Discrepancy Theory and Randomized Controlled Trials

Daniel A. Spielman Yale

BALANCING COVARIATES IN RANDOMIZED EXPERIMENTS USING THE GRAM-SCHMIDT WALK

By Christopher Harshaw, Fredrik Sävje, Daniel A. Spielman and Peng Zhang (张鹏)

Chris
Harshaw MIT

Fredrik
Säuje
Yale

Peng Ztang
Rutgers

Randomized Controlled Trials (RCT)
Test medications, procedures or policies Randomly assign subjects to drug or placebo Want the two groups to be similar.

Discrepancy Theory
Divide a group of things (vectors) into two similar grows.
More similar than random

Outline
Introduction to Discrepancy Theory

How to analyze RCTs probability \& statistics

Discrepancy theory for RUTs

Village-wide maternal health intervention 176 villages, 16 treatments, 11 villages per group

Village-wide maternal health intervention 176 villages, 16 treatments, 11 villages per group

Village-wide maternal health intervention 176 villages, 16 treatments, 11 villages per group

Want to balance many covariates
Distance to hospital
Time to reach hospital when raining
Median income
Average age
Altitude

Discrepancy Theory

Matoušek

Courses by Aleksandar Nikolou Peng Zhang

Discrepancy Theory:
Illustration by points and axis-parallel rectangles in $[0,1]^{2}$

Discrepancy Theory: axis-parallel rectangles
Problem: find $S=\left\{x^{1}, \ldots, x^{n}\right\} \subseteq[0,1]^{2}$ so that for all rectangles R,

$$
\frac{|S \cap R|}{|S|} \approx \text { volume }(R)
$$

How good can this approximation be?

$$
\frac{|S \cap R|}{|S|}=\frac{4}{12}=\frac{1}{3}
$$

Discrepancy Theory: axis-parallel rectangles Given $S=\left\{x^{1}, \ldots, x^{n}\right\} \subseteq[0,1]^{2}$ and rectangle R discrepancy is $\left\lvert\, \frac{|S \cap R|}{|S|}-\right.$ volume $(R) \mid$.
Want small discrepancy for all R

$$
S=\text { grid points }
$$

$\exists R$ with discrepancy $\geq \frac{1}{2 \sqrt{n}}$

Discrepancy Theory: axis-parallel rectangles Given $S=\left\{x^{1}, \ldots, x^{n}\right\} \subseteq[0,1]^{2}$ and rectangle R discrepancy is $\left\lvert\, \frac{|S \cap R|}{|S|}-\right.$ volume $(R) \mid$.
Want small discrepancy for all R

$$
\begin{aligned}
& S=\text { random points } \\
& R=[0,1] \times[0,12]
\end{aligned}
$$

Expected discrepancy $\approx \frac{1}{\sqrt{2 \pi n}}$

Discrepancy Theory: axis-parallel rectangles
Given n, find $S=\left\{x^{1}, \ldots, x^{n}\right\} \subseteq[0,1]^{2}$ so that $\forall R$ discrepancy $\left\lvert\, \frac{|S \cap R|}{|S|}-\right.$ volume $(R) \mid$ is small
Theorem (Van der Corput '35)

There exists S such that for all R, discrepancy $\leq \frac{c \log n}{n}$, for some constant c.

A Partitioning Problem
Given $T \leq[0,1]^{2}$ and n, find $S \leq T,|S|=n$ st.

$$
\forall R \quad\left|\frac{|S \cap R|}{|S|}-\frac{|T \cap R|}{|T|}\right| \quad \text { is small }
$$

usually,

$$
n=\frac{|T|}{2}
$$

S approximates T and so does T-S

A Partitioning Problem
Given $T \subseteq[0,1]^{2}$ and n, find $S \leq T,|S|=n$ st.

$$
\forall R \quad\left|\frac{|\triangle \cap R|}{|S|}-\frac{|T \cap R|}{|T|}\right| \quad \text { is small }
$$

Let
usually,

$$
n=\frac{|T|}{2}
$$

S approximates T and so does T-S

A Partitioning Problem
Given $T \leq[0,1]^{2}$ and n, find $z: T \rightarrow\{ \pm 1\}$ st.
$\forall R\left|\sum_{j \in R} z(j)\right|$ is small

