}_n(\mathbb{Z})$. $\mathbf{F}_n \twoheadrightarrow \mathbb{Z}^n$ abelianization $\rightsquigarrow \mathrm{Aut}(\mathbf{F}_n) \twoheadrightarrow \mathrm{Aut}(\mathbb{Z}^n) = \mathrm{GL}_n(\mathbb{Z})$. $\rightsquigarrow \mathrm{Aut}(\mathbf{F}_2)$ does not have (T). Neither $\mathrm{Aut}(\mathbf{F}_3)$ (McCool 1989).

Product Replacement Algorithm (Celler et al. 95, Lubotzky-Pak 01)

$$\mathsf{Aut}^+(\mathbf{F}_n) = \langle R_{i,j}^\pm, L_{i,j}^\pm \rangle \leq_{\mathsf{index}\ 2} \mathsf{Aut}(\mathbf{F}_n), \ \mathsf{where}\ \mathbf{F}_n = \langle g_1, \dots, g_n \rangle \ \mathsf{and} \\ R_{i,j}^\pm \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j^\pm, g_{i+1}, \dots, g_n), \\ L_{i,j}^\pm \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j^\pm g_i, g_{i+1}, \dots, g_n).$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

$$\operatorname{\mathsf{Aut}}^+(\mathsf{F}_n) \curvearrowright \{(h_1,\ldots,h_n) \in \Lambda^n : \Lambda = \langle h_1,\ldots,h_n \rangle\}.$$

Noncommutative real algebraic geometry of property (T)

Hilbert's 17th Pb:
$$f \in \mathbb{R}(x_1, \dots, x_d)$$
, $f \geq 0$ on \mathbb{R}^d
(E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \dots, g_k \in \mathbb{R}(x_1, \dots, x_d)$.

 $\mathbb{R}[\Gamma]$ real group algebra with the involution $(\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}$. $\Sigma^2 \mathbb{R}[\Gamma] := \{ \sum_i f_i^* f_i \} = \{ \sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+ \}$ positive cone

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) \geq 0$ in $\mathbb{B}(\mathcal{H})$.
- $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For
$$\Gamma = \langle S \rangle$$
 with $S = S^{-1}$ finite,
$$\Delta := \frac{1}{2} \sum_{s \in S} (1-s)^* (1-s) = |S| - \sum_{s \in S} s \in \Sigma^2 \mathbb{R}[\Gamma].$$

Then,
$$\langle \pi(\Delta)v, v \rangle = \frac{1}{2} \sum_{s \in S} \|v - \pi(s)v\|^2$$
 and Γ has $(T) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\lambda, \infty) \quad \Longrightarrow \exists \lambda > 0 \quad \text{such that} \quad \Delta^2 - \lambda \Delta \geq 0 \text{ in } C^*[\Gamma]$

Algebraic characterization of property (T)

Let $\Gamma = \langle S \rangle$ with $S = S^{-1}$ finite.

 $\mathbb{R}[\Gamma]$ real group algebra with the involution $(\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}$. $\Sigma^2 \mathbb{R}[\Gamma] := \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_\Gamma^+\}$

Here \mathbb{M}_{Γ}^+ finitely supported positive semidefinite matrices.

$$\Delta := rac{1}{2} \sum_{s \in S} (1-s)^* (1-s) = |S| - \sum_{s \in S} s \in \Sigma^2 \mathbb{R}[\Gamma].$$

 $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$.

Then,

$$\Gamma$$
 has $(T) \iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \geq 0$ in $\mathrm{C}^*[\Gamma]$ $\iff \kappa(\Gamma, S) \geq \sqrt{2\lambda/|S|}$

Theorem (O 2013)

$$\Gamma$$
 has $(T) \iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma]$

Stability (Netzer–Thom): It suffices if $\exists \lambda > 0 \ \exists \Theta \in \Sigma^2 \mathbb{R}[\Gamma]$ such that $\|\Delta^2 - \lambda \Delta - \Theta\|_1 \ll \lambda$.

Semidefinite Programming (SDP)

$$\Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma] \\ \Longleftrightarrow \exists E \in \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+\}$$

By fixing a finite subset $E \subseteq \Gamma$, we arrive at the SDP:

minimize
$$-\lambda$$
 subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

• Due to computer capacity limitation, we almost always take

$$E := \mathsf{Ball}(2) = \{e\} \cup S \cup S^2 = \mathsf{supp}\,\Delta \cup \mathsf{supp}\,\Delta^2.$$

 \rightarrow Size of SDP: dimension $|E|^2$ and constraints $|E^{-1}E| = |Ball(4)|$.

Certification Procedure:

Suppose (λ_0, P_0) is a hypothetical solution obtained by a computer.

Find $P_0 \approx Q^{\mathrm{T}}Q$ (with $Q\mathbf{1}=0$) and calculate with guaranteed accuracy $r:=\|\Delta^2-\lambda_0\Delta-\sum_{x,y}(Q^{\mathrm{T}}Q)_{x,y}(1-x)^*(1-y)\|_1\ll\lambda_0$.

$$\rightarrow$$
 Γ has (T) with $\lambda = \lambda_0 - 2r$ (in the case of $E = \text{Ball}(2)$).

