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Quantum Markov semigroups – the physical origins

In 1974, Brian Davies showed how quantum Markov semigroups naturally

arise in physics.

Consider a physical system on Hilbert space H with the Hamiltonian H

that is in contact with a heat bath at inverse temperature β. The heat

bath is taken to be an infinite free fermion system. Let HB and HB be the

heat bath Hilbert space and Hamiltonian. The combined system lives on

the Hilbert space

K := H⊗HB

and for λ > 0, we take the Hamiltonian to be

Kλ := H ⊗ 1 + 1⊗ HB + λV

where V is an interaction term on which certain reasonable restrictions are

imposed.
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Let S denote the density matrices on H, and let SK denote the density

matrices on K. Let |Ω〉 be the vacuum state for the free fermi system, and

imbed S into SK using the map

ρ 7→ e−i(t/λ
2)K0

(
e i(t/λ

2)Kλ
ρ⊗ |Ω〉〈Ω|e−i(t/λ2)Kλ

)
e i(t/λ

2)K0
=: ρK,λ,t .

We recover a density matrix ρt,λ on H by taking the partial trace over K.

That is, for a self-adjoint operator A on H,

Tr[ρt,λA] = Tr [ρK,λ,t(A⊗ 1)] .

Davies proved that under reasonable conditions,

lim
λ↓0

ρt,λ = P†
t ρ where P†

t = etL
†

and he provided an explicit formula for the generator L †.
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Quantum operations

Let Φ : Mm(C)→ Mn(C) be a linear transformation. Equip Mn(C) with

the Hilbert-Schmidt inner product, making it a Hilbert space. We write Φ†

to denote the adjoint with respect to the Hilbert-Schmidt inner product.

The map Φ is unital if it takes the identity to the identity; i.e.,

Φ(1m) = 1n .

The map Φ is trace preserving if

Tr[Φ(X )] = Tr[X ] .

for all X .

It is easy to check that Φ is unital if and only if Φ† is trace preserving.
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Φ is positive when Φ(A) ≥ 0 for all A ≥ 0. Φ is 2-positive if the block

matrix

[
Φ(A) Φ(B)

Φ(C ) Φ(D)

]
≥ 0 whenever

[
A B

C D

]
≥ 0. For each integer

k > 2, the condition of k-positivity is defined in the analogous manner,

and Φ is completely positive if it is k positive for all k.

Example: For any m × n matrix V , consider the map Φ : X 7→ V ∗XV .[
Φ(A) Φ(B)

Φ(C ) Φ(D)

]
=

[
V 0

0 V

]∗ [
A B

C D

][
V 0

0 V

]
Hence Φ is completely positive, and it follows that for any {V1, . . . ,V`} so

is

Φ : X 7→
∑̀
j=1

V ∗j XVj .
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If Φ is completely positive and unital, its adjoint Φ† is a completely

positive trace preserving map, and so evidently it takes density matrices to

density matrices. Such maps Φ† are known as quantum operations.

Example: Let m, n ∈ N. We may think of matrices in Mmn(C) as m ×m

block matrices with entries in Mn(C). Define

Ξm(X ) =

 X
. . .

X

 ,

where the matrix on the right is the m ×m block diagonal matrix each of

whose diagonal entries is X . This is completely positive and unital. Its

adjoint, Ξ†m, is

Ξ†m


 X1,1 · · · X1,m

...
. . .

...

Xm,1 · · · Xm,m


 =

m∑
j=1

Xj ,j ,

is the partial trace.
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The structure of quantum operations

Every quantum operation Φ† on Mn(C) has a Stinespring factorization:

Define Φm : Mn(C)→ Mmn(C) by

Ψm(A) =


A

0
. . .

0

 = A⊗ |1〉〈1| .

Then for some unitary U on Mmn(C), and some m,

Φ†(X ) = Ξ†m(U∗Ψm(X )U)

=
m∑
j=1

U∗1,jXU1,j =
m∑
j=1

V ∗j XVj .
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Definition

A Quantum Markov Semigroup (QMS) is a semigroup {Pt}t≥0 of

completely positive unital maps on Mn(C). Its dual {P†
t }t≥0 is a

semigroup of completely positive trace preserving maps. Such semigroups

are called Quantum Dynamical Semigroups.