Each rectangle gives a subset of T

Discrepancy for Set Systems
Define $[n]=\{1, \ldots, n\}$
Given $S_{1} \subseteq[n], S_{2} \subseteq[n], \ldots, S_{d} \subseteq[n]$
Find $z:[n] \rightarrow\{ \pm 1\}$ st.
$\forall i\left|\sum_{j \in S_{i}} z\left({ }_{j}\right)\right|$ is small

Define $\operatorname{disc}(z)=\max _{i}\left|\sum_{j \in s_{i}} z(j)\right|$

Discrepancy for Set Systems
Define $[n]=\{1, \ldots, n\}$
Given $S_{1} \subseteq[n], S_{2} \subseteq[n], \ldots, S_{d} \subseteq[n]$
Define $\operatorname{disc}(z)=\max _{i}\left|\sum_{j \in s_{i}} z(j)\right|$

For uniform tandoon z,

$$
\operatorname{Pr}_{z}[\operatorname{disc}(z) \leq \sqrt{2 n \ln (2 n)}]>0
$$

Discrepancy for Set Systems
Define $[n]=\{1, \ldots, n\}$
Given $S_{1} \subseteq[n], S_{2} \subseteq[n], \ldots, S_{n} \subseteq[n]$
Define $\operatorname{disc}(z)=\max _{i}\left|\sum_{j \in s_{i}} z(j)\right|$
For uniform random $z_{\text {, }}$

$$
\operatorname{Pr}_{z}[\operatorname{disc}(z) \leq \sqrt{2 n \ln (2 d)}]>0
$$

Spencer 85
$\exists z$ st. $\operatorname{disc}(z) \leq 6 \sqrt{d}$ when $d \leq n$

Discrepancy for Set Systems \rightarrow Vectors Given $S_{1} \subseteq[n], S_{2} \subseteq[n], \ldots, S_{d} \subseteq[n]$
let X be the incidence matrix of the sets

$$
\begin{aligned}
& X(i, j)=\left\{\begin{array}{lll}
1 & \text { if } & j \in S_{i} \\
0 & 0 . \infty .
\end{array} \quad(X z)(i)=\sum_{j \in S_{i}} z(j)\right. \\
& \operatorname{disc}(z)=\max _{i}\left|\sum_{j \in s_{i}} z\left(C_{j}\right)\right|=\|X z\|_{\infty} \\
& \text { where }\|v\|_{\infty}{ }^{\text {def }} \max _{j}|v(j)|
\end{aligned}
$$

Let $X=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ 1 & 1 & & 1\end{array}\right)$ so $X_{z}=\sum_{j} z(j) x_{j}$

Discrepancy for Vectors
Spencer ' 85
Given $x_{1} \in[-1,1]^{d}, \ldots, x_{n} \in[-1,1]_{1}^{d} \quad X=\left(\begin{array}{ccc}1_{1} & 1 & 1 \\ x_{1} & x_{2} & 1 \\ 1 & 1 & x_{n} \\ 1\end{array}\right)$ $\exists z \in\{ \pm 1\}^{n}$ st. $\|x z\|_{\infty} \leqslant 6 \sqrt{d_{1}} \quad d \leqslant n$

Was unknown if could find z in polynomial time.

Discrepancy for Vectors
Spencer ' 85
Given $X_{1} \in[-1,1]^{d}, \ldots, x_{n} \in[-1,1]_{1}^{d} \quad X=\left(\begin{array}{cccc}1 & 1 & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ 1 & 1 & 1\end{array}\right)$ $\exists z \in\{ \pm 1\}^{n}$ st. $\|x z\|_{\infty} \leq 6 \sqrt{d}$

Bansal '10 Can find z in polynomial time.
Followed by many other a gorithms for many discrepancy problems

We still do not know the right constant. Is it 2?

