Kazhdan's property (T) for Aut(F,) and EL,(R)

Narutaka OZAWA (/N & )
/> RIMS, Kyoto University
Harvard Math Picture Language Seminar, 2022.10.11

C*-algebras are an esoteric subject —"the most abstract nonsense
that exists in mathematics,” in Casazza's words. “Nobody outside the
area knows much about it.”

Quanta Magazine: ‘Outsiders’ Crack 50-Year-Old Math Problem.

http://www.quantamagazine.org/

computer-scientists-solve-kadison-singer-problem-20151124



Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank > 2 (e.g., G = SL,(R), n > 3) and
its lattice [ (e.g., [ = SLn(Z), n > 3) have property (T).
~» [ is finitely generated and has finite abelianization.

A\

Definition (for a discrete group I)

I has (T) £ 35 T finite Ik > 0 sit. V(7r H) unitary rep'n and Vv € H

il B < L s |7 — s
< lisfg & VS CT generating 3x = k(I,S) >0s.t. ---
The optimal (I, S) is called the Kazhdan constant for (I, S).

@ Property (T) inherits to finite-index subgroups and quotient groups.
@ 7 (or any infinite amenable group) does not have property (T).
ml[ kK] € (2(Z) is asymp. Z-invariant, but (?(Z)% = {0}.
~> Any f.i. subgroup with property (T) has finite abelianization.
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An application of property (T): Expander graphs

Explicit construction of expanders (Margulis 1973)

= (S), X afinite set, and [ ~ X transitively
~» Schreier graph: Vertices = X and Edges = {{x,sx} : x € X, s € S}
2
is a e-expander for € = @ Namely, for VA C X one has

0A] > el A|(1 — ).

o For Ni(A) := {x € X : d(x, A) < k}, o Boendar s
INi(A)| > (1 +¢)¥|A| until it reaches 3| X|.
After that |Nk(A)¢| decreases by a factor 1 + ¢.

@ Random walk on X has mixing time O(log | X|).

N |
T T T

@ Want a large e-expander with fixed degree and ¢.

Expander Sampling Theorem (Gillman 1998):

For Vf € loo(X) with ||f]|oc <1 and m = ﬁz f(x),
Simple Random Walk xg, x1,... on X satisfies
P(|L S 5 F(xk) — m| > 8) < exp(—Cy62T).
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Some examples of property (T) groups

e SL,(Z), n > 3, (Kazhdan 1967), but not SLy(Z).
® EL,(R) = (ejj(r) : i #j,r € R) C GLy(R), n >3,
where R finitely generated ring and ej;(r) := I, + rEj
(Shalom & Vaserstein, Ershov—Jaikin-Zapirain 2006-08).
o Aut(F,), n > 4. (Kaluba—Nowak-0., K-Kielak-N., Nitsche 17-20).
Aut(F,) is the noncommutative analogue of GL,(Z).
F, — Z" abelianization ~ Aut(F,) — Aut(Z") = GL(Z).
~> Aut(F2) does not have (T). Neither Aut(F3) (McCool 1989).

Product Replacement Algorithm (Celler et al. 95, Lubotzky—Pak 01)

Aut™(F,) = (Ri, Li) <index 2 Aut(F,), where F,, = (gi1,...,8&n) and

Rjé (glu"wgn)'_}(glu"'agl 17glg:, 7gl+1?""gn)r
L,,J-(glv"'7gn)'_>(gla'-'7gl lag:, 8i; 8i+1 - 'agn)-

PRA is a practical algorithm to obtain “random” elements in a given finite
group A of rank < n via the PRA random walk

Autt(Fp) ~ {(hy,... b)) € A" A= (hy,... ho)}.
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Noncommutative real algebraic geometry of property (T)

Hilbert’s 17th Pb: f € R(xq,...,xq), f > 0 on R
(E. Artin 1927) = f =), g? for some gi,...,8« € R(x1,...,xq).
R[] real group algebra with the involution (3, at)* = >, art™ L.
PR = {3, f*fi} = {>°., PxyX 'y : P € M['} positive cone

Here Mﬁ finitely supported positive semidefinite matrices.
o B(H)" :={A=A*:(Av,v) >0Vv € H} = X2B(H) psd operators.
e V(m, H) unitary rep'n, w(>_; £*f;) = >, n(fi)*n(f;) > 0 in B(H).
@ C*[I'] the universal enveloping C*-algebra of R[I].
Laplacian: For [ = (S) with S = S~ finite,

A:=13 (1-5)(1—5)=1S| - .5 € Z2R[r].

Then, (m(A)v,v) =13 sllv —n(s)v|? and N
[has (T) <= 3IA>0 V(m,H) Sp(n(A))C{0}U[No0) o
<= JX >0 suchthat A% —)\A>0in Cl]

2,
- R(F,S) > 5] A0
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Algebraic characterization of property (T)
Let T = (S) with S = S~ finite.
R[] real group algebra with the involution (3, at)* = >, art™ 2.
PAR[M = {3, f*fi} = {2y Puyx~ly i P e M{}
Here MF“ finitely supported positive semidefinite matrices.
A:=15  (1—5)(1—5)=|S| - .55 € Z2R[r].