• Solving SDP is computationally hard, but certifying (T) is relatively easy.

Results

$$\Gamma$$
 has (T) $\iff \exists E \Subset \Gamma \; \exists \lambda > 0 \; \text{s.t.} \; \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+ \}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij}^{\pm} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer–Thom 2014, Fujiwara–Kabaya 2017, Kaluba–Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For $\operatorname{Aut}^+(\mathbf{F}_4)$, the size of SDP $\approx 10~000~000$, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$.

- $\operatorname{Aut}^+(\mathbf{F}_5)$: !: A : YES !!! with $\lambda > 1.2$.

Theorem

 $Aut^+(\mathbf{F}_n)$ has property (T) for

- n = 5 (Kaluba–Nowak–O. 2017)
- n ≥ 6 (Kaluba–Kielak–Nowak 2018)
- n = 4 (Nitsche 2020, by a new SDP)

Reception

Revista Vea y Lea, January 1962

"But they (= computers) are useless.

They can only give you answers."

Pablo Picasso, 1968.

Property (T) for an infinite series (KKN 2018)

 $\Gamma_n := \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n := \{R_{i,j}^{\pm}, L_{i,j}^{\pm} : i \neq j\}, \quad \mathbf{E}_n := \{\{i,j\} : i \neq j\}$

Want to show $\Delta_n = \sum_{s \in S_n} 1 - s$ satisfies $\Delta_n^2 - \lambda_n \Delta_n \succeq 0$.

$$egin{aligned} \Delta_n &= \sum_{\mathrm{e} \in \mathrm{E}_n} \Delta_{\mathrm{e}}, \ \Delta_n^2 &= \sum_{\mathrm{e}} \Delta_{\mathrm{e}}^2 + \sum_{\mathrm{e} \sim \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} + \sum_{\mathrm{e} \perp \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} \ &=: \ \mathbf{Sq}_n \ + \ \mathbf{Adj}_n \ + \ \mathbf{Op}_n \ . \end{aligned}$$

• \mathbf{Sq}_n and \mathbf{Op}_n are positive, but \mathbf{Adj}_n may not.

Trial and error on the computer has confirmed

For
$$n > m$$
,

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\Delta_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\mathbf{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \mathbf{Adj}_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\mathbf{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \mathbf{Op}_n$$

 $\mathbf{Adj}_5 + \alpha \mathbf{Op}_5 - \varepsilon \Delta_5 \succeq 0$

with $\alpha=2$ and $\varepsilon=0.13$. It follows that

$$0 \leq 60(n-3)! \left(\mathbf{Adj}_n + \frac{2\alpha}{n-3} \mathbf{Op}_n - \frac{n-2}{3} \varepsilon \Delta_n \right) \leq 60(n-3)! \left(\Delta_n^2 - \frac{n-2}{3} \varepsilon \Delta_n \right),$$
 provided $2\alpha/(n-3) \leq 1$. $\Rightarrow \kappa(\mathrm{Aut}^+(\mathbf{F}_n), S_n) \geq \sqrt{2\lambda_n/|S_n|} \geq \sqrt{\varepsilon/6n}$

Generalizing property (T) for $EL_n(\mathcal{R})$ for a rng \mathcal{R}

The computer taught us the inequality $\mathbf{Adj}_5 + \alpha \mathbf{Op}_5 - \varepsilon \Delta_5 \succeq 0$ is true, useful, and even **easy to prove** (!) when $\alpha > 0$ is large.

Theorem (O. 2022)

For any f.g. **comm.** rng \mathcal{R} generated by $R_0 \in \mathcal{R}$ and for n large enough, $\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r)) \text{ and }$

$$\Delta^{(2)} := \sum_{r,s \in R_0} \sum_{i \neq j} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs))$$

in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy

$$\Delta^2 \ge \varepsilon \Delta^{(2)}$$

in C*[EL_n(\mathcal{R})] for some $\varepsilon > 0$ (but not $\Delta^2 \succeq \varepsilon \Delta^{(2)}$ in $\mathbb{R}[EL_n(\mathcal{R})]$).

"rng" = "ring" - "i". $\mathsf{EL}_n(\mathcal{R}) \twoheadrightarrow \mathsf{EL}_n(\mathcal{R}/\mathcal{R}^2) \cong (\mathcal{R}/\mathcal{R}^2)^{\oplus n(n-1)}$ abelian. The proof of $\mathsf{Adj}_5 + \alpha \mathsf{Op}_5 - \varepsilon \Delta_5^{(2)} \geq 0$ is silicon-free and relies on Boca

and Zaharescu's work (2005) on the almost Mathieu operators in \mathcal{A}_{θ} .

Corollary

 $\exists n \; \exists \varepsilon > 0 \; \text{s.t. Cayley}(\mathsf{SL}_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), \; p \perp q, \; \text{are } \varepsilon\text{-expanders}.$

 $bilde{\mathbb{L}}$ The Kazhdan constants for $(\mathsf{EL}_n(p\mathbb{Z}))_{p\in\mathbb{N}}$ are not uniform.