Euclidean Discrepancy for Vectors
Báräny-Grinberg ' $81+$ Beck-Fiala' 81
Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d},\left\|x_{i}\right\|_{2} \leq 1$ for all i

$$
\exists z \in\{ \pm 1\}^{n} \text { st. }\left\|\sum_{i} z(i) x_{i}\right\|_{2}=\left\|x_{z}\right\|_{2} \leq \sqrt{d}
$$

Cannot improve $\sqrt{d}: X_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad X_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad X_{d}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$

$$
x_{i}=0 \quad i \geqslant d
$$

Euclidean Discrepancy for Vectors
Báräny-Grinberg ' $81+$ Beck-Fiala' 81 (algorithmic)
Thu 1 Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d},\left\|x_{i}\right\|_{2} \leq 1$ for all i

$$
\exists z \in\{11\}^{n} \text { s.t. }\|X z\|_{2} \leq \sqrt{d}
$$

Charikar, Newman and Nikolou 'Il:
Is $N P$-hard to distinguish

$$
\exists z \in\{ \pm 1\}^{n} \text { st. } X z=\overline{0}
$$

from

$$
\forall z \in\{ \pm 1\}^{n} \text { st. }\|x z\|_{2} \geq c \sqrt{d}
$$

Banaszczyk's' 98 Theorem
Generalizes Euclidean discrepancy
Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d},\left\|x_{i}\right\|_{2} \leq 1$ for all i
The 1 says $\exists z \in\{ \pm 1\}^{n}$ sit. $\sum_{i} z(i) x_{i} \in B_{\sqrt{d}}(0)$
Banaszczyk:
For all convex k with Gaussian measwe $\geq \frac{1}{2}$

$$
\exists z \in\{ \pm 1\}^{n} \text { s., } \sum_{i} z(i) x_{i} \in 5 k
$$

Banaszcz y k's' 98 Theorem
Generalizes Euclidean discrepancy
Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d},\left\|x_{i}\right\|_{2} \leq 1$ for all i
Tum 1 says $\exists z \in\{ \pm 1\}^{n}$ st. $\sum_{i} z(i) x_{i} \in B_{\sqrt{d}}(0)$
Banaszczyk:
For all convex k with Gaussian measwe $\geq \frac{1}{2}$

$$
\begin{aligned}
& \exists z \in\{ \pm 1\}^{n} \text { s.t. } \sum_{i} z(i) x_{i} \in 5 K \\
& \text { Gaussian measwe }= \operatorname{Pr}[x \in K]=\frac{1}{(2 \pi)^{d / 2}} \int_{x \in K} e^{-\frac{1}{2}\|x\|_{2}^{2}} d x \\
& x \leftarrow N\left(0, I_{d}\right)
\end{aligned}
$$

Banaszczyk's'98 Theorem
Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d},\left\|x_{i}\right\|_{2} \leq 1$ for all i
Thm 1 says $\exists z \in\{ \pm 1\}^{n}$ s.t. $\sum_{i} z(i) x_{i} \in B_{\sqrt{d}}(0)$
Banaszczyk:
For all convex k with Goussian measure $\geq \frac{1}{2}$

$$
\exists z \in\{ \pm 1\}^{n} \text { s.t. } \sum_{i} z(i) x_{i} \in 5 k
$$

Efficient algorithm, Gram-Schmidt Walk by Dadush, Garg, Lovett, Nikolou '16 + Bansal, Dodush, Garg, Lovett ' 19

Randomized Controlled Trials

CAUSAL INFERENCE
FOR
STATISTICS, SOCIAL,
AND
BIOMEDICAL SCIENCES
AN INHRODUCTION
GUIDO W. IMBENS
DONALD B. RUBIN

Imbens \&
Rabin

Hernán \&
Robins

Village-wide maternal health intervention 176 villages, 16 treatments, 11 villages per group

Matching for two groups

Matching for two groups

Blocking for many treatment groups Create 11 clusters of 16 villages each

Blocking for many treatment groups For each cluster
\square

Blocking for many treatment groups Choose a random bijection from villages to treatments

Blocking for many treatment groups Assign each cluster independently to get 16 groups of 11 villages each

Blocking for many treatment groups Create 11 clusters of 16 villages each

Discrepancy Theory

Can make means similar

Discrepancy Theory

Can make means similar

Similar moment ellipses always possible

Marcus-S-Srivastava \rightarrow Kadison-Singer \rightarrow Weaver

Similar moment ellipses always possible

Marcus-S-Srivastava \rightarrow Kadison-Singer \rightarrow Weaver
Open: Balance means and second moments

Balanced Everything

Randomization
Allows one to argue results unlikely to be due to a poor assignment.