For any QMS {Pt}t≥0, and any t > 0 since Pt1 = 1, 1 is an eigenvalue of

each Pt , and hence of each P†
t . By a simple Perron-Frobenius argument,

there will be invariant density matrices σ for the dynamical semigroup

{Pt}t≥0; i.e., density matrices σ such that Ptσ = σ for all t ≥ 0.

We will generally be interested in the ergodic case in which there is

exactly one such state σ, as in the cases treated by Davies, where it is

σβ :=
1

Zβ
e−βH , Zβ := Tr[e−βH ] .
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In this finite dimensional setting in the ergodic case with unique invariant

state σ, soft arguments provide a spectral gap, from which it follows that

for any ρ ∈ S,

lim
t→∞

P†
t ρ = σ

with exponentially fast convergence in the Hilbert-Schmidt norm.

We would like to quantify the exponential rate of convergence as precisely

as possible and in the more meaningful trace norm

‖P†
t ρ− σ‖1 = Tr[|P†

t ρ− σ|] .

We are mainly interested in methods for doing this when the system

(H,H) that is in contact with the heat bath consists of N interacting

particles so that H, while finite dimensional, has a dimension that is

exponential in N. It is natural to make use of quantum relative entropy.

Eric Carlen (Rutgers) Quantum Entropy Harvard, November 1, 2022 9 / 42



Quantum relative entropy

Given two density matrices ρ and σ, the quantum relative entropy of ρ

with respect to σ is the quantity

D(ρ||σ) := Tr[ρ(log ρ− log σ)] .

It has a direct physical meaning. Loosely speaking the number of

experiments required to distinguish the state ρ from σ with an error

probability of size ε is − log ε/D(ρ||σ), in a complete analogy with

“hypothesis testing” in classical probability.

In this sense, the relative entropy is a good measure of the “divergence”’

of ρ from σ. While the relative entropy is not a metric – D(ρ||σ) is not

symmetric in ρ and σ – it does dominate the square of a natural metric, as

expressed by the quantum Pinsker inequality

D(ρ||σ) ≥ 1

2
Tr[|ρ− σ|]2 .
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Some fundamental entropy inequalities

In 1973, Elliott Lieb proved two convexity inequalities that are

fundamental for what we discuss here, but also in many other settings.

Theorem (Lieb 1973, Lieb Concavity Theorem)

For 0 ≤ t ≤ 1, and any fixed K ∈ Mn(C), the function

(X ,Y ) 7→ Tr[K ∗Y tKX 1−t ]

is jointly concave on M+
n (C)×M+

n (C).

Theorem (Lieb 1973)

(X ,Y ,K ) 7→ Tr

[∫ ∞
0

K ∗
1

sI + Y
K

1

sI + X
ds

]
is jointly convex on M++

n (C)×M++
n (C)×Mn(C).
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The first of these theorems in known as the Lieb Concavity Theorem

(LCT). The second does not have a name, and its direct significance was

overlooked for many years.

In 1975, Lindblad proved, as a consequence of the LCT, the Data

Processing Inequality (DPI)

Theorem (Lindblad 1975, Data Processing Inequality)

For any two ρ, σ ∈ S, and any quantum operation Φ† on S,

D(Φ†ρ||Φ†σ) ≤ D(ρ||σ) .

Roughly speaking, performing any quantum operation on ρ and σ can only

make then harder to distinguish. This inequality is one of the cornerstones

of quantum information theory.
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The DPI is a prototypical monotonicity theorem. The LCT is a

prototypical convexity theorem. The passage back and forth between

monotonicity and convexity is crucial to our subject, and therefore we

briefly explain how LCT implies DPI.

In the special case K = 1, the LCT asserts the convexity of

Tr[X ]− Tr[Y tX 1−t ]

t

for all t > 0. Taking the limit t ↓ 0 yields the joint convexity of

(X ,Y ) 7→ D(X ||Y ) .
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Next, recall the Stinespring factorization

Φ†(X ) = Ξ†m(U∗Ψm(X )U) .