C*[T] the universal enveloping C*-algebra of R[I].
Then,

[ has (T) <= 3\ > 0 such that A2 — A\A >0 in C*[[]
~ K(T,8) > /2\/|S]
Theorem (O 2013)
[ has (T) <= 3\ > 0 such that A2 — AA = 0 in R[l]

Stability (Netzer-Thom): It suffices if 3\ > 0 3© € L2R[[] such that
A% — DA - 9|1 < A
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Semidefinite Programming (SDP)

[ has (T) <= 3\ > 0 such that A2 — \A € ¥2R]l]
= 3JEETN>0st. A2 - N e (Y, Peyx'y:PeMg}
By fixing a finite subset E € I', we arrive at the SDP:

minimize -
subject to A2 - \A = > xyeE Peyx~ty, PeMf

@ Due to computer capacity limitation, we almost always take
E :=Ball(2) = {e} US U S? = supp A U supp A2
~~ Size of SDP: dimension |E|?> and constraints |[E~E| = | Ball(4)|.
Certification Procedure:
Suppose (Ao, Po) is a hypothetical solution obtained by a computer.
Find Pp ~ QT @ (with @1 = 0) and calculate with guaranteed accuracy
ri=[A2 = 20A = 32, (QTQ)xy (1 —x)*(1 = y)lls < Xo.
~» [ has (T) with A =)o —2r (in the case of E = Ball(2)).

@ Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Mhas (T) <= 3EET A >0st. A= NA e {>,  Poyx'y: PeMf}
Results of SDP for £ = Ball(2). J

® SLn(Z) with S = {ej - i #j}: A3 >0.27, \g > 1.3, X5 > 2.6.
(Netzer—Thom 2014, Fujiwara—Kabaya 2017, Kaluba—Nowak 2017)

@ No response for SLe(Z).

For Aut+(F4), the size of SDP =& 10 000 000, beyond our computer’s

capacity. We exploited invariance under G(n) x (Z/2)®" ~ Aut™(F),).

o Autt(Fs): (& () No response.

o Autt(Fs): IOAGAG! YESHU! with A > 1.2.

Aut™(F,) has property (T) for
e n=>5 (Kaluba—Nowak-0. 2017)

e n > 6 (Kaluba—Kielak-Nowak 2018)
@ n =4 (Nitsche 2020, by a new SDP)

7/10



“But they (= computers) are useless.

They can only give you answers.”
Pablo Picasso, 1968.
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Property (T) for an infinite series (KKN 2018)

Fni=Autt(F,), S,:= {lej, LjE i#jy En={{i,j}:i#j}
Want to show A, =3 s 1—s satisfies A2 -\, A, = 0.
A= ZeeEn Ae,
AYE DINICE D DRPYIWATE DINTYIWAY
= Sq, + Adj, + Op,.
@ Sq, and Op,, are positive, but Adj, may not.
For n > m,
> oes(n)0(Bm) =m(m—1)-(n—2)!- A,
> ves(n) 0(Adiy,) = m(m —1)(m —2) - (n—3)!- Adj,
> oee(n) 0(0Py) = m(m —1)(m —2)(m—3) - (n—4)!- Op,
Trial and error on the computer has confirmed
Adj; +a Opy —cAs > OJ
with o =2 and ¢ = 0. 13 It foIIows that
0 < 60(n—3)!(Adj, +-
provided 2a/(n — 3) < 1. ~ H(AutJr(F Sn) > \/2An/|Sn| > \/2/6n
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Generalizing property (T) for EL,(R) for a rng R

The computer taught us the inequality Adjs +a Ops —cAs = 0 is true,

useful, and even easy to prove (!) when a > 0 is large.

Theorem (0. 2022)

For any f.g. comm. rng R generated by Ry € R and for n large enough,
A=0" cRry 2uini(1 — €j(r))*(1 — ej(r)) and
AP = > orscRy 2izj(1— €i(rs))*(1 — ej(rs))

in R[EL,(R)] satisfy

A2 > eNB)
in C*[EL,(R)] for some & > 0 (but not A2 = A in R[EL,(R)]).
I “rng”="ring’ —"i". EL,(R) = EL,(R/R?) = (R/R?)®"("=1) abelian.

The proof of Adjs +a Ops —5Ag ) > 0 is silicon-free and relies on Boca
and Zaharescu's work (2005) on the almost Mathieu operators in Ay.

dn Je > 0 s.t. Cayley(SLn(Z/qZ),{ejj(p) : i # j}). p L q, are e-expanders.

I The Kazhdan constants for (EL,(pZ))pcn are not uniform.
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