Need randomization for confidence intervals

Can balance better on average.

This is not an optimization problem!

100 balanced but very different assignments

1. Framework \& Mathematical Formalization
2. Algorithm

The Gram-Schmidt Walk Design is Robust: never much worse than iud random

Balanced: much better when covariates correlate with outcomes

Neyman-Rubin Model of Experiments
Consider two treatment groups:
$A=$ Test and $B=$ Control
Two potential outcomes for subject i observe $a(i)$ if $i \in A$
$b(i)$ if $i \in B$
Can not observe both
Assignment is only source of randomness Response to treatment is NOT random

Designs
The design is the distribution of A, B uniform: $\operatorname{Pr}[i \in A]=1 / 2$, independently
balanced: A uniform subset of half
Matching: divide subjects into disjoint pairs (i, j) assign $i \rightarrow A, j \rightarrow B$ or

$$
i \rightarrow B_{1} \quad j \rightarrow A
$$

with prob $1 / 2$

Neyman-Rubin Model for Experiments
Two potential outcomes for subject i
observe $a(i)$ if $i \in A$ prob $1 / 2$
$b(i)$ if $i \in B$ prob $1 / 2$
Can not observe both

Want to measure average treatment effect

$$
\tau=\frac{1}{n} \sum_{i} a(i)-b(i) \quad \text { (ATE) }
$$

Horvitz-Thompson Estimator Estimate $\tau=\frac{1}{n} \sum_{i} a(i)-b(i)$

$$
\text { by } \hat{\tau}=\frac{2}{n}\left(\sum_{i \in A} a(i)-\sum_{i \in B} b(i)\right)
$$

$$
\mathbb{E} \hat{\tau}=\tau
$$

Are not using difference of means

$$
\frac{1}{|A|} \sum_{i \in \mathcal{A}} a(i)-\frac{1}{|B|} \sum_{i \in B} b(i)
$$

Differs from Horvitz-Thompson when $|A| \neq|B|$

Precision

$$
\operatorname{Pr}[|\hat{\tau}-\tau|>t]
$$

Confidence Interval

$$
\text { Estimator of } \operatorname{Pr}[|\hat{\tau}-\tau|>t]
$$

Formula for error of estimator
Set $z(i)= \begin{cases}1 & i \in A \\ -1 & i \in B\end{cases}$

$$
n(\tilde{\tau}-\tau)=z^{\top}(a+b)=z^{\top} \mu \text { where } \mu^{\text {def }} a+b
$$

proof

$$
\begin{aligned}
& n \tau=\sum_{i} a(i)-b(i) \\
& n \tilde{\tau}=2 \sum_{i \in A} a(i)-2 \sum_{i \in B} b(i) \\
& n(\hat{\tau}-\tau)=\sum_{i \in A}(a(i)+b(i))-\sum_{i \in B}(a(i)+b(i))
\end{aligned}
$$

How show $\operatorname{Pr}[|\hat{\tau}-\tau|>t]$ is small?

1. Estimate MSE def $\mathbb{E}(\hat{\tau}-\tau)^{2}$

Chebysheu: $\operatorname{Pr}[|\hat{\tau}-\tau|>c \sqrt{M S E}] \leq \frac{1}{c^{2}}$
2. Higher moments and

Sub-Gaussian Concentration

Mean Squared Error

$$
\begin{aligned}
\operatorname{MSE}(\tilde{\tau}) & =\frac{1}{n^{2}} \underset{z}{\mathbb{E}}\left(z^{\top} \mu\right)^{2} \quad z(i)=\left\{\begin{array}{rr}
1 & i \in A \\
-1 & i \in B \\
& =\frac{1}{n^{2}} \underset{z}{\mathbb{E}}\left(\mu^{\top} z\right)\left(z^{\top} \mu\right) \\
& =\frac{1}{n^{2}} \mu^{\top}\left(\mathbb{E}_{z} z z^{\top}\right) \mu \\
& =\frac{1}{n^{2}} \mu^{\top} Z \mu
\end{array}\right) .
\end{aligned}
$$