It turns out Ξm can be written as an average over unitary conjugations,

and this allows the convexity to be applied. Evidently unitary conjugations

have no effect on the relative entropy, and neither does the initial

embedding Ψm.

In exactly the same way, one can prove monotonicity versions of the two

theorems of Lieb introduced above, and these are:
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Theorem (Uhlmann 1977)

For all 0 ≤ t ≤ 1, all m, n ∈ N, all X ,Y ∈ M+
m(C), all K ∈ Mn(C), and all

completely positive unital maps Φ : Mn(C)→ Mm(C),

Tr[Φ(K ∗)Y 1−tΦ(K )X t ] ≤ Tr[K ∗Φ†(Y )1−tKΦ†(X )t ] ,

Theorem (Petz 1996)

For all 0 ≤ t ≤ 1, all m, n ∈ N, all X ,Y ∈ M++
m (C), all K ∈ Mm(C) and

all completely positive unital maps Φ : Mn(C)→ Mm(C),

Tr

[∫ ∞
0

Φ†(K ∗)
1

sI + Φ†(Y )
Φ†(K )

1

sI + Φ†(X )
ds

]
≤

Tr

[∫ ∞
0

K ∗
1

sI + Y
K

1

sI + X
ds

]
.
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In the form stated here, Uhlmann’s Theorem is equivalent to LCT, but

Uhlmann actually proved more: He showed that is monotonicity inequality

is true for all unital maps Φ that satisfy the Schwarz inequality

Φ(X ∗X ) ≥ Φ(X ∗)Φ(X ) .

This class of maps strictly includes the class of unital completely positive

maps. This class of maps is the best possible.

Other monotonicity theorems, some now and some extended, may be

found in Carlen 2022, Carlen and Müller-Hermes 2022, and Carlen and

Zhang 2022. However, in this talk we need only the two inequalities

discussed here, and only for quantum operations and not more general

classes of positive maps.

Eric Carlen (Rutgers) Quantum Entropy Harvard, November 1, 2022 16 / 42



Monotonic decrease of the relative entropy

Consider a quantum dynamical semigroup {P†
t }t≥0 with invariant state σ.

Then by the invariance of σ and the DPI, for any density matrix ρ.

D(P†
t ρ||σ) = D(P†

t ρ||P
†
t σ) ≤ D(ρ||σ) .

That is, in complete generality, the function

t 7→ D(P†
t ρ||σ)

is monotone decreasing. The research discussed in the rest of this lecture

is motivated by the following questions:
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(1) Under what circumstances can we write the evolution ρ 7→P†
t ρ as

gradient for for the relative entropy with respect to some metric on the

space S?

The gradient flow equation, in Rn say, is ẋ(t) = −∇F (x(t)), hence

d

dt
F (x(t)) = ∇F (x(t)) · ẋ(t) = −|∇F (x(t))|2 < 0 .

(2) When it is possible to write the evolution ρ 7→P†
t ρ as gradient for the

relative entropy with respect to some metric on the space S, under what

circumstances can we explicitly find such a metric on S and relate the rate

at which limt→∞D(P†
t ρ||σ) = 0 to geometric properties of the metric? Is

the rate of convergence exponential?
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To clarify the last question, again consider gradient flow in Rn specified by

ẋ(t) = −∇F (x(t)) where F is a twice differentiable function such that

D2F (x) ≥ 2λ1

for all x . Then for any solution,

d

dt
‖∇F (x(t))‖2 = 2∇F (x(t)) · D2F (x(t))∇F (x(t)) ≤ −2λ‖∇F (x(t))‖2 .

Hence ‖∇F (x(t))‖2 ≤ e−2λt‖∇F (x(0))‖2 and then assuming the

minimum value of F is 0, and x(0) = x ,

F (x) = −
∫ ∞
0

d

dt
F (x(t))dt ≤ 1

2λ
‖∇F (x)‖2

and

F (x(t)) ≤ e−2λtF (x(0)) .
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It turns out that a QMS does not always describe gradient flow for relative

entropy with respect to a Riemannian metric on S. The following

theorem, proved by myself and Jan Maas, refers to a particular

self-adjointness condition that will be explained next.

