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Buildings

I First series of buildings were introduced by J.Tits in 50s.

I They have algebraic, analytic and number theoretical aspects.
I Buildings consist of chambers and apartments satisfying certain axioms,

where each apartment consists of a set of chambers.
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1. Heawood graph

I Chambers are edges

I Apartments are cycles of length six
I For any two chambers there is an apartment containing both of them
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Definition of buildings

Buildings consist of chambers and apartments satisfying the following
axioms:

Definition
An n-dimensional euclidean (hyperbolic) building is an n-dimensional
complex X such that:

I X is a union of tessellated n-dimensional spaces called apartments,
where the tiles of the tessellation are chambers.

I For any two chambers there is an apartment containing both of them.
I If two apartments F1 and F2 have non-trivial intersection, then there is

an isomorphism from F1 to F2, fixing F1 ∩ F2 pointwise.
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Polyhedra and links

Definition
A (generalized) polyhedron is a two-dimensional complex which is obtained
from several decorated polygons by identification of sides with the same
labels respecting orientation.
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Polyhedra and links

Definition
Take a sphere of a small radius at a point of the polyhedron. The intersection
of the sphere with the polyhedron is a graph, which is called the link at this
point.
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Links of manifolds are spheres, but we need highly singular spaces as links
to construct buildings.
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Example of a link

The link of our example above is the following graph:
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This graph has diameter (the maximal distance between two vertices) two and
girth (the length of the shortest cycle) four.
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Polyhedra and links

The following theorem connects polyhedra with buildings (the result below
deals with the 2-dimensional case, but I generalised it to arbitrary
dimensions).

Theorem (Ballmann, Brin 1994)
Let X be a compact two-dimensional polyhedron. If all links are graphs of diameter m
and girth 2m, then the universal cover of the polyhedron is a two-dimensional
building.

Theorem (Vdovina 2002)
A polyhedron with given links can be constructed explicitly. Any connected bipartite
graph can be realized as a link of a 2-dimensional polyhedron with 2k-gonal faces.

Dimensions 3 and higher: joint with Ragunatapirom and Stix (2018)
involving quaternion algebras. Buildings with chambers as nD cubes are
constructed.
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Arithmetic lattices acting simply transitively on products of trees

Let q be a prime power. Let
δ ∈ F×q2

be a generator of the multiplicative group of the field with q2 elements. If
i, j ∈ Z/(q2 − 1)Z are

i 6≡ j (mod q− 1),
then 1 + δj−i 6= 0, since otherwise

1 = (−1)q+1 = δ(j−i)(q+1) 6= 1,

a contradiction. Then there is a unique xi,j ∈ Z/(q2 − 1)Z with

δxi,j = 1 + δj−i.

With these xi,j we set yi,j := xi,j + i− j, so that

δyi,j = δxi,j+i−j = (1 + δj−i) · δi−j = 1 + δi−j.

We set

l(i, j) := i− xi,j(q− 1),

k(i, j) := j− yi,j(q− 1).
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Let M ⊆ Z/(q2 − 1)Z be a union of cosets stable under multiplication by q,
and by addition of q− 1.

Theorem (RSV 2018)
Each group ΓM,δ acts simply transitively on a product of d = |M| trees.

ΓM,δ =

〈
ai for all i ∈ M

∣∣∣∣ ai+(q2−1)/2ai = 1 for all i ∈ M,
aiaj = ak(i,j)al(i,j) for all i, j ∈ M with i 6≡ j (mod q− 1)

〉
if q is odd, and if q is even:

ΓM,δ =

〈
ai for all i ∈ M

∣∣∣∣ a2
i = 1 for all i ∈ M,

aiaj = ak(i,j)al(i,j) for all i, j ∈ M with i 6≡ j (mod q− 1)

〉
.
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3D example

Γ =

〈 a1, a5, a9, a13, a17, a21,
b2, b6, b10, b14, b18, b22,
c3, c7, c11, c15, c19, c23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aiai+12 = bibi+12 = cici+12 = 1 for all i ,
a1b2a17b22, a1b6a9b10, a1b10a9b6,

a1b14a21b14, a1b18a5b18, a1b22a17b2,
a5b2a21b6, a5b6a21b2, a5b22a9b22,
a1c3a17c3, a1c7a13c19, a1c11a9c11,
a1c15a1c23, a5c3a5c19, a5c7a21c7,

a5c11a17c23, a9c3a21c15, a9c7a9c23,
b2c3b18c23, b2c7b10c11, b2c11b10c7,
b2c15b22c15, b2c19b6c19, b2c23b18c3,
b6c3b22c7, b6c7b22c3, b6c23b10c23.

〉
.
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Non-residually finite CAT(0) groups of arbitrary dimension

I Main ingredients: just infinite groups and doubling construction;

I 2D examples: Wise (1996), Burger-Mozes (2000);
I Arithmetic lattices + generalized doubling construction;
I Why difficult? Each k-D cube group gives k 2D groups, which need to be

compatible, and remain compatible after doubling.
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C*-algebras

We begin with the abstract characterization of C*-algebras given in the 1943
paper by Gelfand and Naimark.

Definition
A C*-algebra, B, is a Banach algebra over the field of complex numbers,
together with a map x 7→ x∗ for x ∈ B with the following properties:

I It is an involution, for every x ∈ B: x∗∗ = (x∗)∗ = x
I For all x, y ∈ B: (x + y)∗ = x∗ + y∗

(xy)∗ = y∗x∗(xy)∗ = y∗x∗

I For every complex number λ and every x ∈ B: (λx)∗ = λx∗.
I For all x ∈ B: ‖x∗x‖ = ‖x‖‖x∗‖.
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C*-algebras and von Neumann algebras of k-graphs

One of the bridges between the cube complexes and C*-algebras are so-called
k-graphs (another one is via crossed products).
Moreover, in a recent work with Nadia Larsen we suggest to look at the
spectra of the k-graphs.