$z \stackrel{\text { dad }}{=} \underset{z}{\mathbb{E}} z z^{T}$ is the covariance matrix of z

Mean Squared Error

$$
\begin{array}{rl}
\operatorname{MSE}(\tilde{\tau}) & =\frac{1}{n^{2}} \underset{z}{\mathbb{E}}\left(z^{\top} \mu\right)^{2} \\
& =\frac{1}{n^{2}} \mathbb{E}\left(\mu^{\top} z\right)\left(z^{\top} \mu\right) \\
& =\frac{1}{n^{2}} \mu^{\top}\left(\mathbb{E} z z^{\top}\right) \mu \\
& =\frac{1}{n^{2}} \mu^{\top} Z \mu \\
& \leq \frac{1}{n^{2}}\|\mu\|^{2}\|z\|_{2} \leftarrow \text { operator norm } \\
1 & i \in A \\
-1 & i \in B
\end{array}
$$

We can know Z, but not μ
So, wart $\|Z\|_{2}$ small

Measure Robustness by $\|z\|_{2}$
There is a μ such that

$$
\mu^{\top} Z \mu=\|\mu\|^{2}\|Z\|_{2}
$$

So, worst-case mean squared error is captured by $\|z\|_{2}$

Robustness - ind case
For z uniform in $\{ \pm 1\}^{n}$
$z=\operatorname{Cov}(z)=I$ and $\|z\|=1$
and MSE $=\frac{1}{n^{2}}\|\mu\|^{2}$

Uniform Design Maximizes Robustness
For z uniform in $\{ \pm 1\}^{n}$
$z=\operatorname{Cov}(z)=I$ and $\|z\|=1$
For every other design, $\|z\| \geqslant 1$

To get lower variance, give up a little in worst case need nice μ or helpful covariates

MSE - Random Balanced, $|A|=|B|$
For uniform z st. $z^{\top} \mathbb{I}=0$

$$
Z=\frac{n}{n-1}\left(I-\frac{1}{n} \mathbb{1} \mathbb{M}^{\top}\right) \quad\|Z\|_{2}=\frac{n}{n-1}
$$

MSE - Random Balanced, $|A|=|B|$
For uniform z st. $z^{\top} \mathbb{1}=0$

$$
\begin{aligned}
& Z=\frac{n}{n-1}\left(I-\frac{1}{n} \mathbb{1} \mathbb{1}^{\top}\right) \quad\|Z\|_{2}=\frac{n}{n-1} \\
& M S E=\frac{1}{(n-1)^{2}} \|
\end{aligned} \underbrace{\substack{\text { mean of } \mu \\
\text { far from } 0}}_{\substack{\text { small if } \\
\text { larger than } \\
\frac{1}{n^{2}}}} \begin{aligned}
& \text { far } \mathbb{I}^{\top} \mu \|_{2}^{2}
\end{aligned}
$$

Can be worse than iud, but often preferred, especially if $a, b \geq 0$

Covariates

$$
x_{1}, \ldots, x_{n} \in \mathbb{R}^{d} \quad X=\left(\begin{array}{cc}
1 & 1 \\
x_{1}, \ldots & x_{n} \\
1 & 1
\end{array}\right)
$$