Theorem (Carlen-Mass 2020)

Let (Pt)t≥0 be an ergodic QMS with generator L and invariant state

σ ∈ S. If there exists a continuously differentiable Riemannian metric gρ
on S such that the quantum master equation ∂

∂t ρ = L †ρ is the gradient

flow equation for D(ρ||σ) with respect to gρ, then each Pt is self-adjoint

with respect to the BKM inner product associated to σ.

We now introduce a family of inner products on Mn(C) including the

BKM inner product.

Eric Carlen (Rutgers) Quantum Entropy Harvard, November 1, 2022 20 / 42



Inner products on Mn(C) associated to σ ∈ S

Let P[0, 1] denote the set of probability measures on the interval [0, 1].

Notice that for each s ∈ [0, 1],

Tr[B∗σ1−sAσs ] = Tr[(σ(1−s)/2Bσs/2)∗σ(1−s)/2Aσs/2] ,

and the right hand side is strictly positive when B = A 6= 0.

Definition

For each m ∈ P[0, 1], 〈·, ·〉m denotes the inner product on Mn(C) given by

〈B,A〉m = Tr[B∗Mm(A)] where Mm(A) =

∫ 1

0
σsAσ1−s dm(s) .

The Gelfand-Naimark-Segal (GNS) inner product corresponds to m = δ0,

the point mass at s = 0.
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Other cases are known by name. Taking m = δ1/2 yields the

Kubo-Martin-Schwinger (KMS) inner product

〈B,A〉KMS = Tr[B∗σ1/2Aσ1/2] .

Taking m to be uniform on [0, 1] yields the Bogoliubov-Kubo-Mori (BKM)

inner product. The BKM inner product is defined by

〈B,A〉BKM =

∫ 1

0
Tr[B∗σsAσ1−s ]ds .

The condition that an operator L on Mn(C) be self adjoint with respect

to the GNS inner product is is quite restrictive, so that such an operator is

automatically self-adjoint with respect to any of the other inner products

〈·, ·〉m. Such a QMS generator is said to satisfy the detailed balance

condition.
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Alicki proved the following structure theorem:

Theorem (Alicki 1976, Structure of QMS with detailed balance)

Let Pt = etL be a quantum Markov semigroup on Mn(C) satisfying

detailed balance with respect to σ ∈ S. Then the generator L and its

adjoint L † have the form

L =
∑
j∈J

e−ωj/2Lj , Lj(A) = V ∗j [A,Vj ] + [V ∗j ,A]Vj ,

L † =
∑
j∈J

e−ωj/2L †
j , L †

j (ρ) = [Vj , ρV
∗
j ] + [Vjρ,V

∗
j ] ,

where J is a finite index set, the operators Vj ∈ B(H ) satisfy

{Vj}j∈J = {V ∗j }j∈J , and ωj ∈ R satisfies

σVjσ
−1 = e−ωjVj for all j ∈ J .
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Gradient flow on S

S is a relatively open subset of {A ∈ M+
n (C) : Tr[A] = 1}. Identify the

tangent space TρS at ρ ∈ S with

V := {A ∈ Mn(C) : A = A∗ and Tr[A] = 0} .

The cotangent space T †ρS may also be identified with V through the

duality pairing 〈A,B〉 = Tr[AB] for A,B ∈ A0.

Let gρ be a smooth Riemannian metric on S. Then gρ determines an

operator Gρ : TρS→ T †ρS defined by

〈A,GρB〉H = gρ(A,B)

for A,B ∈ TρS. Clearly, Gρ is invertible and self-adjoint with respect to

the Hilbert–Schmidt inner product on H. Define Kρ : T †ρS→ TρS by

Kρ = (Gρ)−1.
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For a smooth functional F : S→ R and ρ ∈ S, its differential

dF(ρ) ∈ T †ρS is defined by limε→0 ε
−1(F (ρ+ εA)− F (ρ)) = 〈A,dF (ρ)〉

for A ∈ TρS. The gradient ∇gF (ρ) ∈ TρS depends on the Riemannian

metric through the duality formula gρ(A,∇gF (ρ)) = 〈A,dF(ρ)〉 for

A ∈ TρS. That is

∇gF (ρ) = KρdF (ρ) .