Definition
A countable category C is said to be a higher rank graph or a k-graph if there is
a functor d : C→Nk, called the degree map, satisfying the unique factorization
property (UFP): if d(a) = m + n then there are unique elements a1 and a2 in C
such that a = a1a2 where d(a1) = m and d(a2) = n. We call d(x) the of x. A
morphism of k-graphs is a degree-preserving functor.
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C*-algebras and von Neumann algebras of k-graphs

Theorem (Joint work with Nadia Larsen)
There exists a strongly connected k-rank graph ∆ with ρ(∆) = (2l1, ..., 2lk) for any
integers l1, ..., lk, such that for any cycle µ ∈ ∆, ∑k

i=1 d(µ)i ∈ 2Z.

Corollary
By varying l1, ..., lk we are getting an infinite family of distinct values of λ for IIIλ

factors. In particular, if l1 = ... = lk = l, then λ = (2l)−2.
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Definition
A k-dimensional digraph DG is a directed graph with V a finite set of
vertices, E finite set of edges, and the edge set decomposes as a disjoint union
E = E1 t E2 t · · · t Ek with Ei for i = 1, . . . , k regarded as edges of colour i,
such that there is a bijection of all directed paths of length two formed of
edges of colours given by ordered pairs (i, j) with i 6= j in {1, 2, . . . , k}, and:

(F1) If xy is a path of length two with x of colour i and y of colour j, then
φ(xy) = y′x′ for a unique pair (y′, x′) where y′ has colour j, x′ has colour
i and the origin and terminus vertices of the paths xy and y′x′ coincide.
We write this as xy ∼ y′x′.

(F2) For all x ∈ Ei, y ∈ Ej and z ∈ El so that xyz is a path on E, where i, j, l are
distinct colours, if x1, x2, x2 ∈ Ei, y1, y2, y2 ∈ Ej and z1, z2, z2 ∈ El satisfy

xy ∼ y1x1, x1z ∼ z1x2, y1z1 ∼ z2y2

and
yz ∼ z1y1, xz1 ∼ z2x1, x1y1 ∼ y2x2,

it follows that x2 = x2, y2 = y2 and z2 = z2.
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Definition (BGV)
Let G be a k-dimensional digraph on n disjoint alphabets Xi, i = 1, ..., n such
that any two alphabets generate a bi-reversible automaton with an infinite
group generated by this automaton. We will call it nD automaton.
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Graph C*-algebras

I Let Γ = Z ∗Z, the free group on two generators a and b.

I The Cayley graph of Γ with respect to the generating set {a, b},
Cay(Γ, {a, b}), is a homogeneous tree of degree 4.

I The vertices of the tree are elements of Γ i.e. reduced words in
S = {a, b, a−1, b−1}.
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Graph C*-algebras

I The boundary, Ω, of the tree can be thought of as the set of all
semi-infinite reduced words w = x1x2x3...., where xi ∈ S

I Ω has a natural compact (totally disconnected) topology :
I if x ∈ Γ then let Ω(x) be all semi-infinite words with the prefix x
I Ω(x) is open and closed in Ω and the sets gΩ(x) and g(Ω \Ω(x)), where

g ∈ Γ and x ∈ S, form a base for the topology of Ω.
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Graph C*-algebras

Left multiplication by x ∈ Γ induces an action α of Γ on C(Ω) by

α(x)f (w) = f (x−1w).

C(Ω)o Γ is generated by C(Ω) and the image of a unitary representation π
of Γ
such that α(g)f = π(g)f π∗(g) for f ∈ C(Ω) and g ∈ Γ and every such
C∗-algebra is a quotient of C(Ω)o Γ.
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Graph C*-algebras

For x ∈ Γ, let px denote the projection defined by the characteristic function
1Ω(x) ∈ C(Ω).
For g ∈ Γ, we have

gpxg−1 = α(g)1Ω(x) = 1gΩ(x)

and therefore for each x ∈ S,

px + xpx−1 x−1 = 1.

pa + pa−1 + pb + pb−1 = 1
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Partial isometries

For x ∈ S we define a partial isometry sx ∈ C(Ω)o Γ by

sx = x(1− px−1 ).

Then,
sxs∗x = x(1− px)x−1 = px

and
s∗xsx = 1− px−1 = ∑

y 6=x−1

sys∗y .

These relations show that the partial isometries sx, for x ∈ S, generate a
C∗-algebra OA .
The K-theory of this C∗-algebra is Z×Z.
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Transition matrix

Where

A =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


relative to {a, a−1, b, b−1} × {a, a−1, b, b−1}.
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Related projects and further directions of research
I Higher-dimensional Thompson groups and their C*-algebraic invariants

( with M.Lawson and A.Sims).

I Unitary representations of higher-dimensional Thompson groups.
I Multi-dimensional picture languages coming from buildings.
I K-theory of n-dimensional polyhedral algebras (with PhD students

S.Matter and C.Radu).
I Non-residually finite higher-dimensional CAT(0) groups (with N.

Ragunatapirom and J.Stix).
I Systematic study of aperiodic tilings using higher-rank graph

C*-algebras.
I Higher-dimensional expanders.
I Groups acting on higher-dimensional hyperbolic buildings.
I Low complexity algorithms on knot recognition and higher-dimensional

words recognition (with O.Kharlampovich).
I Applications of harmonic maps to study of buildings and

higher-dimensional complexes (with G.Daskalopoulus and C.Mese).
I Applications to algebraic geometry: Beauville surfaces and fake

quadrics (with N.Boston, N.Peyerimhoff, J.Stix).
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