Can help if μ close to row span of X

Ideal case: $\mu=X^{\top} \beta$
Gives $n^{2} \operatorname{MSE}(\tilde{\tau})=\mu^{\top} Z \mu=\beta^{\top} X Z X^{\top} \beta$

$$
\leq\|\beta\|_{2}^{2}\left\|X Z X^{\top}\right\|_{2}
$$

As don't know β, will try to make

$$
\left\|X Z X^{\top}\right\|_{2} \text { small }
$$

Impact of Balance and Robust ness

$$
\begin{aligned}
& \operatorname{MSE}(\hat{\tau}) \leq \frac{1}{n^{2}} \min _{\beta \in \mathbb{R}^{d}}\left[\frac{\sigma_{z}\left\|\mu-X^{\top} \beta\right\|_{2}^{2}}{\eta}+\frac{\sigma_{x}\|\beta\|_{2}^{2}}{\uparrow}+\frac{\uparrow}{\text { cross }} \text { term }\right] \\
& \sigma_{z}=\|z\|_{2} \text { measures Robicstness } \\
& \sigma_{x}=\left\|x Z X^{\top}\right\|_{2} \text { measures Balance }
\end{aligned}
$$

Balance - Robustness Trade off

Robustness

$$
\|z\|_{2} \geqslant 1
$$

$$
\left\|x z x^{\top}\right\|_{2} \geq 1
$$

$\tau_{\text {in general }}$
 assuming $\left\|x_{i}\right\|_{2} \leq 1$

Matching Design

$$
\|z\|_{2}=2 \quad Z=\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \ddots \\
0 & 0 & 0 & 0 & \ddots
\end{array}\right)
$$

For x_{1}, \ldots, x_{n} uniform in unit ball in \mathbb{R}^{d} and best possible matching

$$
\mathbb{E}\left\|X Z X^{\top}\right\|_{2} \geqslant \text { const } \cdot \frac{n^{1-2 / d}}{d}
$$

Gram-Schmidt Walk Design
For all $\phi \in(0,1)$, obtains

$$
\|Z\|_{2} \leqslant \frac{1}{\phi} \quad\left\|X Z X^{\top}\right\|_{2} \leqslant \frac{1}{1-\phi}
$$

Gram-Schmidt Walk Design
For all $\phi \in(0,1)$, obtains

$$
\begin{aligned}
& \|Z\|_{2} \leqslant \frac{1}{\phi} \quad\left\|X Z X^{\top}\right\|_{2} \leq \frac{1}{1-\phi} \\
& Z \leqslant\left(\phi I+(1-\phi) X^{\top} X\right)^{-1} \\
& \operatorname{MSE}(\hat{\gamma}) \leq \frac{1}{n^{2}} \min _{\beta \in \mathbb{R}^{d}} \frac{\left[\frac{1}{\phi}\left\|\mu-X_{\beta}^{\top}\right\|^{2}+\frac{1}{1-\phi}\|\beta\|^{2}\right]}{\begin{array}{l}
\text { is a ridge regression } \\
\text { regularized least squares }
\end{array}}
\end{aligned}
$$

Gram-Schmidt Walk Design

$$
\begin{aligned}
& \text { small when } \\
& \mu \text { nearspan } \\
& \text { of } X \\
& \downarrow \\
& \operatorname{MSE}(\hat{\tau}) \leq \frac{1}{n^{2}} \min _{\beta \in \mathbb{R}^{d}}\left[\begin{array}{l}
\left.\frac{1}{\phi}\left\|\mu-X_{\beta}^{\top}\right\|^{2}+\frac{1}{1-\phi}\|\beta\|^{2}\right] \\
\begin{array}{l}
\text { Grows } \\
\text { with } n
\end{array} \quad \begin{array}{l}
\text { Fixed as } \\
n \text { grows }
\end{array}
\end{array}\right.
\end{aligned}
$$

In asymptotic regimes
for $n \gg d$, want $\phi \rightarrow 1$
Almost as robust as id, but can have much lower MSE

Gram-Schmidt Walk Design
For all $\phi \in(0,1)$, obtains

$$
\begin{gathered}
\|Z\|_{2} \leq \frac{1}{\phi} \quad\left\|X Z X^{\top}\right\|_{2} \leq \frac{1}{1-\phi} \\
\operatorname{MSE}(\hat{r}) \leq \frac{1}{n^{2}} \min _{\beta \in \mathbb{R}^{d}}\left[\frac{1}{\phi}\left\|\mu-X_{\beta}^{\top}\right\|^{2}+\frac{1}{1-\phi}\|\beta\|^{2}\right]
\end{gathered}
$$