For F (ρ) = D(ρ||σ), dF (ρ) = log ρ− log σ. If L is a QMS generator and

σ ∈ S satisfies L †σ = 0, we seek a metric, specified by some Kρ, such

that

L †ρ = Kρ(log ρ− log σ) .
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A classical model

Jordan, Kinderlehrer and Otto showed that

∂

∂t
ρ(x , t) = ∆ρ(x , t)−∇ · (ρ(x , t)∇ log σ(x))

= ∇ · (ρ(x , t)(∇ log ρ(x)−∇ log σ(x)))

describes gradient flow for the classical relative entropy∫
Rn ρ(x) log ρ(x)

σ(x) dx with respect to the 2-Wasserstein metric.

This structure is formally given in terms of the operator Kρ defined by

Kρψ = −∇ · (ρ∇ψ) ,

for probability densities ρ on Rn. We get a linear equation since

ρ∇ log ρ = ∇ρ .
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Non commutative differential structure

Consider a QMS generator L , satisfying detailed balance, as specified by

σ and {V1, . . . ,V|J |}. Define

∂jA = [Vj ,A] .

Define the Hilbert space HJ by HJ =
⊕
j∈J

Hj , where each Hj is a copy of

H. For A ∈ HJ and j ∈ J , let Aj denote the component of A in Hj . Pick

some linear ordering of J , and write

A = (A1, . . . ,A|J |) .

Equip HJ with the inner product 〈A,B〉HJ =
∑

j∈J 〈Aj ,Bj〉Hj
.
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Define an operator ∇ : H→ HJ by

∇A = (∂1, . . . , ∂|J |A) .

Thinking of elements of H as non-commutative analogs of functions on a

manifold, we may think of A = (A1, . . . ,A|J |) as a vector field. We define

the operator div : HJ → H by

div A = −
∑
j∈J

∂†j Aj =
∑
j∈J

[Aj ,V
∗
j ] .

Note that div is minus the adjoint of the map ∇ : H→ HJ , so that L0 is

negative semi-definite. We call ∇ and div the non-commutative

gradient and the non-commutative divergence associated to L ,
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The chain rule

Define an operator Mρ,j by

Mρ,j(A) =

∫ 1

0

(
eωj/2ρ

)1−s
A
(
e−ωj/2ρ

)s
ds .

so that

M−1ρ,j (A) =

∫ ∞
0

1

λ+ e−ω/2ρ
A

1

λ+ eω/2ρ
dλ .

Note that if ρ and A commute, and ωj = 0,

Mρ,j(A) = ρA .

Finally,

Mρ(A) := (Mρ,1(A1), . . . ,Mρ,|J |(A|J |)

Eric Carlen (Rutgers) Quantum Entropy Harvard, November 1, 2022 29 / 42



Lemma (Chain rule for the logarithm)

For all ρ ∈ S and j ∈ J we have

e−ωj/2Vjρ− eωj/2ρVj = Mρ,j (∂j(log ρ− log σ)) .

We then define

KρA :=
∑
j∈J

∂†j
(
Mρ,j(∂jA)

)
= div (Mρ,j∇A) .

Theorem (Carlen-Maas 2017)

For ρ ∈ S we have the identity

L †ρ = −KρdD(ρ||σ) ,

hence the gradient flow equation of D(ρ||σ) with respect to the

Riemannian metric induced by Kρ is the master equation ∂tρ = L †ρ.
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Also in 2017, Mielke and Mittenzwerg constructed a metric, by different

means, for which the master equation ∂
∂t ρ = L †ρ, again under the

detailed balance condition, is gradient flow for the relative entropy.

The metric is not unique, and Carlen-Maas 2020 gives a more flexible

construction yielding a range of such metrics.