With sub-Gaussian tails

Gram-Schmidt walk of Bansal, Dadush, Garg, Louett '19

A polynomial-time algorithm that on input x_{1}, \ldots, x_{n} with $\left\|x_{i}\right\|_{2} \leq 1$ chooses a random $z \in\{ \pm 1\}^{n}$
so that $\left\|X Z X^{\top}\right\|_{2} \leq 40$

$$
X_{z}=\sum_{i} z(i) x_{i} \text { is } \sqrt{40} \text {-subgaussian }
$$

\rightarrow Polynomial-time algorithm for Banaszczyk's Discrepancy Theorem

Gram-Schmidt walk of Bansal, Dadush, Garg, Louett '19

A polynomial-time algorithm that on input x_{1}, \ldots, x_{n} with $\left\|x_{i}\right\|_{2} \leq 1$ chooses a random $z \in\{ \pm 1\}^{n}$
so that $\left\|X Z X^{\top}\right\|_{2} \leq 401$

$$
X_{z}=\sum_{i} z(i) x_{i} \text { is } \frac{\sqrt{10}}{1}-\text { subgaussian }
$$

Harshaw, Säuje, S, Zhang

Gram-Schmidt Walk Design
Choose tradeoff parameter $\phi \in(0,1)$
Run GSW on augmented covariate vectors

$$
\begin{aligned}
& b_{i}=\left(\begin{array}{cc}
\sqrt{\phi} & e_{i} \\
\sqrt{1-\phi} & x_{i}
\end{array}\right) \text { elementary } \\
& \text { unit vector }
\end{aligned}
$$

And, randomly permute their order.*

Gram-Schmidt Walk Algorithm (BDGL) Start with $z=(0, \ldots, 0)$. Move inside $[-1,1]^{\eta}$

Directions determined by procedure like Gram-Schmidt.
Random steps provide Martingale

See also Beck-Fiala '81, Deville-Tille 'O4

Improving GSW would require assumptions
Trade off within constant of optimal

Even for d fixed, $n \rightarrow \infty, x_{i}$ from nice distribution

$$
\left\|x z x^{\top}\right\|_{2} \gtrsim 1
$$

Z hang 22: $\exists c>0$ st. NP-hard to distinguish

$$
\begin{aligned}
\exists Z & \left\|X Z X^{\top}\right\|_{2}=0 \\
\text { from } & \forall Z
\end{aligned}\left\|X Z X^{\top}\right\|_{2} \geq c
$$

In Practice
Can choose design after examining X and extensive simulation.

Can include functions of covariates.
Can weight covariates
Use ML, or regression, to adjust $\hat{\tau}$?

In Practice
Can choose design after examining X and extensive simulation.

Can include functions of covariates.
Can weight covariates
Use ML, or regression, to adjust $\hat{\tau}$?

$$
\operatorname{MSE}(\hat{\gamma}) \leq \frac{1}{n^{2}} \min _{\beta \in \mathbb{R}^{d}}\left[\frac{1}{\phi}\left\|\mu-X_{\beta}^{\top}\right\|^{2}+\frac{1}{1-\phi}\|\beta\|^{2}\right]
$$

Open Problems
Online version (see Kulkarni-Reis-Rothuoss)
Other relations between X and μ ?
Matrix Spencer Conjecture
Komlos Conjecture: $\exists c$ st.
$\forall x_{1}, \ldots, x_{n}$ with $\left\|x_{i}\right\|_{2} \leq 1$ for all i
$\exists z \in\{+1\}^{n}$ s. $\left\|\sum z(i) x_{i}\right\|_{\infty} \in C$

To learn more．．．

Statistics＞Methodology
［Submitted on 8 Nov 2019 （vi），last revised 4 Feb 2022 （this version，v5）］
Balancing covariates in randomized experiments with the Gram－Schmidt Walk design
Christopher Harshaw，Fredrick Sävje，Daniel Spielman，Peng Zhang
ul：CS style exposition
v2：For experimentalists and statisticians more results different simulations
03， $4,05,06$ ：adding stuff referees request vF：CLT，variance estimator，CI，+
Packages for Julia and R on Gitttab