We now explain how the explicit form of our metric allows one to prove

entropy-entropy production inequalities. To do this, we write our metric in

Brenier-Benamou form:
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Connection with the Brenier-Benamou formula

The Brenier-Benamou formula for the 2-Wasserstein distance on is:

W2(ρ0, ρ1)2

= inf

{∫ 1

0
|∇ψt(x)|2 dρt(x) dt : ∂tρt + div(ρt∇ψt) = 0 , ρt |t=0,1 = ρ0,1

}
= inf

{∫ 1

0

|Pt(x)|2

ρt(x)
dx dt : ∂tρt + divPt = 0 , ρt |t=0,1 = ρ0,1

}
.

In our case, for a smooth curve ρ(t), we have that

gρ(ρ̇, ρ̇) = 〈ρ̇,K−1ρ ρ̇〉H = 〈(K−1ρ ρ̇),Kρ(K−1ρ ρ̇)〉H .

That is, writing ρ̇(t) =: Kρ(t)B(t), gρ(ρ̇, ρ̇) = 〈B,KρB〉.
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Therefore

d2
g (ρ0, ρ1) =

inf

{∫ 1

0
〈Bt ,KρtBt〉 dt : ∂tρt = KρtBt , ρt |t=0 = ρ0 , ρt |t=1 = ρ1

}
Making the change of variables,

At := Mρ(t)∇Bt ,

we get, using a minimizing property of gradients, that

d2
g (ρ0, ρ1) =

inf

{∫ 1

0
〈At ,M−1ρ(t)At〉 dt : ∂tρt + div At = 0 , ρt |t=0 = ρ0 , ρt |t=1 = ρ1

}
which is our analog of the Brenier-Benamou formula.

Eric Carlen (Rutgers) Quantum Entropy Harvard, November 1, 2022 33 / 42



Recall that

〈At ,M−1ρ(t)At〉 =
∑
j∈J

∫ ∞
0

Tr

[
(At)

∗
j

1

λ+ e−ωj/2ρ
(At)j

1

λ+ eωj/2ρ

]
dλ ,

and the second monotonicity theorem, equivalent ot the second convexity

theorem of Lieb, now applies to each summand. This will be the key to

proving entropy-entropy production inequalities.
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Geodesic convexity and relaxation to equilibrium

Let (M , g) be any smooth, finite-dimensional Riemannian manifold. For

x , y in M , the Riemannian distance dg (x , y) between x and y is given by

minimizing an action integral of paths γ : [0, 1]→M running from x to y :

d2
g (x , y) = inf

{∫ 1

0
‖γ̇(s)‖2g(γ(s)) ds : γ(0) = x , γ(1) = y

}
,

where

‖γ̇(s)‖2g(γ(s)) = gγ(s)(γ̇(s), γ̇(s)) .

(If the infimum is achieved, any minimizer γ will be a geodesic.) If F is a

smooth function on M , let gradgF denote its Riemannian gradient.
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For λ ∈ R, the function F is λ-convex in case whenever γ : [0, 1]→M is

a distance minimizing geodesic, then for all s ∈ (0, 1),

d2

ds2
F (γ(s)) ≥ λg(γ̇(s), γ̇(s)) .

It is a standard result that whenever F is λ-convex, the gradient flow for F

is λ-contracting in the sense that for all x , y ∈M and t > 0,

d

dt
d2
g (St(x),St(y)) ≤ −2λd2

g (St(x), St(y)) .

Otto and Westdickenberg developed an approach to geodesic convexity

that takes this last conclusion as its starting point. Consider the semigroup

St of transformations on M given by solving γ̇(t) = −gradgF (γ(t)); we

assume that nice global solutions exist, which will be the case in our

application. The semigroup St , t ≥ 0, is gradient flow for F .
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Let {γ(s)}s∈[0,1] be any smooth path in M with γ(0) = x and γ(1) = y .

They use the gradient flow transformation St to define a one-parameter

family of paths γt : [0, 1]→M , t ≥ 0 defined by

γt(s) = Stγ(s) .

Since γt is admissible for the variational problem that defines

dg (St(x),St(y)), it is immediate that for each t ≥ 0,

d2
g (St(x),St(y)) ≤

∫ 1

0
‖γ̇(s)‖2g(γ(s)) ds .

In the present smooth setting it is shown by Danieri and Savaré that if for

all smooth curves γ : [0, 1]→M ,

d

dt

∣∣∣∣
0+

(
‖γ̇t(s)‖2g(γt(s))

)
≤ −2λ‖γ̇0(s)‖2g(γ0(s)) ,

for all s ∈ (0, 1), then F is geodetically λ-convex.

Eric Carlen (Rutgers) Quantum Entropy Harvard, November 1, 2022 37 / 42



If one wishes to check convexity directly, one needs to take two

derivatives. A direct brute force computation is difficult at best, and

nobody has succeeded for physically interesting cases. The problem is that

one does not have good expressions for the geodesics of the metric.

However, the theorem of Otto and Westdickeberg reduces the problem to

one of monotonicity – one only needs to check one derivative. Even this

would be difficult to do by brute force in interesting cases, but fortunately

this is not necessary.

The quantity ‖γ̇0(s)‖2g(γ0(s)) is closely related to the monotone metric

discussed earlier that is provided by a convexity theorem of Lieb. Using

this, one can readily prove the required monotonicity inequality in a

number of important cases.
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We now present a simple sufficient condition for the monotonicity

inequality that we shall be able to verify in a number of interesting

examples.

Definition

A semigroup ~Pt on HJ intertwines with a semigroup Pt on H in case for

all t > 0, and all A ∈ H,

∇PtA = ~Pt∇A .

By duality, the intertwining relation ∇ ◦Pt = ~Pt ◦ ∇ implies the identity

P†
t div(A) = div( ~Pt

†
A) , for A ∈ HJ .

We will be particularly interested in cases in which for some λ ∈ R,

~PtA = (e−λtPtA1, . . . , e
−λtPtA|J |) .
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Suppose that the intertwining relation

P†
t div(A) = div( ~Pt

†
A) , for A ∈ HJ .

with
~PtA = (e−λtPtA1, . . . , e

−λtPtA|J |) .

is valid.

To apply it, consider any smooth path ρ : [0, 1]→ S with ρ(0) = ρ0 and

ρ(1) = ρ1. Recall the formula

d2
g (ρ0, ρ1) =

inf

{∫ 1

0
〈At ,M−1ρ(t)At〉 dt : ∂tρt + div At = 0 , ρt |t=0 = ρ0 , ρt |t=1 = ρ1

}
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Set ρt(s) := P†
t ρ(s). Since we suppose that the semigroup ~Pt

intertwines with Pt . It follows that

d

ds
ρt(s) = P†

t div A(s) = div ~P†
t A(s) .

Consequently,∥∥∥∥ d

ds
ρt(s)

∥∥∥∥2
g(ρt(s))

≤ e−2λt〈P†
t A(s),M−1

P†
t ρ(s)

P†
t A(s)〉H

≤ e−2λt〈A(s),M−1ρ(s)A(s)〉H = e−2λt
∥∥∥∥ d

ds
ρ(s)

∥∥∥∥2
g(ρ(s))

,

which is the desired monotonicity inequality.
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Using this, Jan Maas and I proved:

Theorem

Let Pt be the Bose Ornstein-Uhlenbeck semigroup with generator Lβ,

and let σβ be its invariant state. Then for all ρ ∈ S+,

D(Ptρ||σβ) ≤ e−2 sinh(β/2)tD(ρ||σβ) .

Theorem

For β > 0, let Pt be the Fermi Ornstein-Uhlenbeck semigroup with

generator Lβ, and let σβ be its invariant state. Then for all ρ ∈ S,

D(Ptρ||σβ) ≤ e−2λβtD(ρ||σβ)

where λβ = min{cosh(βej/2) : j = 1, . . . ,m}.
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Michael Loss and I are now working on probing such entropy production

theorems for quantum analogs of the Boltzmann equation, and have

succeeded in a number of interesting cases. But much remains to be done!

Thank you for your Interest!
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